static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl) { struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host); struct lm_lockstruct *ls = &sdp->sd_lockstruct; if (!(fl->fl_flags & FL_POSIX)) return -ENOLCK; if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK) return -ENOLCK; if (cmd == F_CANCELLK) { /* Hack: */ cmd = F_SETLK; fl->fl_type = F_UNLCK; } if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) { if (fl->fl_type == F_UNLCK) posix_lock_file_wait(file, fl); return -EIO; } if (IS_GETLK(cmd)) return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl); else if (fl->fl_type == F_UNLCK) return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl); else return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl); }
static int gfs2_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) { struct page *page = vmf->page; struct inode *inode = file_inode(vma->vm_file); struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_sbd *sdp = GFS2_SB(inode); struct gfs2_alloc_parms ap = { .aflags = 0, }; unsigned long last_index; u64 pos = page->index << PAGE_CACHE_SHIFT; unsigned int data_blocks, ind_blocks, rblocks; struct gfs2_holder gh; loff_t size; int ret; sb_start_pagefault(inode->i_sb); /* Update file times before taking page lock */ file_update_time(vma->vm_file); ret = get_write_access(inode); if (ret) goto out; ret = gfs2_rs_alloc(ip); if (ret) goto out_write_access; gfs2_size_hint(vma->vm_file, pos, PAGE_CACHE_SIZE); gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); ret = gfs2_glock_nq(&gh); if (ret) goto out_uninit; set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); set_bit(GIF_SW_PAGED, &ip->i_flags); if (!gfs2_write_alloc_required(ip, pos, PAGE_CACHE_SIZE)) { lock_page(page); if (!PageUptodate(page) || page->mapping != inode->i_mapping) { ret = -EAGAIN; unlock_page(page); } goto out_unlock; } ret = gfs2_rindex_update(sdp); if (ret) goto out_unlock; ret = gfs2_quota_lock_check(ip); if (ret) goto out_unlock; gfs2_write_calc_reserv(ip, PAGE_CACHE_SIZE, &data_blocks, &ind_blocks); ap.target = data_blocks + ind_blocks; ret = gfs2_inplace_reserve(ip, &ap); if (ret) goto out_quota_unlock; rblocks = RES_DINODE + ind_blocks; if (gfs2_is_jdata(ip)) rblocks += data_blocks ? data_blocks : 1; if (ind_blocks || data_blocks) { rblocks += RES_STATFS + RES_QUOTA; rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); } ret = gfs2_trans_begin(sdp, rblocks, 0); if (ret) goto out_trans_fail; lock_page(page); ret = -EINVAL; size = i_size_read(inode); last_index = (size - 1) >> PAGE_CACHE_SHIFT; /* Check page index against inode size */ if (size == 0 || (page->index > last_index)) goto out_trans_end; ret = -EAGAIN; /* If truncated, we must retry the operation, we may have raced * with the glock demotion code. */ if (!PageUptodate(page) || page->mapping != inode->i_mapping) goto out_trans_end; /* Unstuff, if required, and allocate backing blocks for page */ ret = 0; if (gfs2_is_stuffed(ip)) ret = gfs2_unstuff_dinode(ip, page); if (ret == 0) ret = gfs2_allocate_page_backing(page); out_trans_end: if (ret) unlock_page(page); gfs2_trans_end(sdp); out_trans_fail: gfs2_inplace_release(ip); out_quota_unlock: gfs2_quota_unlock(ip); out_unlock: gfs2_glock_dq(&gh); out_uninit: gfs2_holder_uninit(&gh); if (ret == 0) { set_page_dirty(page); wait_for_stable_page(page); } out_write_access: put_write_access(inode); out: sb_end_pagefault(inode->i_sb); return block_page_mkwrite_return(ret); } static const struct vm_operations_struct gfs2_vm_ops = { .fault = filemap_fault, .map_pages = filemap_map_pages, .page_mkwrite = gfs2_page_mkwrite, .remap_pages = generic_file_remap_pages, }; /** * gfs2_mmap - * @file: The file to map * @vma: The VMA which described the mapping * * There is no need to get a lock here unless we should be updating * atime. We ignore any locking errors since the only consequence is * a missed atime update (which will just be deferred until later). * * Returns: 0 */ static int gfs2_mmap(struct file *file, struct vm_area_struct *vma) { struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); if (!(file->f_flags & O_NOATIME) && !IS_NOATIME(&ip->i_inode)) { struct gfs2_holder i_gh; int error; error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh); if (error) return error; /* grab lock to update inode */ gfs2_glock_dq_uninit(&i_gh); file_accessed(file); } vma->vm_ops = &gfs2_vm_ops; return 0; } /** * gfs2_open_common - This is common to open and atomic_open * @inode: The inode being opened * @file: The file being opened * * This maybe called under a glock or not depending upon how it has * been called. We must always be called under a glock for regular * files, however. For other file types, it does not matter whether * we hold the glock or not. * * Returns: Error code or 0 for success */ int gfs2_open_common(struct inode *inode, struct file *file) { struct gfs2_file *fp; int ret; if (S_ISREG(inode->i_mode)) { ret = generic_file_open(inode, file); if (ret) return ret; } fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS); if (!fp) return -ENOMEM; mutex_init(&fp->f_fl_mutex); gfs2_assert_warn(GFS2_SB(inode), !file->private_data); file->private_data = fp; return 0; } /** * gfs2_open - open a file * @inode: the inode to open * @file: the struct file for this opening * * After atomic_open, this function is only used for opening files * which are already cached. We must still get the glock for regular * files to ensure that we have the file size uptodate for the large * file check which is in the common code. That is only an issue for * regular files though. * * Returns: errno */ static int gfs2_open(struct inode *inode, struct file *file) { struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_holder i_gh; int error; bool need_unlock = false; if (S_ISREG(ip->i_inode.i_mode)) { error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh); if (error) return error; need_unlock = true; } error = gfs2_open_common(inode, file); if (need_unlock) gfs2_glock_dq_uninit(&i_gh); return error; } /** * gfs2_release - called to close a struct file * @inode: the inode the struct file belongs to * @file: the struct file being closed * * Returns: errno */ static int gfs2_release(struct inode *inode, struct file *file) { struct gfs2_inode *ip = GFS2_I(inode); kfree(file->private_data); file->private_data = NULL; if (!(file->f_mode & FMODE_WRITE)) return 0; gfs2_rs_delete(ip, &inode->i_writecount); return 0; } /** * gfs2_fsync - sync the dirty data for a file (across the cluster) * @file: the file that points to the dentry * @start: the start position in the file to sync * @end: the end position in the file to sync * @datasync: set if we can ignore timestamp changes * * We split the data flushing here so that we don't wait for the data * until after we've also sent the metadata to disk. Note that for * data=ordered, we will write & wait for the data at the log flush * stage anyway, so this is unlikely to make much of a difference * except in the data=writeback case. * * If the fdatawrite fails due to any reason except -EIO, we will * continue the remainder of the fsync, although we'll still report * the error at the end. This is to match filemap_write_and_wait_range() * behaviour. * * Returns: errno */ static int gfs2_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; int sync_state = inode->i_state & I_DIRTY; struct gfs2_inode *ip = GFS2_I(inode); int ret = 0, ret1 = 0; if (mapping->nrpages) { ret1 = filemap_fdatawrite_range(mapping, start, end); if (ret1 == -EIO) return ret1; } if (!gfs2_is_jdata(ip)) sync_state &= ~I_DIRTY_PAGES; if (datasync) sync_state &= ~I_DIRTY_SYNC; if (sync_state) { ret = sync_inode_metadata(inode, 1); if (ret) return ret; if (gfs2_is_jdata(ip)) filemap_write_and_wait(mapping); gfs2_ail_flush(ip->i_gl, 1); } if (mapping->nrpages) ret = filemap_fdatawait_range(mapping, start, end); return ret ? ret : ret1; } /** * gfs2_file_aio_write - Perform a write to a file * @iocb: The io context * @iov: The data to write * @nr_segs: Number of @iov segments * @pos: The file position * * We have to do a lock/unlock here to refresh the inode size for * O_APPEND writes, otherwise we can land up writing at the wrong * offset. There is still a race, but provided the app is using its * own file locking, this will make O_APPEND work as expected. * */ static ssize_t gfs2_file_aio_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { struct file *file = iocb->ki_filp; size_t writesize = iov_length(iov, nr_segs); struct gfs2_inode *ip = GFS2_I(file_inode(file)); int ret; ret = gfs2_rs_alloc(ip); if (ret) return ret; gfs2_size_hint(file, pos, writesize); if (file->f_flags & O_APPEND) { struct gfs2_holder gh; ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh); if (ret) return ret; gfs2_glock_dq_uninit(&gh); } return generic_file_aio_write(iocb, iov, nr_segs, pos); } static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len, int mode) { struct gfs2_inode *ip = GFS2_I(inode); struct buffer_head *dibh; int error; loff_t size = len; unsigned int nr_blks; sector_t lblock = offset >> inode->i_blkbits; error = gfs2_meta_inode_buffer(ip, &dibh); if (unlikely(error)) return error; gfs2_trans_add_meta(ip->i_gl, dibh); if (gfs2_is_stuffed(ip)) { error = gfs2_unstuff_dinode(ip, NULL); if (unlikely(error)) goto out; } while (len) { struct buffer_head bh_map = { .b_state = 0, .b_blocknr = 0 }; bh_map.b_size = len; set_buffer_zeronew(&bh_map); error = gfs2_block_map(inode, lblock, &bh_map, 1); if (unlikely(error)) goto out; len -= bh_map.b_size; nr_blks = bh_map.b_size >> inode->i_blkbits; lblock += nr_blks; if (!buffer_new(&bh_map)) continue; if (unlikely(!buffer_zeronew(&bh_map))) { error = -EIO; goto out; } } if (offset + size > inode->i_size && !(mode & FALLOC_FL_KEEP_SIZE)) i_size_write(inode, offset + size); mark_inode_dirty(inode); out: brelse(dibh); return error; } static void calc_max_reserv(struct gfs2_inode *ip, loff_t max, loff_t *len, unsigned int *data_blocks, unsigned int *ind_blocks) { const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); unsigned int max_blocks = ip->i_rgd->rd_free_clone; unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1); for (tmp = max_data; tmp > sdp->sd_diptrs;) { tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs); max_data -= tmp; } /* This calculation isn't the exact reverse of gfs2_write_calc_reserve, so it might end up with fewer data blocks */ if (max_data <= *data_blocks) return; *data_blocks = max_data; *ind_blocks = max_blocks - max_data; *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift; if (*len > max) { *len = max; gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks); } } static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file_inode(file); struct gfs2_sbd *sdp = GFS2_SB(inode); struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_alloc_parms ap = { .aflags = 0, }; unsigned int data_blocks = 0, ind_blocks = 0, rblocks; loff_t bytes, max_bytes; int error; const loff_t pos = offset; const loff_t count = len; loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1); loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift; loff_t max_chunk_size = UINT_MAX & bsize_mask; struct gfs2_holder gh; next = (next + 1) << sdp->sd_sb.sb_bsize_shift; /* We only support the FALLOC_FL_KEEP_SIZE mode */ if (mode & ~FALLOC_FL_KEEP_SIZE) return -EOPNOTSUPP; offset &= bsize_mask; len = next - offset; bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2; if (!bytes) bytes = UINT_MAX; bytes &= bsize_mask; if (bytes == 0) bytes = sdp->sd_sb.sb_bsize; error = gfs2_rs_alloc(ip); if (error) return error; mutex_lock(&inode->i_mutex); gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); error = gfs2_glock_nq(&gh); if (unlikely(error)) goto out_uninit; gfs2_size_hint(file, offset, len); while (len > 0) { if (len < bytes) bytes = len; if (!gfs2_write_alloc_required(ip, offset, bytes)) { len -= bytes; offset += bytes; continue; } error = gfs2_quota_lock_check(ip); if (error) goto out_unlock; retry: gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks); ap.target = data_blocks + ind_blocks; error = gfs2_inplace_reserve(ip, &ap); if (error) { if (error == -ENOSPC && bytes > sdp->sd_sb.sb_bsize) { bytes >>= 1; bytes &= bsize_mask; if (bytes == 0) bytes = sdp->sd_sb.sb_bsize; goto retry; } goto out_qunlock; } max_bytes = bytes; calc_max_reserv(ip, (len > max_chunk_size)? max_chunk_size: len, &max_bytes, &data_blocks, &ind_blocks); rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA + RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks); if (gfs2_is_jdata(ip)) rblocks += data_blocks ? data_blocks : 1; error = gfs2_trans_begin(sdp, rblocks, PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize); if (error) goto out_trans_fail; error = fallocate_chunk(inode, offset, max_bytes, mode); gfs2_trans_end(sdp); if (error) goto out_trans_fail; len -= max_bytes; offset += max_bytes; gfs2_inplace_release(ip); gfs2_quota_unlock(ip); } if (error == 0) error = generic_write_sync(file, pos, count); goto out_unlock; out_trans_fail: gfs2_inplace_release(ip); out_qunlock: gfs2_quota_unlock(ip); out_unlock: gfs2_glock_dq(&gh); out_uninit: gfs2_holder_uninit(&gh); mutex_unlock(&inode->i_mutex); return error; } #ifdef CONFIG_GFS2_FS_LOCKING_DLM /** * gfs2_setlease - acquire/release a file lease * @file: the file pointer * @arg: lease type * @fl: file lock * * We don't currently have a way to enforce a lease across the whole * cluster; until we do, disable leases (by just returning -EINVAL), * unless the administrator has requested purely local locking. * * Locking: called under i_lock * * Returns: errno */ static int gfs2_setlease(struct file *file, long arg, struct file_lock **fl) { return -EINVAL; } /** * gfs2_lock - acquire/release a posix lock on a file * @file: the file pointer * @cmd: either modify or retrieve lock state, possibly wait * @fl: type and range of lock * * Returns: errno */ static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl) { struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host); struct lm_lockstruct *ls = &sdp->sd_lockstruct; if (!(fl->fl_flags & FL_POSIX)) return -ENOLCK; if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK) return -ENOLCK; if (cmd == F_CANCELLK) { /* Hack: */ cmd = F_SETLK; fl->fl_type = F_UNLCK; } if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) { if (fl->fl_type == F_UNLCK) posix_lock_file_wait(file, fl); return -EIO; } if (IS_GETLK(cmd)) return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl); else if (fl->fl_type == F_UNLCK) return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl); else return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl); } static int do_flock(struct file *file, int cmd, struct file_lock *fl) { struct gfs2_file *fp = file->private_data; struct gfs2_holder *fl_gh = &fp->f_fl_gh; struct gfs2_inode *ip = GFS2_I(file_inode(file)); struct gfs2_glock *gl; unsigned int state; int flags; int error = 0; state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED; flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY) | GL_EXACT | GL_NOCACHE; mutex_lock(&fp->f_fl_mutex); gl = fl_gh->gh_gl; if (gl) { if (fl_gh->gh_state == state) goto out; flock_lock_file_wait(file, &(struct file_lock){.fl_type = F_UNLCK}); gfs2_glock_dq_wait(fl_gh); gfs2_holder_reinit(state, flags, fl_gh); } else { error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr, &gfs2_flock_glops, CREATE, &gl); if (error) goto out; gfs2_holder_init(gl, state, flags, fl_gh); gfs2_glock_put(gl); } error = gfs2_glock_nq(fl_gh); if (error) { gfs2_holder_uninit(fl_gh); if (error == GLR_TRYFAILED) error = -EAGAIN; } else { error = flock_lock_file_wait(file, fl); gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error); } out: mutex_unlock(&fp->f_fl_mutex); return error; }
static int gdlm_plock_get(void *lockspace, struct lm_lockname *name, struct file *file, struct file_lock *fl) { struct gdlm_ls *ls = lockspace; return dlm_posix_get(ls->dlm_lockspace, name->ln_number, file, fl); }