Esempio n. 1
0
uint64 DLAllocator::GetMemoryUsage()
{
	return dlmalloc_footprint();
}
Esempio n. 2
0
void dvmLogGcStats(size_t numFreed, size_t sizeFreed, size_t gcTimeMs)
{
    size_t perHeapActualSize[HEAP_SOURCE_MAX_HEAP_COUNT],
           perHeapAllowedSize[HEAP_SOURCE_MAX_HEAP_COUNT],
           perHeapNumAllocated[HEAP_SOURCE_MAX_HEAP_COUNT],
           perHeapSizeAllocated[HEAP_SOURCE_MAX_HEAP_COUNT];
    unsigned char eventBuf[1 + (1 + sizeof(long long)) * 4];
    size_t actualSize, allowedSize, numAllocated, sizeAllocated;
    size_t softLimit = dvmHeapSourceGetIdealFootprint();
    size_t nHeaps = dvmHeapSourceGetNumHeaps();

    /* Enough to quiet down gcc for unitialized variable check */
    perHeapActualSize[0] = perHeapAllowedSize[0] = perHeapNumAllocated[0] =
                           perHeapSizeAllocated[0] = 0;
    actualSize = dvmHeapSourceGetValue(HS_FOOTPRINT, perHeapActualSize,
                                       HEAP_SOURCE_MAX_HEAP_COUNT);
    allowedSize = dvmHeapSourceGetValue(HS_ALLOWED_FOOTPRINT,
                      perHeapAllowedSize, HEAP_SOURCE_MAX_HEAP_COUNT);
    numAllocated = dvmHeapSourceGetValue(HS_OBJECTS_ALLOCATED,
                      perHeapNumAllocated, HEAP_SOURCE_MAX_HEAP_COUNT);
    sizeAllocated = dvmHeapSourceGetValue(HS_BYTES_ALLOCATED,
                      perHeapSizeAllocated, HEAP_SOURCE_MAX_HEAP_COUNT);

    /*
     * Construct the the first 64-bit value to write to the log.
     * Global information:
     *
     * [63   ] Must be zero
     * [62-24] ASCII process identifier
     * [23-12] GC time in ms
     * [11- 0] Bytes freed
     *
     */
    long long event0;
    event0 = 0LL << 63 |
            (long long)intToFloat12(gcTimeMs) << 12 |
            (long long)intToFloat12(sizeFreed);
    insertProcessName(&event0);

    /*
     * Aggregated heap stats:
     *
     * [63-62] 10
     * [61-60] Reserved; must be zero
     * [59-48] Objects freed
     * [47-36] Actual size (current footprint)
     * [35-24] Allowed size (current hard max)
     * [23-12] Objects allocated
     * [11- 0] Bytes allocated
     */
    long long event1;
    event1 = 2LL << 62 |
            (long long)intToFloat12(numFreed) << 48 |
            (long long)intToFloat12(actualSize) << 36 |
            (long long)intToFloat12(allowedSize) << 24 |
            (long long)intToFloat12(numAllocated) << 12 |
            (long long)intToFloat12(sizeAllocated);

    /*
     * Report the current state of the zygote heap(s).
     *
     * The active heap is always heap[0].  We can be in one of three states
     * at present:
     *
     *  (1) Still in the zygote.  Zygote using heap[0].
     *  (2) In the zygote, when the first child is started.  We created a
     *      new heap just before the first fork() call, so the original
     *      "zygote heap" is now heap[1], and we have a small heap[0] for
     *      anything we do from here on.
     *  (3) In an app process.  The app gets a new heap[0], and can also
     *      see the two zygote heaps [1] and [2] (probably unwise to
     *      assume any specific ordering).
     *
     * So if nHeaps == 1, we want the stats from heap[0]; else we want
     * the sum of the values from heap[1] to heap[nHeaps-1].
     *
     *
     * Zygote heap stats (except for the soft limit, which belongs to the
     * active heap):
     *
     * [63-62] 11
     * [61-60] Reserved; must be zero
     * [59-48] Soft Limit (for the active heap)
     * [47-36] Actual size (current footprint)
     * [35-24] Allowed size (current hard max)
     * [23-12] Objects allocated
     * [11- 0] Bytes allocated
     */
    long long event2;
    size_t zActualSize, zAllowedSize, zNumAllocated, zSizeAllocated;
    int firstHeap = (nHeaps == 1) ? 0 : 1;
    size_t hh;

    zActualSize = zAllowedSize = zNumAllocated = zSizeAllocated = 0;
    for (hh = firstHeap; hh < nHeaps; hh++) {
        zActualSize += perHeapActualSize[hh];
        zAllowedSize += perHeapAllowedSize[hh];
        zNumAllocated += perHeapNumAllocated[hh];
        zSizeAllocated += perHeapSizeAllocated[hh];
    }
    event2 = 3LL << 62 |
            (long long)intToFloat12(softLimit) << 48 |
            (long long)intToFloat12(zActualSize) << 36 |
            (long long)intToFloat12(zAllowedSize) << 24 |
            (long long)intToFloat12(zNumAllocated) << 12 |
            (long long)intToFloat12(zSizeAllocated);

    /*
     * Report the current external allocation stats and the native heap
     * summary.
     *
     * [63-48] Reserved; must be zero (TODO: put new data in these slots)
     * [47-36] dlmalloc_footprint
     * [35-24] mallinfo: total allocated space
     * [23-12] External byte limit
     * [11- 0] External bytes allocated
     */
    long long event3;
    size_t externalLimit, externalBytesAllocated;
    size_t uordblks, footprint;

#if 0
    /*
     * This adds 2-5msec to the GC cost on a DVT, or about 2-3% of the cost
     * of a GC, so it's not horribly expensive but it's not free either.
     */
    extern size_t dlmalloc_footprint(void);
    struct mallinfo mi;
    //u8 start, end;

    //start = dvmGetRelativeTimeNsec();
    mi = mallinfo();
    uordblks = mi.uordblks;
    footprint = dlmalloc_footprint();
    //end = dvmGetRelativeTimeNsec();
    //LOGD("mallinfo+footprint took %dusec; used=%zd footprint=%zd\n",
    //    (int)((end - start) / 1000), mi.uordblks, footprint);
#else
    uordblks = footprint = 0;
#endif

    externalLimit =
            dvmHeapSourceGetValue(HS_EXTERNAL_LIMIT, NULL, 0);
    externalBytesAllocated =
            dvmHeapSourceGetValue(HS_EXTERNAL_BYTES_ALLOCATED, NULL, 0);
    event3 =
            (long long)intToFloat12(footprint) << 36 |
            (long long)intToFloat12(uordblks) << 24 |
            (long long)intToFloat12(externalLimit) << 12 |
            (long long)intToFloat12(externalBytesAllocated);

    /* Build the event data.
     * [ 0: 0] item count (4)
     * [ 1: 1] EVENT_TYPE_LONG
     * [ 2: 9] event0
     * [10:10] EVENT_TYPE_LONG
     * [11:18] event1
     * [19:19] EVENT_TYPE_LONG
     * [20:27] event2
     * [28:28] EVENT_TYPE_LONG
     * [29:36] event2
     */
    unsigned char *c = eventBuf;
    *c++ = 4;
    *c++ = EVENT_TYPE_LONG;
    memcpy(c, &event0, sizeof(event0));
    c += sizeof(event0);
    *c++ = EVENT_TYPE_LONG;
    memcpy(c, &event1, sizeof(event1));
    c += sizeof(event1);
    *c++ = EVENT_TYPE_LONG;
    memcpy(c, &event2, sizeof(event2));
    c += sizeof(event2);
    *c++ = EVENT_TYPE_LONG;
    memcpy(c, &event3, sizeof(event3));

    (void) android_btWriteLog(EVENT_LOG_TAG_dvm_gc_info, EVENT_TYPE_LIST,
            eventBuf, sizeof(eventBuf));
}