Esempio n. 1
0
void *detect_in_thread(void *ptr)
{
    float nms = .4;

    detection_layer l = net.layers[net.n-1];
    float *X = det_s.data;
    float *prediction = network_predict(net, X);

    memcpy(predictions[demo_index], prediction, l.outputs*sizeof(float));
    mean_arrays(predictions, FRAMES, l.outputs, avg);

    free_image(det_s);
    convert_detections(avg, l.classes, l.n, l.sqrt, l.side, 1, 1, demo_thresh, probs, boxes, 0);
    if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms);
    printf("\033[2J");
    printf("\033[1;1H");
    printf("\nFPS:%.1f\n",fps);
    printf("Objects:\n\n");

    images[demo_index] = det;
    det = images[(demo_index + FRAMES/2 + 1)%FRAMES];
    demo_index = (demo_index + 1)%FRAMES;

    draw_detections(det, l.side*l.side*l.n, demo_thresh, boxes, probs, demo_names, demo_labels, demo_classes);

    return 0;
}
Esempio n. 2
0
File: demo.c Progetto: vaiv/OpenANPR
void *detect_in_thread(void *ptr)
{
    float nms = .4;

    layer l = net.layers[net.n-1];
    float *X = det_s.data;
    float *prediction = network_predict(net, X);

    memcpy(predictions[demo_index], prediction, l.outputs*sizeof(float));
    mean_arrays(predictions, FRAMES, l.outputs, avg);
    l.output = avg;

    free_image(det_s);
    if(l.type == DETECTION){
        get_detection_boxes(l, 1, 1, demo_thresh, probs, boxes, 0);
    } else if (l.type == REGION){
        get_region_boxes(l, 1, 1, demo_thresh, probs, boxes, 0, 0, demo_hier_thresh);
    } else {
        error("Last layer must produce detections\n");
    }
    if (nms > 0) do_nms(boxes, probs, l.w*l.h*l.n, l.classes, nms);
    printf("\033[2J");
    printf("\033[1;1H");
    printf("\nFPS:%.1f\n",fps);
    printf("Objects:\n\n");

    images[demo_index] = det;
    det = images[(demo_index + FRAMES/2 + 1)%FRAMES];
    demo_index = (demo_index + 1)%FRAMES;

    draw_detections(det, l.w*l.h*l.n, demo_thresh, boxes, probs, demo_names, demo_alphabet, demo_classes);

    return 0;
}
Esempio n. 3
0
void *detect_in_thread(void *ptr)
{
    float nms = .4;

    layer_t l = net.layers[net.n-1];
    float *X = det_s.data;
    float *predictions = network_predict(net, X);
    free_image(det_s);
    convert_yolo_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, demo_thresh, probs, boxes, 0);
    if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms);
    printf("\033[2J");
    printf("\033[1;1H");
    printf("\nFPS:%.0f\n",fps);
    printf("Objects:\n\n");
    draw_detections(det, l.side*l.side*l.n, demo_thresh, boxes, probs, voc_names, voc_labels, 20);
    return 0;
}
Esempio n. 4
0
void validate_detector_recall(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    list *plist = get_paths("data/voc.2007.test");
    char **paths = (char **)list_to_array(plist);

    layer l = net.layers[net.n-1];
    int classes = l.classes;

    int j, k;
    box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
    float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
    for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));

    int m = plist->size;
    int i=0;

    float thresh = .001;
    float iou_thresh = .5;
    float nms = .4;

    int total = 0;
    int correct = 0;
    int proposals = 0;
    float avg_iou = 0;

    for(i = 0; i < m; ++i){
        char *path = paths[i];
        image orig = load_image_color(path, 0, 0);
        image sized = resize_image(orig, net.w, net.h);
        char *id = basecfg(path);
        network_predict(net, sized.data);
        get_region_boxes(l, 1, 1, thresh, probs, boxes, 1, 0, .5);
        if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms);

        char labelpath[4096];
        find_replace(path, "images", "labels", labelpath);
        find_replace(labelpath, "JPEGImages", "labels", labelpath);
        find_replace(labelpath, ".jpg", ".txt", labelpath);
        find_replace(labelpath, ".JPEG", ".txt", labelpath);

        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        for(k = 0; k < l.w*l.h*l.n; ++k){
            if(probs[k][0] > thresh){
                ++proposals;
            }
        }
        for (j = 0; j < num_labels; ++j) {
            ++total;
            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
            float best_iou = 0;
            for(k = 0; k < l.w*l.h*l.n; ++k){
                float iou = box_iou(boxes[k], t);
                if(probs[k][0] > thresh && iou > best_iou){
                    best_iou = iou;
                }
            }
            avg_iou += best_iou;
            if(best_iou > iou_thresh){
                ++correct;
            }
        }

        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
        free(id);
        free_image(orig);
        free_image(sized);
    }
}
Esempio n. 5
0
void validate_yolo_classify(char *datacfg, char *cfgfile, char *weightfile)
{
    list *options = read_data_cfg(datacfg);
    
    //char *train_list = option_find_str(options, "train", "data/train_list.txt");
    //char *test_list = option_find_str(options, "test", "data/test_list.txt");
    char *valid_list = option_find_str(options, "valid", "data/valid_list.txt");
    
    //char *backup_directory = option_find_str(options, "backup", "/backup/");
    //char *label_list = option_find_str(options, "labels", "data/labels_list.txt");
    
    //int classes = option_find_int(options, "classes", 2);
    
    //char **labels = get_labels(label_list);
    
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    char *base = "results/comp4_det_test_";
    //list *plist = get_paths("data/voc.2007.test");
    list *plist = get_paths(valid_list);
    
    char **paths = (char **)list_to_array(plist);

    layer l = net.layers[net.n-1];
    int classes = l.classes;
    int square = l.sqrt;
    int side = l.side;

    int j, k;
    FILE **fps = calloc(classes, sizeof(FILE *));
    for(j = 0; j < classes; ++j){
        char buff[1024];
        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
        fps[j] = fopen(buff, "w");
    }
    box *boxes = calloc(side*side*l.n, sizeof(box));
    float **probs = calloc(side*side*l.n, sizeof(float *));
    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));

    int m = plist->size;
    int i=0;

    //float thresh = .001;
    float thresh = .2;
    float iou_thresh = .5;
    //float nms = 0;
    float nms = 0.5;
    

    int total = 0;
    int correct = 0;
    int class_correct = 0;
    int proposals = 0;
    float avg_iou = 0;

    for(i = 0; i < m; ++i){
        char *path = paths[i];
        image orig = load_image_color(path, 0, 0);
        image sized = resize_image(orig, net.w, net.h);
        char *id = basecfg(path);
        float *predictions = network_predict(net, sized.data);
        convert_yolo_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 0);
        //if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
        if (nms) do_nms(boxes, probs, side*side*l.n, classes, nms);

        char *labelpath = find_replace(path, "images", "labels");
        labelpath = find_replace(labelpath, "JPEGImages", "labels");
        labelpath = find_replace(labelpath, ".jpg", ".txt");
        labelpath = find_replace(labelpath, ".JPEG", ".txt");
        labelpath = find_replace(labelpath, ".bmp", ".txt");
        labelpath = find_replace(labelpath, ".dib", ".txt");
        labelpath = find_replace(labelpath, ".jpe", ".txt");
        labelpath = find_replace(labelpath, ".jp2", ".txt");
        labelpath = find_replace(labelpath, ".png", ".txt");
        labelpath = find_replace(labelpath, ".pbm", ".txt");
        labelpath = find_replace(labelpath, ".pgm", ".txt");
        labelpath = find_replace(labelpath, ".ppm", ".txt");
        labelpath = find_replace(labelpath, ".sr", ".txt");
        labelpath = find_replace(labelpath, ".ras", ".txt");
        labelpath = find_replace(labelpath, ".tiff", ".txt");
        labelpath = find_replace(labelpath, ".tif", ".txt");

        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        for(k = 0; k < side*side*l.n; ++k){
            int class = max_index(probs[k], classes);
            float prob = probs[k][class];
            //fprintf(stderr, "path=%s\t\tk=%d\tprob=%f\tclass=%d\n", path, k, prob, class);
        
            if(prob > thresh){
                ++proposals;
            }
        }
        for (j = 0; j < num_labels; ++j) {
            ++total;
            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
            float best_iou = 0;
            int pre_class = -1;
            for(k = 0; k < side*side*l.n; ++k){
                float iou = box_iou(boxes[k], t);
                int class = max_index(probs[k], classes);
                float prob = probs[k][class];
                //fprintf(stderr, "path=%s\t\tk=%d\tprob=%f\tclass=%d\n", path, k, prob, class);
                if(prob > thresh && iou > best_iou){
                    best_iou = iou;
                    pre_class = class;
                }
            }
            avg_iou += best_iou;
            
            if(best_iou > iou_thresh){
                ++correct;
            }
            
            if(pre_class == truth[j].id){
                ++class_correct;
            }
            
            //fprintf(stderr, "true_class=%d\tpre_class=%d\n", truth[j].id, pre_class);
        
        }

        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\t\tClassify:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total, 100.*class_correct/total);
        free(id);
        free_image(orig);
        free_image(sized);
    }
Esempio n. 6
0
void validate_coco_recall(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    char *base = "results/comp4_det_test_";
    list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
    char **paths = (char **)list_to_array(plist);

    layer l = net.layers[net.n-1];
    int classes = l.classes;
    int square = l.sqrt;
    int side = l.side;

    int j, k;
    FILE **fps = calloc(classes, sizeof(FILE *));
    for(j = 0; j < classes; ++j){
        char buff[1024];
        _snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]);
        fps[j] = fopen(buff, "w");
    }
    box *boxes = calloc(side*side*l.n, sizeof(box));
    float **probs = calloc(side*side*l.n, sizeof(float *));
    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));

    int m = plist->size;
    int i=0;

    float thresh = .001;
    int nms = 0;
    float iou_thresh = .5;
    float nms_thresh = .5;

    int total = 0;
    int correct = 0;
    int proposals = 0;
    float avg_iou = 0;

    for(i = 0; i < m; ++i){
        char *path = paths[i];
        image orig = load_image_color(path, 0, 0);
        image sized = resize_image(orig, net.w, net.h);
        char *id = basecfg(path);
        float *predictions = network_predict(net, sized.data);
        convert_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
        if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);

        char *labelpath = find_replace(path, "images", "labels");
        labelpath = find_replace(labelpath, "JPEGImages", "labels");
        labelpath = find_replace(labelpath, ".jpg", ".txt");
        labelpath = find_replace(labelpath, ".JPEG", ".txt");

        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        for(k = 0; k < side*side*l.n; ++k){
            if(probs[k][0] > thresh){
                ++proposals;
            }
        }
        for (j = 0; j < num_labels; ++j) {
            ++total;
            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
            float best_iou = 0;
            for(k = 0; k < side*side*l.n; ++k){
                float iou = box_iou(boxes[k], t);
                if(probs[k][0] > thresh && iou > best_iou){
                    best_iou = iou;
                }
            }
            avg_iou += best_iou;
            if(best_iou > iou_thresh){
                ++correct;
            }
        }

        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
        free(id);
        free_image(orig);
        free_image(sized);
    }
}
Esempio n. 7
0
void validate_coco(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    char *base = "/home/pjreddie/backup/";
    list *plist = get_paths("data/coco_val_5k.list");
    char **paths = (char **)list_to_array(plist);

    int num_boxes = 9;
    int num = 4;
    int classes = 1;

    int j;
    char buff[1024];
    snprintf(buff, 1024, "%s/coco_results.json", base);
    FILE *fp = fopen(buff, "w");
    fprintf(fp, "[\n");

    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes, sizeof(float *));

    int m = plist->size;
    int i=0;
    int t;

    float thresh = .01;
    int nms = 1;
    float iou_thresh = .5;

    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.type = IMAGE_DATA;

    int nthreads = 8;
    image *val = calloc(nthreads, sizeof(image));
    image *val_resized = calloc(nthreads, sizeof(image));
    image *buf = calloc(nthreads, sizeof(image));
    image *buf_resized = calloc(nthreads, sizeof(image));
    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
    for(t = 0; t < nthreads; ++t){
        args.path = paths[i+t];
        args.im = &buf[t];
        args.resized = &buf_resized[t];
        thr[t] = load_data_in_thread(args);
    }
    time_t start = time(0);
    for(i = nthreads; i < m+nthreads; i += nthreads){
        fprintf(stderr, "%d\n", i);
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            pthread_join(thr[t], 0);
            val[t] = buf[t];
            val_resized[t] = buf_resized[t];
        }
        for(t = 0; t < nthreads && i+t < m; ++t){
            args.path = paths[i+t];
            args.im = &buf[t];
            args.resized = &buf_resized[t];
            thr[t] = load_data_in_thread(args);
        }
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            char *path = paths[i+t-nthreads];
            int image_id = get_coco_image_id(path);
            float *X = val_resized[t].data;
            float *predictions = network_predict(net, X);
            int w = val[t].w;
            int h = val[t].h;
            convert_cocos(predictions, classes, num_boxes, num, w, h, thresh, probs, boxes);
            if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
            print_cocos(fp, image_id, boxes, probs, num_boxes, classes, w, h);
            free_image(val[t]);
            free_image(val_resized[t]);
        }
    }
    fseek(fp, -2, SEEK_CUR); 
    fprintf(fp, "\n]\n");
    fclose(fp);
    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
Esempio n. 8
0
void validate_recall(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    char *val_images = "/home/pjreddie/data/voc/test/2007_test.txt";
    list *plist = get_paths(val_images);
    char **paths = (char **)list_to_array(plist);

    layer l = net.layers[net.n - 1];

    int num_boxes = l.side;
    int num = l.n;
    int classes = l.classes;

    int j;

    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));

    int N = plist->size;
    int i=0;
    int k;

    float iou_thresh = .5;
    float thresh = .1;
    int total = 0;
    int correct = 0;
    float avg_iou = 0;
    int nms = 1;
    int proposals = 0;
    int save = 1;

    for (i = 0; i < N; ++i) {
        char *path = paths[i];
        image orig = load_image_color(path, 0, 0);
        image resized = resize_image(orig, net.w, net.h);

        float *X = resized.data;
        float *predictions = network_predict(net, X);
        get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
        get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
        if (nms) do_nms(boxes, probs, num*num_boxes*num_boxes, (classes>0) ? classes : 1, iou_thresh);

        char *labelpath = find_replace(path, "images", "labels");
        labelpath = find_replace(labelpath, "JPEGImages", "labels");
        labelpath = find_replace(labelpath, ".jpg", ".txt");
        labelpath = find_replace(labelpath, ".JPEG", ".txt");

        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        for(k = 0; k < num_boxes*num_boxes*num; ++k){
            if(probs[k][0] > thresh){
                ++proposals;
                if(save){
                    char buff[256];
                    sprintf(buff, "/data/extracted/nms_preds/%d", proposals);
                    int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
                    int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
                    int w = boxes[k].w * orig.w;
                    int h = boxes[k].h * orig.h;
                    image cropped = crop_image(orig, dx, dy, w, h);
                    image sized = resize_image(cropped, 224, 224);
#ifdef OPENCV
                    save_image_jpg(sized, buff);
#endif
                    free_image(sized);
                    free_image(cropped);
                    sprintf(buff, "/data/extracted/nms_pred_boxes/%d.txt", proposals);
                    char *im_id = basecfg(path);
                    FILE *fp = fopen(buff, "w");
                    fprintf(fp, "%s %d %d %d %d\n", im_id, dx, dy, dx+w, dy+h);
                    fclose(fp);
                    free(im_id);
                }
            }
        }
        for (j = 0; j < num_labels; ++j) {
            ++total;
            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
            float best_iou = 0;
            for(k = 0; k < num_boxes*num_boxes*num; ++k){
                float iou = box_iou(boxes[k], t);
                if(probs[k][0] > thresh && iou > best_iou){
                    best_iou = iou;
                }
            }
            avg_iou += best_iou;
            if(best_iou > iou_thresh){
                ++correct;
            }
        }
        free(truth);
        free_image(orig);
        free_image(resized);
        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
    }
}
Esempio n. 9
0
void validate_yolo_recall(char *cfgfile, char *weightfile, char *val_images, char *out_dir, float th, int log, int draw)
{

	network net = parse_network_cfg(cfgfile);
	if(weightfile){
		load_weights(&net, weightfile);
	}
	set_batch_network(&net, 1);
	fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
	srand(time(0));

	//create output directory if it does not exist
	struct stat st= {0};
	if(stat(out_dir,&st)==-1){
		fprintf(stderr,"Creating output directory\n");
		mkdir(out_dir,0700);
	}

	char *base = out_dir;
	list *plist = get_paths(val_images);
	char **paths = (char **)list_to_array(plist);

	layer l = net.layers[net.n-1];
	int classes = l.classes;
	int square = l.sqrt;
	//int side = l.side;
	int rows = l.rows;
	int cols = l.cols;

	int j, k;
	FILE **fps = calloc(classes, sizeof(FILE *));
	for(j = 0; j < classes; ++j){
		char buff[1024];
		snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
		fps[j] = fopen(buff, "w");
	}
	box *boxes = calloc(rows*cols*l.n, sizeof(box));
	float **probs = calloc(rows*cols*l.n, sizeof(float *));
	for(j = 0; j < rows*cols*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));

	int m = plist->size;
	int i=0;

	float thresh = th;
	float iou_thresh[11] = {0.0,0.05,0.1,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.5};
	float nms = 0.1;

	int total = 0;
	int correct[11] = {0,0,0,0,0,0,0,0,0,0,0};
	int proposals = 0;
	float avg_iou = 0;
	Vector id_found;
	Vector id_invalid;
	initArray(&id_found,5);
	initArray(&id_invalid,5);

	for(i = 0; i < m; ++i){
		char * image_path = strtok(paths[i]," ");
        char * label_path = strtok(NULL," ");

		image orig = load_image(image_path, 0, 0,net.c);
		image color;
		if(draw)
			color = load_image(image_path, 0, 0, 3);
		image sized = resize_image(orig, net.w, net.h);
		//char *id = basecfg(path);
		float *predictions = network_predict(net, sized.data);
		convert_detections(predictions, classes, l.n, square, rows, cols, 1, 1, thresh, probs, boxes, 0);
		if (nms) do_nms(boxes, probs, rows*cols*l.n, 1, nms);



		int num_labels = 0;
		box_label *truth = read_boxes(label_path, &num_labels);
		int old_p = proposals;
		for(k = 0; k < rows*cols*l.n; ++k){
			if(probs[k][0] > thresh){
				++proposals;
			}
		}

		if(old_p!=proposals){
			if(log){
				char filename[256];
				sprintf(filename, "%s/%d.txt", base,i);
				printf("log in file %s\n",filename);
				FILE * out = fopen(filename, "w");
				fprintf(out,"W\tH\tX\tY\n");
				for(k=0; k<rows*cols*l.n; ++k){
					if(probs[k][0] > thresh){
						fprintf(out, "%f\t%f\t%f\t%f\n",boxes[k].w,boxes[k].h,boxes[k].x,boxes[k].y);
					}
				}
				fclose(out);
			}
			if(draw){
				draw_detections(color, l.rows*l.cols*l.n, thresh, boxes, probs, voc_names, voc_labels, CLASSNUM);

				show_image(color, "predictions");

				#ifdef OPENCV
				cvWaitKey(0);
				//cvDestroyAllWindows();
				#endif
			}
		}
		for (j = 0; j < num_labels; ++j) {
			++total;

			while(id_found.used <= truth[j].id){
				insertArray(&id_invalid,0);
				insertArray(&id_found,0);
			}
							
			if(truth[j].classe > CLASSNUM-1)
				id_invalid.array[truth[j].id]=1;

			box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
			float best_iou = 0;
			for(k = 0; k < rows*cols*l.n; ++k){
				float iou = box_iou(boxes[k], t);
				//find overlapping prediction
				if(iou > best_iou){
					//find the predicted class
					float best_score = thresh;
					int best_class_index = -1;
					for(int c=0; c<CLASSNUM; c++){
						if(probs[k][c]>best_score){
							best_score = probs[k][c];
							best_class_index = c;
						}
					}
					//check if it's good or not
					if(best_class_index == truth[j].classe)
						best_iou = iou;
				}
			}
			avg_iou += best_iou;
			for(int k=0; k<11; k++){
				if(best_iou > iou_thresh[k]){
					id_found.array[truth[j].id]=1;
					++correct[k];
				}
			}
		}
		if(i%10==0){
			printf("\033[2J");
			printf("\033[1;1H");
			printf("#img\tPred\tTP\ttot\tRPs/Img\tAvg-IOU\tRecall\tPrecision\n");
			printf("%5d\t%5d\t%5d\t%5d\t%.2f\t%.2f%%\t%.2f%%\t%.2f%%\n", i, proposals, correct[10], total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct[10]/total, 100.*correct[10]/proposals);
			printf("IOU_th\tTP\tFP\tRecall\tPrecision\n");
			for(int k=0; k<11; k++){
				printf("%.2f%%\t%5d\t%5d\t%.2f%%\t%.2f%%\t\n", iou_thresh[k], correct[k], proposals-correct[k], 100.*correct[k]/total, 100.*correct[k]/proposals);
			}
			int found=0;
			int invalid = 0;
			for(int i=0; i<id_found.used; i++){
				if(id_invalid.array[i]!=1)
					found+=id_found.array[i];
				invalid+=id_invalid.array[i];
			}
			printf("Founded: %d/%d\t%d\n", found, id_found.used-invalid,invalid);
		}
		//free(id);
		free_image(orig);
		free_image(sized);
	}
	for(j = 0; j < classes; ++j){
		fprintf(fps[j],"IOU_th;TP;FP;Recall;Precision\n");
		for(int k=0; k<11; k++){
			fprintf(fps[j],"%.2f%%;%5d;%5d;%.2f%%;%.2f%%;\n", iou_thresh[k], correct[k], proposals-correct[k], 100.*correct[k]/total, 100.*correct[k]/proposals);
		}
		fprintf(fps[j], "\n\nFounded;Total;\n");
		int found=0;
		int invalid = 0;
		for(int i=0; i<id_found.used; i++){
			if(id_invalid.array[i]!=1)
					found+=id_found.array[i];
			invalid+=id_invalid.array[i];
		}
		fprintf(fps[j], "%d;%d;\n", found, id_found.used-invalid);
		fclose(fps[j]);
	}
	freeArray(&id_found);
}