Esempio n. 1
0
 inline Eigen::Matrix<fvar<T>,R,1> 
 rows_dot_self(const Eigen::Matrix<fvar<T>,R,C>& x) {
   Eigen::Matrix<fvar<T>,R,1> ret(x.rows(),1);
   for (size_type i = 0; i < x.rows(); i++) {
     Eigen::Matrix<fvar<T>,1,C> crow = x.row(i);
     ret(i,0) = dot_self(crow);
   }
   return ret;
 }
Esempio n. 2
0
 inline fvar<T>
 squared_distance(const Eigen::Matrix<double, R, C>& v1,
                  const Eigen::Matrix<fvar<T>, R, C>& v2) {
   check_vector("squared_distance", "v1", v1);
   check_vector("squared_distance", "v2", v2);
   check_matching_sizes("squared_distance", "v1", v1, "v2", v2);
   Eigen::Matrix<fvar<T>, R, C> v3 = subtract(v1, v2);
   return dot_self(v3);
 }
Esempio n. 3
0
 inline Eigen::Matrix<fvar<T>,1,C> 
 columns_dot_self(const Eigen::Matrix<fvar<T>,R,C>& x) {
   Eigen::Matrix<fvar<T>,1,C> ret(1,x.cols());
   for (size_type i = 0; i < x.cols(); i++) {
     Eigen::Matrix<fvar<T>,R,1> ccol = x.col(i);
     ret(0,i) = dot_self(ccol);
   }
   return ret;
 }    
Esempio n. 4
0
 inline fvar<T>
 squared_distance(const Eigen::Matrix<fvar<T>, R1, C1>& v1,
                  const Eigen::Matrix<double, R2, C2>& v2) {
   check_vector("squared_distance", "v1", v1);
   check_vector("squared_distance", "v2", v2);
   check_matching_sizes("squared_distance", "v1", v1, "v2", v2);
   Eigen::Matrix<double, R1, C1> t_v2 = v2.transpose();
   Eigen::Matrix<fvar<T>, R1, C1> v3 = subtract(v1, t_v2);
   return dot_self(v3);
 }
Esempio n. 5
0
    typename boost::math::tools::promote_args<T_y, T_covar, T_w>::type
    multi_gp_cholesky_log(const Eigen::Matrix
                          <T_y, Eigen::Dynamic, Eigen::Dynamic>& y,
                          const Eigen::Matrix
                          <T_covar, Eigen::Dynamic, Eigen::Dynamic>& L,
                          const Eigen::Matrix<T_w, Eigen::Dynamic, 1>& w) {
      static const char* function("multi_gp_cholesky_log");
      typedef
        typename boost::math::tools::promote_args<T_y, T_covar, T_w>::type T_lp;
      T_lp lp(0.0);


      check_size_match(function,
                       "Size of random variable (rows y)", y.rows(),
                       "Size of kernel scales (w)", w.size());
      check_size_match(function,
                       "Size of random variable", y.cols(),
                       "rows of covariance parameter", L.rows());
      check_finite(function, "Kernel scales", w);
      check_positive(function, "Kernel scales", w);
      check_finite(function, "Random variable", y);

      if (y.rows() == 0)
        return lp;

      if (include_summand<propto>::value) {
        lp += NEG_LOG_SQRT_TWO_PI * y.rows() * y.cols();
      }

      if (include_summand<propto, T_covar>::value) {
        lp -= L.diagonal().array().log().sum() * y.rows();
      }

      if (include_summand<propto, T_w>::value) {
        lp += 0.5 * y.cols() * sum(log(w));
      }

      if (include_summand<propto, T_y, T_w, T_covar>::value) {
        T_lp sum_lp_vec(0.0);
        for (int i = 0; i < y.rows(); i++) {
          Eigen::Matrix<T_y, Eigen::Dynamic, 1> y_row(y.row(i));
          Eigen::Matrix<typename boost::math::tools::promote_args
                        <T_y, T_covar>::type,
                        Eigen::Dynamic, 1>
            half(mdivide_left_tri_low(L, y_row));
          sum_lp_vec += w(i) * dot_self(half);
        }
        lp -= 0.5*sum_lp_vec;
      }

      return lp;
    }
    typename return_type<T_y, T_loc, T_covar>::type
    multi_normal_cholesky_log(const T_y& y,
                              const T_loc& mu,
                              const T_covar& L) {
      static const char* function("multi_normal_cholesky_log");
      typedef typename scalar_type<T_covar>::type T_covar_elem;
      typedef typename return_type<T_y, T_loc, T_covar>::type lp_type;
      lp_type lp(0.0);


      VectorViewMvt<const T_y> y_vec(y);
      VectorViewMvt<const T_loc> mu_vec(mu);
      size_t size_vec = max_size_mvt(y, mu);

      int size_y = y_vec[0].size();
      int size_mu = mu_vec[0].size();
      if (size_vec > 1) {
        int size_y_old = size_y;
        int size_y_new;
        for (size_t i = 1, size_ = length_mvt(y); i < size_; i++) {
          int size_y_new = y_vec[i].size();
          check_size_match(function,
                           "Size of one of the vectors of "
                           "the random variable", size_y_new,
                           "Size of another vector of the "
                           "random variable", size_y_old);
          size_y_old = size_y_new;
        }
        int size_mu_old = size_mu;
        int size_mu_new;
        for (size_t i = 1, size_ = length_mvt(mu); i < size_; i++) {
          int size_mu_new = mu_vec[i].size();
          check_size_match(function,
                           "Size of one of the vectors of "
                           "the location variable", size_mu_new,
                           "Size of another vector of the "
                           "location variable", size_mu_old);
          size_mu_old = size_mu_new;
        }
        (void) size_y_old;
        (void) size_y_new;
        (void) size_mu_old;
        (void) size_mu_new;
      }

      check_size_match(function,
                       "Size of random variable", size_y,
                       "size of location parameter", size_mu);
      check_size_match(function,
                       "Size of random variable", size_y,
                       "rows of covariance parameter", L.rows());
      check_size_match(function,
                       "Size of random variable", size_y,
                       "columns of covariance parameter", L.cols());

      for (size_t i = 0; i < size_vec; i++) {
        check_finite(function, "Location parameter", mu_vec[i]);
        check_not_nan(function, "Random variable", y_vec[i]);
      }

      if (size_y == 0)
        return lp;

      if (include_summand<propto>::value)
        lp += NEG_LOG_SQRT_TWO_PI * size_y * size_vec;

      if (include_summand<propto, T_covar_elem>::value)
        lp -= L.diagonal().array().log().sum() * size_vec;

      if (include_summand<propto, T_y, T_loc, T_covar_elem>::value) {
        lp_type sum_lp_vec(0.0);
        for (size_t i = 0; i < size_vec; i++) {
          Eigen::Matrix<typename return_type<T_y, T_loc>::type,
                        Eigen::Dynamic, 1> y_minus_mu(size_y);
          for (int j = 0; j < size_y; j++)
            y_minus_mu(j) = y_vec[i](j)-mu_vec[i](j);
          Eigen::Matrix<typename return_type<T_y, T_loc, T_covar>::type,
                        Eigen::Dynamic, 1>
            half(mdivide_left_tri_low(L, y_minus_mu));
          // FIXME: this code does not compile. revert after fixing subtract()
          // Eigen::Matrix<typename
          //               boost::math::tools::promote_args<T_covar,
          //                 typename value_type<T_loc>::type,
          //                 typename value_type<T_y>::type>::type>::type,
          //               Eigen::Dynamic, 1>
          //   half(mdivide_left_tri_low(L, subtract(y, mu)));
          sum_lp_vec += dot_self(half);
        }
        lp -= 0.5*sum_lp_vec;
      }
      return lp;
    }
Esempio n. 7
0
static void
basic_tests(void)
{
  char string[] = "I am a string";
  WCHAR wstring[] = {'I',' ','a','m',' ','a',' ','w','s','t','r','i','n','g', 0};
  int f[5] = {1, 3, 0, -2, -4};
  vector_t a = {1, 3, 7};
  vector_t vec1 = {4, -2, 1}, vec2 = {-5, 2, 3}, *pvec2 = &vec2;
  pvectors_t pvecs = {&vec1, &pvec2};
  sp_inner_t spi = {42};
  sp_t sp = {-13, &spi};
  aligns_t aligns;
  pints_t pints;
  ptypes_t ptypes;
  padded_t padded;
  padded_t padded2[2];
  bogus_t bogus;
  int i1, i2, i3, *pi2, *pi3, **ppi3;
  double u, v;
  float s, t;
  LONG q, r;
  short h;
  char c;
  int x;
  str_struct_t ss = {string};
  wstr_struct_t ws = {wstring};
  str_t str;
  se_t se;
  renum_t re;

  ok(int_return() == INT_CODE, "RPC int_return\n");

  ok(square(7) == 49, "RPC square\n");
  ok(sum(23, -4) == 19, "RPC sum\n");

  x = 0;
  square_out(11, &x);
  ok(x == 121, "RPC square_out\n");

  x = 5;
  square_ref(&x);
  ok(x == 25, "RPC square_ref\n");

  ok(str_length(string) == strlen(string), "RPC str_length\n");
  ok(str_t_length(string) == strlen(string), "RPC str_length\n");
  ok(dot_self(&a) == 59, "RPC dot_self\n");

  ok(str_struct_len(&ss) == lstrlenA(string), "RPC str_struct_len\n");
  ok(wstr_struct_len(&ws) == lstrlenW(wstring), "RPC str_struct_len\n");

  v = 0.0;
  u = square_half(3.0, &v);
  ok(u == 9.0, "RPC square_half\n");
  ok(v == 1.5, "RPC square_half\n");

  t = 0.0f;
  s = square_half_float(3.0f, &t);
  ok(s == 9.0f, "RPC square_half_float\n");
  ok(t == 1.5f, "RPC square_half_float\n");

  r = 0;
  q = square_half_long(3, &r);
  ok(q == 9, "RPC square_half_long\n");
  ok(r == 1, "RPC square_half_long\n");

  i1 = 19;
  i2 = -3;
  i3 = -29;
  pi2 = &i2;
  pi3 = &i3;
  ppi3 = &pi3;
  pints.pi = &i1;
  pints.ppi = &pi2;
  pints.pppi = &ppi3;
  ok(pints_sum(&pints) == -13, "RPC pints_sum\n");

  c = 10;
  h = 3;
  q = 14;
  s = -5.0f;
  u = 11.0;
  ptypes.pc = &c;
  ptypes.ps = &h;
  ptypes.pl = &q;
  ptypes.pf = &s;
  ptypes.pd = &u;
  ok(ptypes_sum(&ptypes) == 33.0, "RPC ptypes_sum\n");

  ok(dot_pvectors(&pvecs) == -21, "RPC dot_pvectors\n");
  ok(dot_copy_vectors(vec1, vec2) == -21, "RPC dot_copy_vectors\n");
  ok(sum_fixed_array(f) == -2, "RPC sum_fixed_array\n");
  ok(sum_sp(&sp) == 29, "RPC sum_sp\n");

  ok(enum_ord(E1) == 1, "RPC enum_ord\n");
  ok(enum_ord(E2) == 2, "RPC enum_ord\n");
  ok(enum_ord(E3) == 3, "RPC enum_ord\n");
  ok(enum_ord(E4) == 4, "RPC enum_ord\n");

  se.f = E2;
  check_se2(&se);

  memset(&aligns, 0, sizeof(aligns));
  aligns.c = 3;
  aligns.i = 4;
  aligns.s = 5;
  aligns.d = 6.0;
  ok(sum_aligns(&aligns) == 18.0, "RPC sum_aligns\n");

  padded.i = -3;
  padded.c = 8;
  ok(sum_padded(&padded) == 5, "RPC sum_padded\n");
  padded2[0].i = -5;
  padded2[0].c = 1;
  padded2[1].i = 3;
  padded2[1].c = 7;
  ok(sum_padded2(padded2) == 6, "RPC sum_padded2\n");
  padded2[0].i = -5;
  padded2[0].c = 1;
  padded2[1].i = 3;
  padded2[1].c = 7;
  ok(sum_padded_conf(padded2, 2) == 6, "RPC sum_padded_conf\n");

  i1 = 14;
  i2 = -7;
  i3 = -4;
  bogus.h.p1 = &i1;
  bogus.p2 = &i2;
  bogus.p3 = &i3;
  bogus.c = 9;
  ok(sum_bogus(&bogus) == 12, "RPC sum_bogus\n");

  check_null(NULL);

  str = get_filename();
  ok(!strcmp(str, __FILE__), "get_filename() returned %s instead of %s\n", str, __FILE__);
  midl_user_free(str);

  x = echo_ranged_int(0);
  ok(x == 0, "echo_ranged_int() returned %d instead of 0\n", x);
  x = echo_ranged_int(100);
  ok(x == 100, "echo_ranged_int() returned %d instead of 100\n", x);

  if (!old_windows_version)
  {
      get_ranged_enum(&re);
      ok(re == RE3, "get_ranged_enum() returned %d instead of RE3\n", re);
  }
}