Esempio n. 1
0
void TestCase::handleRender()
{
    glLineWidth(2.0f);
    glBegin(GL_LINES);
    for (Test* iter = m_tests; iter; iter = iter->next)
    {
        float dir[3];
        dtVsub(dir, iter->epos, iter->spos);
        dtVnormalize(dir);
        glColor4ub(128,25,0,192);
        glVertex3f(iter->spos[0],iter->spos[1]-0.3f,iter->spos[2]);
        glVertex3f(iter->spos[0],iter->spos[1]+0.3f,iter->spos[2]);
        glVertex3f(iter->spos[0],iter->spos[1]+0.3f,iter->spos[2]);
        glVertex3f(iter->spos[0]+dir[0]*0.3f,iter->spos[1]+0.3f+dir[1]*0.3f,iter->spos[2]+dir[2]*0.3f);
        glColor4ub(51,102,0,129);
        glVertex3f(iter->epos[0],iter->epos[1]-0.3f,iter->epos[2]);
        glVertex3f(iter->epos[0],iter->epos[1]+0.3f,iter->epos[2]);
        
        if (iter->expand)
            glColor4ub(255,192,0,255);
        else
            glColor4ub(0,0,0,64);
            
        for (int i = 0; i < iter->nstraight-1; ++i)
        {
            glVertex3f(iter->straight[i*3+0],iter->straight[i*3+1]+0.3f,iter->straight[i*3+2]);
            glVertex3f(iter->straight[(i+1)*3+0],iter->straight[(i+1)*3+1]+0.3f,iter->straight[(i+1)*3+2]);
        }
    }
    glEnd();
    glLineWidth(1.0f);
}
static void calcSmoothSteerDirection(const dtCrowdAgent* ag, float* dir)
{
	if (!ag->ncorners)
	{
		dtVset(dir, 0,0,0);
		return;
	}
	
	const int ip0 = 0;
	const int ip1 = dtMin(1, ag->ncorners-1);
	const float* p0 = &ag->cornerVerts[ip0*3];
	const float* p1 = &ag->cornerVerts[ip1*3];
	
	float dir0[3], dir1[3];
	dtVsub(dir0, p0, ag->npos);
	dtVsub(dir1, p1, ag->npos);
	dir0[1] = 0;
	dir1[1] = 0;
	
	float len0 = dtVlen(dir0);
	float len1 = dtVlen(dir1);
	if (len1 > 0.001f)
		dtVscale(dir1,dir1,1.0f/len1);
	
	dir[0] = dir0[0] - dir1[0]*len0*0.5f;
	dir[1] = 0;
	dir[2] = dir0[2] - dir1[2]*len0*0.5f;
	
	dtVnormalize(dir);
}
static void calcVel(float* vel, const float* pos, const float* tgt, const float speed)
{
	dtVsub(vel, tgt, pos);
	vel[1] = 0.0;
	dtVnormalize(vel);
	dtVscale(vel, vel, speed);
}
void OgreDetourCrowd::calcVel(float* velocity, const float* position, const float* target, const float speed)
{
        dtVsub(velocity, target, position);
        velocity[1] = 0.0;
        dtVnormalize(velocity);
        dtVscale(velocity, velocity, speed);
}
static void calcStraightSteerDirection(const dtCrowdAgent* ag, float* dir)
{
	if (!ag->ncorners)
	{
		dtVset(dir, 0,0,0);
		return;
	}
	dtVsub(dir, &ag->cornerVerts[0], ag->npos);
	dir[1] = 0;
	dtVnormalize(dir);
}
Esempio n. 6
0
	void Agent::Force(const float* p)
	{
		float vel[3];
		if (m_CrowdAgent && m_CrowdAgent->active)
		{
			// calculate velocity
			dtVsub(vel, p, m_CrowdAgent->npos);
			vel[1] = 0.0;
			dtVnormalize(vel);
			dtVscale(vel, vel, m_CrowdAgent->params.maxSpeed);
			m_NavMesh->Crowd()->requestMoveVelocity(m_AgentID, vel);
		}
	}
Esempio n. 7
0
void dtCrowd::updateStepOffMeshVelocity(const float dt, dtCrowdAgentDebugInfo*)
{
	// UE4 version of offmesh anims, updates velocity and checks distance instead of fixed time
	for (int i = 0; i < m_numActiveAgents; ++i)
	{
		dtCrowdAgent* ag = m_activeAgents[i];
		const int agentIndex = getAgentIndex(ag);
		dtCrowdAgentAnimation* anim = &m_agentAnims[agentIndex];

		if (!anim->active)
			continue;

		anim->t += dt;
		
		const float dist = dtVdistSqr(ag->npos, anim->endPos);
		const float distThres = dtSqr(5.0f);
		if (dist < distThres)
		{
			// Reset animation
			anim->active = 0;
			// Prepare agent for walking.
			ag->state = DT_CROWDAGENT_STATE_WALKING;

			// UE4: m_keepOffmeshConnections support
			if (m_keepOffmeshConnections)
			{
				ag->corridor.pruneOffmeshConenction(anim->polyRef);
			}
		}

		if (ag->state == DT_CROWDAGENT_STATE_OFFMESH)
		{
			float dir[3] = { 0 };
			dtVsub(dir, anim->endPos, anim->initPos);
			dir[1] = 0.0f;

			dtVnormalize(dir);
			dtVscale(ag->nvel, dir, ag->params.maxSpeed);
			dtVcopy(ag->vel, ag->nvel);
			dtVset(ag->dvel, 0, 0, 0);
		}
	}
}
Esempio n. 8
0
void dtObstacleAvoidanceQuery::prepare(const float* pos, const float* dvel)
{
	// Prepare obstacles
	for (int i = 0; i < m_ncircles; ++i)
	{
		dtObstacleCircle* cir = &m_circles[i];
		
		// Side
		const float* pa = pos;
		const float* pb = cir->p;
		
		const float orig[3] = {0,0,0};
		float dv[3];
		dtVsub(cir->dp,pb,pa);
		dtVnormalize(cir->dp);
		dtVsub(dv, cir->dvel, dvel);
		
		const float a = dtTriArea2D(orig, cir->dp,dv);
		if (a < 0.01f)
		{
			cir->np[0] = -cir->dp[2];
			cir->np[2] = cir->dp[0];
		}
		else
		{
			cir->np[0] = cir->dp[2];
			cir->np[2] = -cir->dp[0];
		}
	}	

	for (int i = 0; i < m_nsegments; ++i)
	{
		dtObstacleSegment* seg = &m_segments[i];
		
		// Precalc if the agent is really close to the segment.
		const float r = 0.01f;
		float t;
		seg->touch = dtDistancePtSegSqr2D(pos, seg->p, seg->q, t) < dtSqr(r);
	}	
}
Esempio n. 9
0
bool TestCase::handleRenderOverlay(double* proj, double* model, int* view)
{
	GLdouble x, y, z;
	char text[64], subtext[64];
	int n = 0;

	static const float LABEL_DIST = 1.0f;

	for (Test* iter = m_tests; iter; iter = iter->next)
	{
		float pt[3], dir[3];
		if (iter->nstraight)
		{
			dtVcopy(pt, &iter->straight[3]);
			if (dtVdist(pt, iter->spos) > LABEL_DIST)
			{
				dtVsub(dir, pt, iter->spos);
				dtVnormalize(dir);
				dtVmad(pt, iter->spos, dir, LABEL_DIST);
			}
			pt[1]+=0.5f;
		}
		else
		{
			dtVsub(dir, iter->epos, iter->spos);
			dtVnormalize(dir);
			dtVmad(pt, iter->spos, dir, LABEL_DIST);
			pt[1]+=0.5f;
		}
		
		if (gluProject((GLdouble)pt[0], (GLdouble)pt[1], (GLdouble)pt[2],
					   model, proj, view, &x, &y, &z))
		{
			snprintf(text, 64, "Path %d\n", n);
			unsigned int col = imguiRGBA(0,0,0,128);
			if (iter->expand)
				col = imguiRGBA(255,192,0,220);
			imguiDrawText((int)x, (int)(y-25), IMGUI_ALIGN_CENTER, text, col);
		}
		n++;
	}
	
	static int resScroll = 0;
	bool mouseOverMenu = imguiBeginScrollArea("Test Results", 10, view[3] - 10 - 350, 200, 350, &resScroll);
//		mouseOverMenu = true;
		
	n = 0;
	for (Test* iter = m_tests; iter; iter = iter->next)
	{
		const int total = iter->findNearestPolyTime + iter->findPathTime + iter->findStraightPathTime;
		snprintf(subtext, 64, "%.4f ms", (float)total/1000.0f);
		snprintf(text, 64, "Path %d", n);
		
		if (imguiCollapse(text, subtext, iter->expand))
			iter->expand = !iter->expand;
		if (iter->expand)
		{
			snprintf(text, 64, "Poly: %.4f ms", (float)iter->findNearestPolyTime/1000.0f);
			imguiValue(text);

			snprintf(text, 64, "Path: %.4f ms", (float)iter->findPathTime/1000.0f);
			imguiValue(text);

			snprintf(text, 64, "Straight: %.4f ms", (float)iter->findStraightPathTime/1000.0f);
			imguiValue(text);
			
			imguiSeparator();
		}
		
		n++;
	}

	imguiEndScrollArea();
	
	return mouseOverMenu;
}
Esempio n. 10
0
void NavMeshTesterTool::handleRender()
{
	DebugDrawGL dd;
	
	static const unsigned int startCol = duRGBA(128,25,0,192);
	static const unsigned int endCol = duRGBA(51,102,0,129);
	static const unsigned int pathCol = duRGBA(0,0,0,64);
	
	const float agentRadius = m_sample->getAgentRadius();
	const float agentHeight = m_sample->getAgentHeight();
	const float agentClimb = m_sample->getAgentClimb();
	
	dd.depthMask(false);
	if (m_sposSet)
		drawAgent(m_spos, agentRadius, agentHeight, agentClimb, startCol);
	if (m_eposSet)
		drawAgent(m_epos, agentRadius, agentHeight, agentClimb, endCol);
	dd.depthMask(true);
	
	if (!m_navMesh)
	{
		return;
	}

	if (m_toolMode == TOOLMODE_PATHFIND_FOLLOW)
	{
		duDebugDrawNavMeshPoly(&dd, *m_navMesh, m_startRef, startCol);
		duDebugDrawNavMeshPoly(&dd, *m_navMesh, m_endRef, endCol);
		
		if (m_npolys)
		{
			for (int i = 1; i < m_npolys-1; ++i)
				duDebugDrawNavMeshPoly(&dd, *m_navMesh, m_polys[i], pathCol);
		}
				
		if (m_nsmoothPath)
		{
			dd.depthMask(false);
			const unsigned int pathCol = duRGBA(0,0,0,220);
			dd.begin(DU_DRAW_LINES, 3.0f);
			for (int i = 0; i < m_nsmoothPath; ++i)
				dd.vertex(m_smoothPath[i*3], m_smoothPath[i*3+1]+0.1f, m_smoothPath[i*3+2], pathCol);
			dd.end();
			dd.depthMask(true);
		}
		
		if (m_pathIterNum)
		{
			duDebugDrawNavMeshPoly(&dd, *m_navMesh, m_pathIterPolys[0], duRGBA(255,255,255,128));

			dd.depthMask(false);
			dd.begin(DU_DRAW_LINES, 1.0f);
			
			const unsigned int prevCol = duRGBA(255,192,0,220);
			const unsigned int curCol = duRGBA(255,255,255,220);
			const unsigned int steerCol = duRGBA(0,192,255,220);

			dd.vertex(m_prevIterPos[0],m_prevIterPos[1]-0.3f,m_prevIterPos[2], prevCol);
			dd.vertex(m_prevIterPos[0],m_prevIterPos[1]+0.3f,m_prevIterPos[2], prevCol);

			dd.vertex(m_iterPos[0],m_iterPos[1]-0.3f,m_iterPos[2], curCol);
			dd.vertex(m_iterPos[0],m_iterPos[1]+0.3f,m_iterPos[2], curCol);

			dd.vertex(m_prevIterPos[0],m_prevIterPos[1]+0.3f,m_prevIterPos[2], prevCol);
			dd.vertex(m_iterPos[0],m_iterPos[1]+0.3f,m_iterPos[2], prevCol);

			dd.vertex(m_prevIterPos[0],m_prevIterPos[1]+0.3f,m_prevIterPos[2], steerCol);
			dd.vertex(m_steerPos[0],m_steerPos[1]+0.3f,m_steerPos[2], steerCol);
			
			for (int i = 0; i < m_steerPointCount-1; ++i)
			{
				dd.vertex(m_steerPoints[i*3+0],m_steerPoints[i*3+1]+0.2f,m_steerPoints[i*3+2], duDarkenCol(steerCol));
				dd.vertex(m_steerPoints[(i+1)*3+0],m_steerPoints[(i+1)*3+1]+0.2f,m_steerPoints[(i+1)*3+2], duDarkenCol(steerCol));
			}
			
			dd.end();
			dd.depthMask(true);
		}
	}
	else if (m_toolMode == TOOLMODE_PATHFIND_STRAIGHT || m_toolMode == TOOLMODE_PATHFIND_SLICED)
	{
		duDebugDrawNavMeshPoly(&dd, *m_navMesh, m_startRef, startCol);
		duDebugDrawNavMeshPoly(&dd, *m_navMesh, m_endRef, endCol);
		
		if (m_npolys)
		{
			for (int i = 1; i < m_npolys-1; ++i)
				duDebugDrawNavMeshPoly(&dd, *m_navMesh, m_polys[i], pathCol);
		}
		
		if (m_nstraightPath)
		{
			dd.depthMask(false);
			const unsigned int pathCol = duRGBA(64,16,0,220);
			const unsigned int offMeshCol = duRGBA(128,96,0,220);
			dd.begin(DU_DRAW_LINES, 2.0f);
			for (int i = 0; i < m_nstraightPath-1; ++i)
			{
				unsigned int col = 0;
				if (m_straightPathFlags[i] & DT_STRAIGHTPATH_OFFMESH_CONNECTION)
					col = offMeshCol;
				else
					col = pathCol;
				
				dd.vertex(m_straightPath[i*3], m_straightPath[i*3+1]+0.4f, m_straightPath[i*3+2], col);
				dd.vertex(m_straightPath[(i+1)*3], m_straightPath[(i+1)*3+1]+0.4f, m_straightPath[(i+1)*3+2], col);
			}
			dd.end();
			dd.begin(DU_DRAW_POINTS, 6.0f);
			for (int i = 0; i < m_nstraightPath; ++i)
			{
				unsigned int col = 0;
				if (m_straightPathFlags[i] & DT_STRAIGHTPATH_START)
					col = startCol;
				else if (m_straightPathFlags[i] & DT_STRAIGHTPATH_START)
					col = endCol;
				else if (m_straightPathFlags[i] & DT_STRAIGHTPATH_OFFMESH_CONNECTION)
					col = offMeshCol;
				else
					col = pathCol;
				dd.vertex(m_straightPath[i*3], m_straightPath[i*3+1]+0.4f, m_straightPath[i*3+2], pathCol);
			}
			dd.end();
			dd.depthMask(true);
		}
	}
	else if (m_toolMode == TOOLMODE_RAYCAST)
	{
		duDebugDrawNavMeshPoly(&dd, *m_navMesh, m_startRef, startCol);
		
		if (m_nstraightPath)
		{
			for (int i = 1; i < m_npolys; ++i)
				duDebugDrawNavMeshPoly(&dd, *m_navMesh, m_polys[i], pathCol);
			
			dd.depthMask(false);
			const unsigned int pathCol = m_hitResult ? duRGBA(64,16,0,220) : duRGBA(240,240,240,220);
			dd.begin(DU_DRAW_LINES, 2.0f);
			for (int i = 0; i < m_nstraightPath-1; ++i)
			{
				dd.vertex(m_straightPath[i*3], m_straightPath[i*3+1]+0.4f, m_straightPath[i*3+2], pathCol);
				dd.vertex(m_straightPath[(i+1)*3], m_straightPath[(i+1)*3+1]+0.4f, m_straightPath[(i+1)*3+2], pathCol);
			}
			dd.end();
			dd.begin(DU_DRAW_POINTS, 4.0f);
			for (int i = 0; i < m_nstraightPath; ++i)
				dd.vertex(m_straightPath[i*3], m_straightPath[i*3+1]+0.4f, m_straightPath[i*3+2], pathCol);
			dd.end();

			if (m_hitResult)
			{
				const unsigned int hitCol = duRGBA(0,0,0,128);
				dd.begin(DU_DRAW_LINES, 2.0f);
				dd.vertex(m_hitPos[0], m_hitPos[1] + 0.4f, m_hitPos[2], hitCol);
				dd.vertex(m_hitPos[0] + m_hitNormal[0]*agentRadius,
						  m_hitPos[1] + 0.4f + m_hitNormal[1]*agentRadius,
						  m_hitPos[2] + m_hitNormal[2]*agentRadius, hitCol);
				dd.end();
			}
			dd.depthMask(true);
		}
	}
	else if (m_toolMode == TOOLMODE_DISTANCE_TO_WALL)
	{
		duDebugDrawNavMeshPoly(&dd, *m_navMesh, m_startRef, startCol);
		dd.depthMask(false);
		duDebugDrawCircle(&dd, m_spos[0], m_spos[1]+agentHeight/2, m_spos[2], m_distanceToWall, duRGBA(64,16,0,220), 2.0f);
		dd.begin(DU_DRAW_LINES, 3.0f);
		dd.vertex(m_hitPos[0], m_hitPos[1] + 0.02f, m_hitPos[2], duRGBA(0,0,0,192));
		dd.vertex(m_hitPos[0], m_hitPos[1] + agentHeight, m_hitPos[2], duRGBA(0,0,0,192));
		dd.end();
		dd.depthMask(true);
	}
	else if (m_toolMode == TOOLMODE_FIND_POLYS_IN_CIRCLE)
	{
		for (int i = 0; i < m_npolys; ++i)
		{
			duDebugDrawNavMeshPoly(&dd, *m_navMesh, m_polys[i], pathCol);
			dd.depthMask(false);
			if (m_parent[i])
			{
				float p0[3], p1[3];
				dd.depthMask(false);
				getPolyCenter(m_navMesh, m_parent[i], p0);
				getPolyCenter(m_navMesh, m_polys[i], p1);
				duDebugDrawArc(&dd, p0[0],p0[1],p0[2], p1[0],p1[1],p1[2], 0.25f, 0.0f, 0.4f, duRGBA(0,0,0,128), 2.0f);
				dd.depthMask(true);
			}
			dd.depthMask(true);
		}
		
		if (m_sposSet && m_eposSet)
		{
			dd.depthMask(false);
			const float dx = m_epos[0] - m_spos[0];
			const float dz = m_epos[2] - m_spos[2];
			const float dist = sqrtf(dx*dx + dz*dz);
			duDebugDrawCircle(&dd, m_spos[0], m_spos[1]+agentHeight/2, m_spos[2], dist, duRGBA(64,16,0,220), 2.0f);
			dd.depthMask(true);
		}
	}	
	else if (m_toolMode == TOOLMODE_FIND_POLYS_IN_SHAPE)
	{
		for (int i = 0; i < m_npolys; ++i)
		{
			duDebugDrawNavMeshPoly(&dd, *m_navMesh, m_polys[i], pathCol);
			dd.depthMask(false);
			if (m_parent[i])
			{
				float p0[3], p1[3];
				dd.depthMask(false);
				getPolyCenter(m_navMesh, m_parent[i], p0);
				getPolyCenter(m_navMesh, m_polys[i], p1);
				duDebugDrawArc(&dd, p0[0],p0[1],p0[2], p1[0],p1[1],p1[2], 0.25f, 0.0f, 0.4f, duRGBA(0,0,0,128), 2.0f);
				dd.depthMask(true);
			}
			dd.depthMask(true);
		}
		
		if (m_sposSet && m_eposSet)
		{
			dd.depthMask(false);
			const unsigned int col = duRGBA(64,16,0,220);
			dd.begin(DU_DRAW_LINES, 2.0f);
			for (int i = 0, j = 3; i < 4; j=i++)
			{
				const float* p0 = &m_queryPoly[j*3];
				const float* p1 = &m_queryPoly[i*3];
				dd.vertex(p0, col);
				dd.vertex(p1, col);
			}
			dd.end();
			dd.depthMask(true);
		}
	}
	else if (m_toolMode == TOOLMODE_FIND_LOCAL_NEIGHBOURHOOD)
	{
		for (int i = 0; i < m_npolys; ++i)
		{
			duDebugDrawNavMeshPoly(&dd, *m_navMesh, m_polys[i], pathCol);
			dd.depthMask(false);
			if (m_parent[i])
			{
				float p0[3], p1[3];
				dd.depthMask(false);
				getPolyCenter(m_navMesh, m_parent[i], p0);
				getPolyCenter(m_navMesh, m_polys[i], p1);
				duDebugDrawArc(&dd, p0[0],p0[1],p0[2], p1[0],p1[1],p1[2], 0.25f, 0.0f, 0.4f, duRGBA(0,0,0,128), 2.0f);
				dd.depthMask(true);
			}

			static const int MAX_SEGS = DT_VERTS_PER_POLYGON*2;
			float segs[MAX_SEGS*6];
			int nsegs = 0;
			m_navQuery->getPolyWallSegments(m_polys[i], &m_filter, segs, &nsegs, MAX_SEGS);
			dd.begin(DU_DRAW_LINES, 2.0f);
			for (int j = 0; j < nsegs; ++j)
			{
				const float* s = &segs[j*6];
				
				// Skip too distant segments.
				float tseg;
				float distSqr = dtDistancePtSegSqr2D(m_spos, s, s+3, tseg);
				if (distSqr > dtSqr(m_neighbourhoodRadius))
					continue;
				
				float delta[3], norm[3], p0[3], p1[3];
				dtVsub(delta, s+3,s);
				dtVmad(p0, s, delta, 0.5f);
				norm[0] = delta[2];
				norm[1] = 0;
				norm[2] = -delta[0];
				dtVnormalize(norm);
				dtVmad(p1, p0, norm, agentRadius*0.5f);

				// Skip backfacing segments.
				unsigned int col = duRGBA(255,255,255,192);
				if (dtTriArea2D(m_spos, s, s+3) < 0.0f)
					col = duRGBA(255,255,255,64);
					
				dd.vertex(p0[0],p0[1]+agentClimb,p0[2],duRGBA(0,0,0,128));
				dd.vertex(p1[0],p1[1]+agentClimb,p1[2],duRGBA(0,0,0,128));

				dd.vertex(s[0],s[1]+agentClimb,s[2],col);
				dd.vertex(s[3],s[4]+agentClimb,s[5],col);
			}
			dd.end();
			
			dd.depthMask(true);
		}
		
		if (m_sposSet)
		{
			dd.depthMask(false);
			duDebugDrawCircle(&dd, m_spos[0], m_spos[1]+agentHeight/2, m_spos[2], m_neighbourhoodRadius, duRGBA(64,16,0,220), 2.0f);
			dd.depthMask(true);
		}
	}	
}
Esempio n. 11
0
void dtCrowd::updateStepProximityData(const float dt, dtCrowdAgentDebugInfo*)
{
	// Register agents to proximity grid.
	m_grid->clear();
	for (int i = 0; i < m_numActiveAgents; ++i)
	{
		dtCrowdAgent* ag = m_activeAgents[i];
		const float* p = ag->npos;
		const float r = ag->params.radius;
		m_grid->addItem((unsigned short)i, p[0] - r, p[2] - r, p[0] + r, p[2] + r);
	}

	// Get nearby navmesh segments and agents to collide with.
	for (int i = 0; i < m_numActiveAgents; ++i)
	{
		dtCrowdAgent* ag = m_activeAgents[i];
		if (ag->state != DT_CROWDAGENT_STATE_WALKING)
			continue;

		m_navquery->updateLinkFilter(ag->params.linkFilter);

		// Update the collision boundary after certain distance has been passed or
		// if it has become invalid.
		const float updateThr = ag->params.collisionQueryRange*0.25f;
		if (dtVdist2DSqr(ag->npos, ag->boundary.getCenter()) > dtSqr(updateThr) ||
			!ag->boundary.isValid(m_navquery, &m_filters[ag->params.filter]))
		{
			// UE4: force removing segments too close to offmesh links
			const bool useForcedRemove = m_linkRemovalRadius > 0.0f && ag->ncorners &&
				(ag->cornerFlags[ag->ncorners - 1] & DT_STRAIGHTPATH_OFFMESH_CONNECTION);

			const float* removePos = useForcedRemove ? &ag->cornerVerts[(ag->ncorners - 1) * 3] : 0;
			const float removeRadius = m_linkRemovalRadius;

			// UE4: prepare filter containing only current area
			// boundary update will take all corner polys and include them in local neighborhood
			unsigned char allowedArea = DT_WALKABLE_AREA;
			if (m_raycastSingleArea)
			{
				m_navquery->getAttachedNavMesh()->getPolyArea(ag->corridor.getFirstPoly(), &allowedArea);
				m_raycastFilter.setAreaCost(allowedArea, 1.0f);
			}

			// UE4: move dir for segment scoring
			float moveDir[3] = { 0.0f };
			if (ag->ncorners)
			{
				dtVsub(moveDir, &ag->cornerVerts[2], &ag->cornerVerts[0]);
			}
			else
			{
				dtVcopy(moveDir, ag->vel);
			}
			dtVnormalize(moveDir);

			ag->boundary.update(ag->corridor.getFirstPoly(), ag->npos, ag->params.collisionQueryRange,
				removePos, removeRadius, useForcedRemove,
				ag->corridor.getPath(), ag->corridor.getPathCount(),
				moveDir,
				m_navquery, m_raycastSingleArea ? &m_raycastFilter : &m_filters[ag->params.filter]);

			m_raycastFilter.setAreaCost(allowedArea, DT_UNWALKABLE_POLY_COST);
		}
		// Query neighbour agents
		ag->nneis = getNeighbours(ag->npos, ag->params.height, ag->params.collisionQueryRange,
			ag, ag->neis, DT_CROWDAGENT_MAX_NEIGHBOURS,
			m_activeAgents, m_numActiveAgents, m_grid);
		for (int j = 0; j < ag->nneis; j++)
			ag->neis[j].idx = getAgentIndex(m_activeAgents[ag->neis[j].idx]);
	}
}
Esempio n. 12
0
bool Visualization::update()
{
    if (!m_initialized)
    {
        printf("Visualization has not been yet initialized.");
        return false;
    }
    
    // Compute the time since last update (in seconds).
    Uint32 time = SDL_GetTicks();
    float dt = (time - m_lastTickCount) / 1000.0f;
    m_lastTickCount = time;
    
    bool singleSimulationStep = false;
    bool scrollForward = false;
    bool scrollBackward = false;
    
    int mscroll = 0;
    
    SDL_Event event;
    while (SDL_PollEvent(&event))
    {
        switch (event.type)
        {
            case SDL_KEYDOWN:
                // Handle any key presses here.
                if (event.key.keysym.sym == SDLK_ESCAPE) //Escape.
                {
                    m_stopRequested = true;
                }
                else if (event.key.keysym.sym == SDLK_SPACE)
                {
                    m_paused = !m_paused;
                }
                else if (event.key.keysym.sym == SDLK_TAB)
                {
                    singleSimulationStep = true;
				}
				else if (event.key.keysym.sym == SDLK_r)
				{
					float pos[3] = {-15, 0, 15};
					m_crowd->pushAgentPosition(0, pos);
				}
				else if (event.key.keysym.sym == SDLK_KP7)
				{
					float pos[3] = {-19, 0, -19};
					dtVnormalize(pos);
					dtVscale(pos, pos, 2.f);

					dtCrowdAgent ag;
					m_crowd->fetchAgent(ag, 0);
					dtVcopy(ag.velocity, pos);
					m_crowd->pushAgent(ag);
				}
				else if (event.key.keysym.sym == SDLK_KP9)
				{
					float pos[] = {19, 0, -19};
					dtVnormalize(pos);
					dtVscale(pos, pos, 2.f);

					dtCrowdAgent ag;
					m_crowd->fetchAgent(ag, 0);
					dtVcopy(ag.velocity, pos);
					m_crowd->pushAgent(ag);
				}
				else if (event.key.keysym.sym == SDLK_KP3)
				{
					float pos[3] = {19, 0, 19};
					dtVnormalize(pos);
					dtVscale(pos, pos, 2.f);

					dtCrowdAgent ag;
					m_crowd->fetchAgent(ag, 0);
					dtVcopy(ag.velocity, pos);
					m_crowd->pushAgent(ag);
				}
				else if (event.key.keysym.sym == SDLK_KP1)
				{
					float pos[3] = {-19, 0, 19};
					dtVnormalize(pos);
					dtVscale(pos, pos, 2.f);

					dtCrowdAgent ag;
					m_crowd->fetchAgent(ag, 0);
					dtVcopy(ag.velocity, pos);
					m_crowd->pushAgent(ag);
				}
				else if (event.key.keysym.sym == SDLK_KP5)
				{
					float pos[3] = {0, 0, 0};
					dtVnormalize(pos);
					dtVscale(pos, pos, 2.f);

					dtCrowdAgent ag;
					m_crowd->fetchAgent(ag, 0);
					dtVcopy(ag.velocity, pos);
					m_crowd->pushAgent(ag);
				}
                break;
                
            case SDL_MOUSEBUTTONDOWN:
                if (event.button.button == SDL_BUTTON_RIGHT)
                {
                    // Rotate view
                    m_rotating = true;
                    m_initialMousePosition[0] = m_mousePosition[0];
                    m_initialMousePosition[1] = m_mousePosition[1];
                    m_intialCameraOrientation[0] = m_cameraOrientation[0];
                    m_intialCameraOrientation[1] = m_cameraOrientation[1];
                    m_intialCameraOrientation[2] = m_cameraOrientation[2];
                }	
                else if (event.button.button == SDL_BUTTON_WHEELUP)
                {
                    scrollForward = true;
                }
				else if (event.button.button == SDL_BUTTON_WHEELDOWN)
				{
					scrollBackward = true;
				}
                break;
                
            case SDL_MOUSEBUTTONUP:
                if (event.button.button == SDL_BUTTON_RIGHT)
                {
                    m_rotating = false;
                }
                else if (event.button.button == SDL_BUTTON_LEFT)
                {
                    float pickedPosition[3];
					int index = 0;
                    pick(pickedPosition, &index);
                }
                break;
                
            case SDL_MOUSEMOTION:
                m_mousePosition[0] = event.motion.x;
                m_mousePosition[1] = m_winHeight-1 - event.motion.y;
                if (m_rotating)
                {
                    int dx = m_mousePosition[0] - m_initialMousePosition[0];
                    int dy = m_mousePosition[1] - m_initialMousePosition[1];
                    
                    m_cameraOrientation[0] = m_intialCameraOrientation[0] - dy*0.25f;
                    m_cameraOrientation[1] = m_intialCameraOrientation[1] + dx*0.25f;
                }
                break;
                
            case SDL_QUIT:
                m_stopRequested = true;
                break;
                
            default:
                break;
        }
    }
    
    unsigned char mbut = 0;
    if (SDL_GetMouseState(0,0) & SDL_BUTTON_LMASK)
        mbut |= IMGUI_MBUT_LEFT;
    if (SDL_GetMouseState(0,0) & SDL_BUTTON_RMASK)
        mbut |= IMGUI_MBUT_RIGHT;
    
    // Update the camera velocity from keyboard state.
    Uint8* keystate = SDL_GetKeyState(NULL);
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4800)
#endif
    updateCameraVelocity(
                         dt,
                         keystate[SDLK_w] || keystate[SDLK_UP] || scrollForward,
                         keystate[SDLK_s] || keystate[SDLK_DOWN] || scrollBackward,
                         keystate[SDLK_a] || keystate[SDLK_LEFT],
                         keystate[SDLK_d] || keystate[SDLK_RIGHT],
                         SDL_GetModState() & KMOD_SHIFT);
#ifdef _MSC_VER
#pragma warning(pop)
#endif

    //Update the camera position
    updateCameraPosition(dt);
    
    //Update the crowd
    if (m_crowd)
    {
        if (singleSimulationStep)
        {
            m_paused = true;
            m_debugInfo->startUpdate();

			m_crowd->update(m_crowdDt);

            m_debugInfo->endUpdate(m_crowdDt);
            m_crowdAvailableDt = 0.f;
        }
        else if (!m_paused)
        {
            m_crowdAvailableDt += dt;
            while(m_crowdAvailableDt > m_crowdDt)
            {
				m_debugInfo->startUpdate();

				m_crowd->update(m_crowdDt);

                m_debugInfo->endUpdate(m_crowdDt);
                m_crowdAvailableDt -= m_crowdDt;
            }
        }
        else
        {
            m_crowdAvailableDt = 0.f;
        }
    }
    
    // Set rendering context
    glViewport(0, 0, m_winWidth, m_winHeight);
    glClearColor(0.3f, 0.3f, 0.32f, 1.0f);
    glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    glDisable(GL_TEXTURE_2D);
    
    // Render 3D
    glEnable(GL_DEPTH_TEST);
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    gluPerspective(50.0f, (float)m_winWidth/(float)m_winHeight, m_zNear, m_zFar);
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    glRotatef(m_cameraOrientation[0],1,0,0);
    glRotatef(m_cameraOrientation[1],0,1,0);
    glRotatef(m_cameraOrientation[2],0,0,1);
    glTranslatef(-m_cameraPosition[0], -m_cameraPosition[1], -m_cameraPosition[2]);
    
    // Extract OpenGL view properties
    glGetDoublev(GL_PROJECTION_MATRIX, m_projection);
    glGetDoublev(GL_MODELVIEW_MATRIX, m_modelView);
    glGetIntegerv(GL_VIEWPORT, m_viewport);
    
    renderScene();
    renderCrowd();
    
    // Render 2D Overlay
    glDisable(GL_DEPTH_TEST);
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    gluOrtho2D(0, m_winWidth, 0, m_winHeight);
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
       
    imguiBeginFrame(m_mousePosition[0], m_mousePosition[1], mbut,mscroll);
    
    renderDebugInfoOverlay();
    
    imguiEndFrame();
    imguiRenderGLDraw();		
    
    glEnable(GL_DEPTH_TEST);
    SDL_GL_SwapBuffers();
    
    return true;
}