Esempio n. 1
0
/* Subroutine */ int dgegv_(char *jobvl, char *jobvr, integer *n, doublereal *
	a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar, 
	doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl, 
	doublereal *vr, integer *ldvr, doublereal *work, integer *lwork, 
	integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
	    vr_offset, i__1, i__2;
    doublereal d__1, d__2, d__3, d__4;

    /* Local variables */
    integer jc, nb, in, jr, nb1, nb2, nb3, ihi, ilo;
    doublereal eps;
    logical ilv;
    doublereal absb, anrm, bnrm;
    integer itau;
    doublereal temp;
    logical ilvl, ilvr;
    integer lopt;
    doublereal anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta;
    integer ileft, iinfo, icols, iwork, irows;
    doublereal salfai;
    doublereal salfar;
    doublereal safmin;
    doublereal safmax;
    char chtemp[1];
    logical ldumma[1];
    integer ijobvl, iright;
    logical ilimit;
    integer ijobvr;
    doublereal onepls;
    integer lwkmin;
    integer lwkopt;
    logical lquery;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  This routine is deprecated and has been replaced by routine DGGEV. */

/*  DGEGV computes the eigenvalues and, optionally, the left and/or right */
/*  eigenvectors of a real matrix pair (A,B). */
/*  Given two square matrices A and B, */
/*  the generalized nonsymmetric eigenvalue problem (GNEP) is to find the */
/*  eigenvalues lambda and corresponding (non-zero) eigenvectors x such */
/*  that */

/*     A*x = lambda*B*x. */

/*  An alternate form is to find the eigenvalues mu and corresponding */
/*  eigenvectors y such that */

/*     mu*A*y = B*y. */

/*  These two forms are equivalent with mu = 1/lambda and x = y if */
/*  neither lambda nor mu is zero.  In order to deal with the case that */
/*  lambda or mu is zero or small, two values alpha and beta are returned */
/*  for each eigenvalue, such that lambda = alpha/beta and */
/*  mu = beta/alpha. */

/*  The vectors x and y in the above equations are right eigenvectors of */
/*  the matrix pair (A,B).  Vectors u and v satisfying */

/*     u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B */

/*  are left eigenvectors of (A,B). */

/*  Note: this routine performs "full balancing" on A and B -- see */
/*  "Further Details", below. */

/*  Arguments */
/*  ========= */

/*  JOBVL   (input) CHARACTER*1 */
/*          = 'N':  do not compute the left generalized eigenvectors; */
/*          = 'V':  compute the left generalized eigenvectors (returned */
/*                  in VL). */

/*  JOBVR   (input) CHARACTER*1 */
/*          = 'N':  do not compute the right generalized eigenvectors; */
/*          = 'V':  compute the right generalized eigenvectors (returned */
/*                  in VR). */

/*  N       (input) INTEGER */
/*          The order of the matrices A, B, VL, and VR.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/*          On entry, the matrix A. */
/*          If JOBVL = 'V' or JOBVR = 'V', then on exit A */
/*          contains the real Schur form of A from the generalized Schur */
/*          factorization of the pair (A,B) after balancing. */
/*          If no eigenvectors were computed, then only the diagonal */
/*          blocks from the Schur form will be correct.  See DGGHRD and */
/*          DHGEQZ for details. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of A.  LDA >= max(1,N). */

/*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
/*          On entry, the matrix B. */
/*          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the */
/*          upper triangular matrix obtained from B in the generalized */
/*          Schur factorization of the pair (A,B) after balancing. */
/*          If no eigenvectors were computed, then only those elements of */
/*          B corresponding to the diagonal blocks from the Schur form of */
/*          A will be correct.  See DGGHRD and DHGEQZ for details. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of B.  LDB >= max(1,N). */

/*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N) */
/*          The real parts of each scalar alpha defining an eigenvalue of */
/*          GNEP. */

/*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N) */
/*          The imaginary parts of each scalar alpha defining an */
/*          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th */
/*          eigenvalue is real; if positive, then the j-th and */
/*          (j+1)-st eigenvalues are a complex conjugate pair, with */
/*          ALPHAI(j+1) = -ALPHAI(j). */

/*  BETA    (output) DOUBLE PRECISION array, dimension (N) */
/*          The scalars beta that define the eigenvalues of GNEP. */

/*          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
/*          beta = BETA(j) represent the j-th eigenvalue of the matrix */
/*          pair (A,B), in one of the forms lambda = alpha/beta or */
/*          mu = beta/alpha.  Since either lambda or mu may overflow, */
/*          they should not, in general, be computed. */

/*  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N) */
/*          If JOBVL = 'V', the left eigenvectors u(j) are stored */
/*          in the columns of VL, in the same order as their eigenvalues. */
/*          If the j-th eigenvalue is real, then u(j) = VL(:,j). */
/*          If the j-th and (j+1)-st eigenvalues form a complex conjugate */
/*          pair, then */
/*             u(j) = VL(:,j) + i*VL(:,j+1) */
/*          and */
/*            u(j+1) = VL(:,j) - i*VL(:,j+1). */

/*          Each eigenvector is scaled so that its largest component has */
/*          abs(real part) + abs(imag. part) = 1, except for eigenvectors */
/*          corresponding to an eigenvalue with alpha = beta = 0, which */
/*          are set to zero. */
/*          Not referenced if JOBVL = 'N'. */

/*  LDVL    (input) INTEGER */
/*          The leading dimension of the matrix VL. LDVL >= 1, and */
/*          if JOBVL = 'V', LDVL >= N. */

/*  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N) */
/*          If JOBVR = 'V', the right eigenvectors x(j) are stored */
/*          in the columns of VR, in the same order as their eigenvalues. */
/*          If the j-th eigenvalue is real, then x(j) = VR(:,j). */
/*          If the j-th and (j+1)-st eigenvalues form a complex conjugate */
/*          pair, then */
/*            x(j) = VR(:,j) + i*VR(:,j+1) */
/*          and */
/*            x(j+1) = VR(:,j) - i*VR(:,j+1). */

/*          Each eigenvector is scaled so that its largest component has */
/*          abs(real part) + abs(imag. part) = 1, except for eigenvalues */
/*          corresponding to an eigenvalue with alpha = beta = 0, which */
/*          are set to zero. */
/*          Not referenced if JOBVR = 'N'. */

/*  LDVR    (input) INTEGER */
/*          The leading dimension of the matrix VR. LDVR >= 1, and */
/*          if JOBVR = 'V', LDVR >= N. */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,8*N). */
/*          For good performance, LWORK must generally be larger. */
/*          To compute the optimal value of LWORK, call ILAENV to get */
/*          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute: */
/*          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR; */
/*          The optimal LWORK is: */
/*              2*N + MAX( 6*N, N*(NB+1) ). */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*                The QZ iteration failed.  No eigenvectors have been */
/*                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
/*          > N:  errors that usually indicate LAPACK problems: */
/*                =N+1: error return from DGGBAL */
/*                =N+2: error return from DGEQRF */
/*                =N+3: error return from DORMQR */
/*                =N+4: error return from DORGQR */
/*                =N+5: error return from DGGHRD */
/*                =N+6: error return from DHGEQZ (other than failed */
/*                                                iteration) */
/*                =N+7: error return from DTGEVC */
/*                =N+8: error return from DGGBAK (computing VL) */
/*                =N+9: error return from DGGBAK (computing VR) */
/*                =N+10: error return from DLASCL (various calls) */

/*  Further Details */
/*  =============== */

/*  Balancing */
/*  --------- */

/*  This driver calls DGGBAL to both permute and scale rows and columns */
/*  of A and B.  The permutations PL and PR are chosen so that PL*A*PR */
/*  and PL*B*R will be upper triangular except for the diagonal blocks */
/*  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as */
/*  possible.  The diagonal scaling matrices DL and DR are chosen so */
/*  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to */
/*  one (except for the elements that start out zero.) */

/*  After the eigenvalues and eigenvectors of the balanced matrices */
/*  have been computed, DGGBAK transforms the eigenvectors back to what */
/*  they would have been (in perfect arithmetic) if they had not been */
/*  balanced. */

/*  Contents of A and B on Exit */
/*  -------- -- - --- - -- ---- */

/*  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or */
/*  both), then on exit the arrays A and B will contain the real Schur */
/*  form[*] of the "balanced" versions of A and B.  If no eigenvectors */
/*  are computed, then only the diagonal blocks will be correct. */

/*  [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations", */
/*      by Golub & van Loan, pub. by Johns Hopkins U. Press. */

/*  ===================================================================== */

/*     Decode the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --alphar;
    --alphai;
    --beta;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --work;

    /* Function Body */
    if (lsame_(jobvl, "N")) {
	ijobvl = 1;
	ilvl = FALSE_;
    } else if (lsame_(jobvl, "V")) {
	ijobvl = 2;
	ilvl = TRUE_;
    } else {
	ijobvl = -1;
	ilvl = FALSE_;
    }

    if (lsame_(jobvr, "N")) {
	ijobvr = 1;
	ilvr = FALSE_;
    } else if (lsame_(jobvr, "V")) {
	ijobvr = 2;
	ilvr = TRUE_;
    } else {
	ijobvr = -1;
	ilvr = FALSE_;
    }
    ilv = ilvl || ilvr;

/*     Test the input arguments */

/* Computing MAX */
    i__1 = *n << 3;
    lwkmin = max(i__1,1);
    lwkopt = lwkmin;
    work[1] = (doublereal) lwkopt;
    lquery = *lwork == -1;
    *info = 0;
    if (ijobvl <= 0) {
	*info = -1;
    } else if (ijobvr <= 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
	*info = -12;
    } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
	*info = -14;
    } else if (*lwork < lwkmin && ! lquery) {
	*info = -16;
    }

    if (*info == 0) {
	nb1 = ilaenv_(&c__1, "DGEQRF", " ", n, n, &c_n1, &c_n1);
	nb2 = ilaenv_(&c__1, "DORMQR", " ", n, n, n, &c_n1);
	nb3 = ilaenv_(&c__1, "DORGQR", " ", n, n, n, &c_n1);
/* Computing MAX */
	i__1 = max(nb1,nb2);
	nb = max(i__1,nb3);
/* Computing MAX */
	i__1 = *n * 6, i__2 = *n * (nb + 1);
	lopt = (*n << 1) + max(i__1,i__2);
	work[1] = (doublereal) lopt;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGEGV ", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Get machine constants */

    eps = dlamch_("E") * dlamch_("B");
    safmin = dlamch_("S");
    safmin += safmin;
    safmax = 1. / safmin;
    onepls = eps * 4 + 1.;

/*     Scale A */

    anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
    anrm1 = anrm;
    anrm2 = 1.;
    if (anrm < 1.) {
	if (safmax * anrm < 1.) {
	    anrm1 = safmin;
	    anrm2 = safmax * anrm;
	}
    }

    if (anrm > 0.) {
	dlascl_("G", &c_n1, &c_n1, &anrm, &c_b27, n, n, &a[a_offset], lda, &
		iinfo);
	if (iinfo != 0) {
	    *info = *n + 10;
	    return 0;
	}
    }

/*     Scale B */

    bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
    bnrm1 = bnrm;
    bnrm2 = 1.;
    if (bnrm < 1.) {
	if (safmax * bnrm < 1.) {
	    bnrm1 = safmin;
	    bnrm2 = safmax * bnrm;
	}
    }

    if (bnrm > 0.) {
	dlascl_("G", &c_n1, &c_n1, &bnrm, &c_b27, n, n, &b[b_offset], ldb, &
		iinfo);
	if (iinfo != 0) {
	    *info = *n + 10;
	    return 0;
	}
    }

/*     Permute the matrix to make it more nearly triangular */
/*     Workspace layout:  (8*N words -- "work" requires 6*N words) */

    ileft = 1;
    iright = *n + 1;
    iwork = iright + *n;
    dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
	    ileft], &work[iright], &work[iwork], &iinfo);
    if (iinfo != 0) {
	*info = *n + 1;
	goto L120;
    }

/*     Reduce B to triangular form, and initialize VL and/or VR */

    irows = ihi + 1 - ilo;
    if (ilv) {
	icols = *n + 1 - ilo;
    } else {
	icols = irows;
    }
    itau = iwork;
    iwork = itau + irows;
    i__1 = *lwork + 1 - iwork;
    dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
	    iwork], &i__1, &iinfo);
    if (iinfo >= 0) {
/* Computing MAX */
	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
	lwkopt = max(i__1,i__2);
    }
    if (iinfo != 0) {
	*info = *n + 2;
	goto L120;
    }

    i__1 = *lwork + 1 - iwork;
    dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
	    work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
	    iinfo);
    if (iinfo >= 0) {
/* Computing MAX */
	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
	lwkopt = max(i__1,i__2);
    }
    if (iinfo != 0) {
	*info = *n + 3;
	goto L120;
    }

    if (ilvl) {
	dlaset_("Full", n, n, &c_b38, &c_b27, &vl[vl_offset], ldvl)
		;
	i__1 = irows - 1;
	i__2 = irows - 1;
	dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo + 
		1 + ilo * vl_dim1], ldvl);
	i__1 = *lwork + 1 - iwork;
	dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
		itau], &work[iwork], &i__1, &iinfo);
	if (iinfo >= 0) {
/* Computing MAX */
	    i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
	    lwkopt = max(i__1,i__2);
	}
	if (iinfo != 0) {
	    *info = *n + 4;
	    goto L120;
	}
    }

    if (ilvr) {
	dlaset_("Full", n, n, &c_b38, &c_b27, &vr[vr_offset], ldvr)
		;
    }

/*     Reduce to generalized Hessenberg form */

    if (ilv) {

/*        Eigenvectors requested -- work on whole matrix. */

	dgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 
		ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo);
    } else {
	dgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda, 
		&b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
		vr_offset], ldvr, &iinfo);
    }
    if (iinfo != 0) {
	*info = *n + 5;
	goto L120;
    }

/*     Perform QZ algorithm */

    iwork = itau;
    if (ilv) {
	*(unsigned char *)chtemp = 'S';
    } else {
	*(unsigned char *)chtemp = 'E';
    }
    i__1 = *lwork + 1 - iwork;
    dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
	    b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], 
	    ldvl, &vr[vr_offset], ldvr, &work[iwork], &i__1, &iinfo);
    if (iinfo >= 0) {
/* Computing MAX */
	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
	lwkopt = max(i__1,i__2);
    }
    if (iinfo != 0) {
	if (iinfo > 0 && iinfo <= *n) {
	    *info = iinfo;
	} else if (iinfo > *n && iinfo <= *n << 1) {
	    *info = iinfo - *n;
	} else {
	    *info = *n + 6;
	}
	goto L120;
    }

    if (ilv) {

/*        Compute Eigenvectors  (DTGEVC requires 6*N words of workspace) */

	if (ilvl) {
	    if (ilvr) {
		*(unsigned char *)chtemp = 'B';
	    } else {
		*(unsigned char *)chtemp = 'L';
	    }
	} else {
	    *(unsigned char *)chtemp = 'R';
	}

	dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, 
		&vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
		iwork], &iinfo);
	if (iinfo != 0) {
	    *info = *n + 7;
	    goto L120;
	}

/*        Undo balancing on VL and VR, rescale */

	if (ilvl) {
	    dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
		    vl[vl_offset], ldvl, &iinfo);
	    if (iinfo != 0) {
		*info = *n + 8;
		goto L120;
	    }
	    i__1 = *n;
	    for (jc = 1; jc <= i__1; ++jc) {
		if (alphai[jc] < 0.) {
		    goto L50;
		}
		temp = 0.;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1], 
				abs(d__1));
			temp = max(d__2,d__3);
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1], 
				abs(d__1)) + (d__2 = vl[jr + (jc + 1) * 
				vl_dim1], abs(d__2));
			temp = max(d__3,d__4);
		    }
		}
		if (temp < safmin) {
		    goto L50;
		}
		temp = 1. / temp;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vl[jr + jc * vl_dim1] *= temp;
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vl[jr + jc * vl_dim1] *= temp;
			vl[jr + (jc + 1) * vl_dim1] *= temp;
		    }
		}
L50:
		;
	    }
	}
	if (ilvr) {
	    dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
		    vr[vr_offset], ldvr, &iinfo);
	    if (iinfo != 0) {
		*info = *n + 9;
		goto L120;
	    }
	    i__1 = *n;
	    for (jc = 1; jc <= i__1; ++jc) {
		if (alphai[jc] < 0.) {
		    goto L100;
		}
		temp = 0.;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1], 
				abs(d__1));
			temp = max(d__2,d__3);
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1], 
				abs(d__1)) + (d__2 = vr[jr + (jc + 1) * 
				vr_dim1], abs(d__2));
			temp = max(d__3,d__4);
		    }
		}
		if (temp < safmin) {
		    goto L100;
		}
		temp = 1. / temp;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vr[jr + jc * vr_dim1] *= temp;
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vr[jr + jc * vr_dim1] *= temp;
			vr[jr + (jc + 1) * vr_dim1] *= temp;
		    }
		}
L100:
		;
	    }
	}

/*        End of eigenvector calculation */

    }

/*     Undo scaling in alpha, beta */

/*     Note: this does not give the alpha and beta for the unscaled */
/*     problem. */

/*     Un-scaling is limited to avoid underflow in alpha and beta */
/*     if they are significant. */

    i__1 = *n;
    for (jc = 1; jc <= i__1; ++jc) {
	absar = (d__1 = alphar[jc], abs(d__1));
	absai = (d__1 = alphai[jc], abs(d__1));
	absb = (d__1 = beta[jc], abs(d__1));
	salfar = anrm * alphar[jc];
	salfai = anrm * alphai[jc];
	sbeta = bnrm * beta[jc];
	ilimit = FALSE_;
	scale = 1.;

/*        Check for significant underflow in ALPHAI */

/* Computing MAX */
	d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps *
		 absb;
	if (abs(salfai) < safmin && absai >= max(d__1,d__2)) {
	    ilimit = TRUE_;
/* Computing MAX */
	    d__1 = onepls * safmin, d__2 = anrm2 * absai;
	    scale = onepls * safmin / anrm1 / max(d__1,d__2);

	} else if (salfai == 0.) {

/*           If insignificant underflow in ALPHAI, then make the */
/*           conjugate eigenvalue real. */

	    if (alphai[jc] < 0. && jc > 1) {
		alphai[jc - 1] = 0.;
	    } else if (alphai[jc] > 0. && jc < *n) {
		alphai[jc + 1] = 0.;
	    }
	}

/*        Check for significant underflow in ALPHAR */

/* Computing MAX */
	d__1 = safmin, d__2 = eps * absai, d__1 = max(d__1,d__2), d__2 = eps *
		 absb;
	if (abs(salfar) < safmin && absar >= max(d__1,d__2)) {
	    ilimit = TRUE_;
/* Computing MAX */
/* Computing MAX */
	    d__3 = onepls * safmin, d__4 = anrm2 * absar;
	    d__1 = scale, d__2 = onepls * safmin / anrm1 / max(d__3,d__4);
	    scale = max(d__1,d__2);
	}

/*        Check for significant underflow in BETA */

/* Computing MAX */
	d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps *
		 absai;
	if (abs(sbeta) < safmin && absb >= max(d__1,d__2)) {
	    ilimit = TRUE_;
/* Computing MAX */
/* Computing MAX */
	    d__3 = onepls * safmin, d__4 = bnrm2 * absb;
	    d__1 = scale, d__2 = onepls * safmin / bnrm1 / max(d__3,d__4);
	    scale = max(d__1,d__2);
	}

/*        Check for possible overflow when limiting scaling */

	if (ilimit) {
/* Computing MAX */
	    d__1 = abs(salfar), d__2 = abs(salfai), d__1 = max(d__1,d__2), 
		    d__2 = abs(sbeta);
	    temp = scale * safmin * max(d__1,d__2);
	    if (temp > 1.) {
		scale /= temp;
	    }
	    if (scale < 1.) {
		ilimit = FALSE_;
	    }
	}

/*        Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary. */

	if (ilimit) {
	    salfar = scale * alphar[jc] * anrm;
	    salfai = scale * alphai[jc] * anrm;
	    sbeta = scale * beta[jc] * bnrm;
	}
	alphar[jc] = salfar;
	alphai[jc] = salfai;
	beta[jc] = sbeta;
    }

L120:
    work[1] = (doublereal) lwkopt;

    return 0;

/*     End of DGEGV */

} /* dgegv_ */
Esempio n. 2
0
/* Subroutine */ int dggevx_(char *balanc, char *jobvl, char *jobvr, char *
	sense, integer *n, doublereal *a, integer *lda, doublereal *b, 
	integer *ldb, doublereal *alphar, doublereal *alphai, doublereal *
	beta, doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, 
	integer *ilo, integer *ihi, doublereal *lscale, doublereal *rscale, 
	doublereal *abnrm, doublereal *bbnrm, doublereal *rconde, doublereal *
	rcondv, doublereal *work, integer *lwork, integer *iwork, logical *
	bwork, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B)   
    the generalized eigenvalues, and optionally, the left and/or right   
    generalized eigenvectors.   

    Optionally also, it computes a balancing transformation to improve   
    the conditioning of the eigenvalues and eigenvectors (ILO, IHI,   
    LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for   
    the eigenvalues (RCONDE), and reciprocal condition numbers for the   
    right eigenvectors (RCONDV).   

    A generalized eigenvalue for a pair of matrices (A,B) is a scalar   
    lambda or a ratio alpha/beta = lambda, such that A - lambda*B is   
    singular. It is usually represented as the pair (alpha,beta), as   
    there is a reasonable interpretation for beta=0, and even for both   
    being zero.   

    The right eigenvector v(j) corresponding to the eigenvalue lambda(j)   
    of (A,B) satisfies   

                     A * v(j) = lambda(j) * B * v(j) .   

    The left eigenvector u(j) corresponding to the eigenvalue lambda(j)   
    of (A,B) satisfies   

                     u(j)**H * A  = lambda(j) * u(j)**H * B.   

    where u(j)**H is the conjugate-transpose of u(j).   


    Arguments   
    =========   

    BALANC  (input) CHARACTER*1   
            Specifies the balance option to be performed.   
            = 'N':  do not diagonally scale or permute;   
            = 'P':  permute only;   
            = 'S':  scale only;   
            = 'B':  both permute and scale.   
            Computed reciprocal condition numbers will be for the   
            matrices after permuting and/or balancing. Permuting does   
            not change condition numbers (in exact arithmetic), but   
            balancing does.   

    JOBVL   (input) CHARACTER*1   
            = 'N':  do not compute the left generalized eigenvectors;   
            = 'V':  compute the left generalized eigenvectors.   

    JOBVR   (input) CHARACTER*1   
            = 'N':  do not compute the right generalized eigenvectors;   
            = 'V':  compute the right generalized eigenvectors.   

    SENSE   (input) CHARACTER*1   
            Determines which reciprocal condition numbers are computed.   
            = 'N': none are computed;   
            = 'E': computed for eigenvalues only;   
            = 'V': computed for eigenvectors only;   
            = 'B': computed for eigenvalues and eigenvectors.   

    N       (input) INTEGER   
            The order of the matrices A, B, VL, and VR.  N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)   
            On entry, the matrix A in the pair (A,B).   
            On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'   
            or both, then A contains the first part of the real Schur   
            form of the "balanced" versions of the input A and B.   

    LDA     (input) INTEGER   
            The leading dimension of A.  LDA >= max(1,N).   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)   
            On entry, the matrix B in the pair (A,B).   
            On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'   
            or both, then B contains the second part of the real Schur   
            form of the "balanced" versions of the input A and B.   

    LDB     (input) INTEGER   
            The leading dimension of B.  LDB >= max(1,N).   

    ALPHAR  (output) DOUBLE PRECISION array, dimension (N)   
    ALPHAI  (output) DOUBLE PRECISION array, dimension (N)   
    BETA    (output) DOUBLE PRECISION array, dimension (N)   
            On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will   
            be the generalized eigenvalues.  If ALPHAI(j) is zero, then   
            the j-th eigenvalue is real; if positive, then the j-th and   
            (j+1)-st eigenvalues are a complex conjugate pair, with   
            ALPHAI(j+1) negative.   

            Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)   
            may easily over- or underflow, and BETA(j) may even be zero.   
            Thus, the user should avoid naively computing the ratio   
            ALPHA/BETA. However, ALPHAR and ALPHAI will be always less   
            than and usually comparable with norm(A) in magnitude, and   
            BETA always less than and usually comparable with norm(B).   

    VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)   
            If JOBVL = 'V', the left eigenvectors u(j) are stored one   
            after another in the columns of VL, in the same order as   
            their eigenvalues. If the j-th eigenvalue is real, then   
            u(j) = VL(:,j), the j-th column of VL. If the j-th and   
            (j+1)-th eigenvalues form a complex conjugate pair, then   
            u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).   
            Each eigenvector will be scaled so the largest component have   
            abs(real part) + abs(imag. part) = 1.   
            Not referenced if JOBVL = 'N'.   

    LDVL    (input) INTEGER   
            The leading dimension of the matrix VL. LDVL >= 1, and   
            if JOBVL = 'V', LDVL >= N.   

    VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)   
            If JOBVR = 'V', the right eigenvectors v(j) are stored one   
            after another in the columns of VR, in the same order as   
            their eigenvalues. If the j-th eigenvalue is real, then   
            v(j) = VR(:,j), the j-th column of VR. If the j-th and   
            (j+1)-th eigenvalues form a complex conjugate pair, then   
            v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).   
            Each eigenvector will be scaled so the largest component have   
            abs(real part) + abs(imag. part) = 1.   
            Not referenced if JOBVR = 'N'.   

    LDVR    (input) INTEGER   
            The leading dimension of the matrix VR. LDVR >= 1, and   
            if JOBVR = 'V', LDVR >= N.   

    ILO,IHI (output) INTEGER   
            ILO and IHI are integer values such that on exit   
            A(i,j) = 0 and B(i,j) = 0 if i > j and   
            j = 1,...,ILO-1 or i = IHI+1,...,N.   
            If BALANC = 'N' or 'S', ILO = 1 and IHI = N.   

    LSCALE  (output) DOUBLE PRECISION array, dimension (N)   
            Details of the permutations and scaling factors applied   
            to the left side of A and B.  If PL(j) is the index of the   
            row interchanged with row j, and DL(j) is the scaling   
            factor applied to row j, then   
              LSCALE(j) = PL(j)  for j = 1,...,ILO-1   
                        = DL(j)  for j = ILO,...,IHI   
                        = PL(j)  for j = IHI+1,...,N.   
            The order in which the interchanges are made is N to IHI+1,   
            then 1 to ILO-1.   

    RSCALE  (output) DOUBLE PRECISION array, dimension (N)   
            Details of the permutations and scaling factors applied   
            to the right side of A and B.  If PR(j) is the index of the   
            column interchanged with column j, and DR(j) is the scaling   
            factor applied to column j, then   
              RSCALE(j) = PR(j)  for j = 1,...,ILO-1   
                        = DR(j)  for j = ILO,...,IHI   
                        = PR(j)  for j = IHI+1,...,N   
            The order in which the interchanges are made is N to IHI+1,   
            then 1 to ILO-1.   

    ABNRM   (output) DOUBLE PRECISION   
            The one-norm of the balanced matrix A.   

    BBNRM   (output) DOUBLE PRECISION   
            The one-norm of the balanced matrix B.   

    RCONDE  (output) DOUBLE PRECISION array, dimension (N)   
            If SENSE = 'E' or 'B', the reciprocal condition numbers of   
            the selected eigenvalues, stored in consecutive elements of   
            the array. For a complex conjugate pair of eigenvalues two   
            consecutive elements of RCONDE are set to the same value.   
            Thus RCONDE(j), RCONDV(j), and the j-th columns of VL and VR   
            all correspond to the same eigenpair (but not in general the   
            j-th eigenpair, unless all eigenpairs are selected).   
            If SENSE = 'V', RCONDE is not referenced.   

    RCONDV  (output) DOUBLE PRECISION array, dimension (N)   
            If SENSE = 'V' or 'B', the estimated reciprocal condition   
            numbers of the selected eigenvectors, stored in consecutive   
            elements of the array. For a complex eigenvector two   
            consecutive elements of RCONDV are set to the same value. If   
            the eigenvalues cannot be reordered to compute RCONDV(j),   
            RCONDV(j) is set to 0; this can only occur when the true   
            value would be very small anyway.   
            If SENSE = 'E', RCONDV is not referenced.   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK. LWORK >= max(1,6*N).   
            If SENSE = 'E', LWORK >= 12*N.   
            If SENSE = 'V' or 'B', LWORK >= 2*N*N+12*N+16.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    IWORK   (workspace) INTEGER array, dimension (N+6)   
            If SENSE = 'E', IWORK is not referenced.   

    BWORK   (workspace) LOGICAL array, dimension (N)   
            If SENSE = 'N', BWORK is not referenced.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            = 1,...,N:   
                  The QZ iteration failed.  No eigenvectors have been   
                  calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)   
                  should be correct for j=INFO+1,...,N.   
            > N:  =N+1: other than QZ iteration failed in DHGEQZ.   
                  =N+2: error return from DTGEVC.   

    Further Details   
    ===============   

    Balancing a matrix pair (A,B) includes, first, permuting rows and   
    columns to isolate eigenvalues, second, applying diagonal similarity   
    transformation to the rows and columns to make the rows and columns   
    as close in norm as possible. The computed reciprocal condition   
    numbers correspond to the balanced matrix. Permuting rows and columns   
    will not change the condition numbers (in exact arithmetic) but   
    diagonal scaling will.  For further explanation of balancing, see   
    section 4.11.1.2 of LAPACK Users' Guide.   

    An approximate error bound on the chordal distance between the i-th   
    computed generalized eigenvalue w and the corresponding exact   
    eigenvalue lambda is   

         chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)   

    An approximate error bound for the angle between the i-th computed   
    eigenvector VL(i) or VR(i) is given by   

         EPS * norm(ABNRM, BBNRM) / DIF(i).   

    For further explanation of the reciprocal condition numbers RCONDE   
    and RCONDV, see section 4.11 of LAPACK User's Guide.   

    =====================================================================   


       Decode the input arguments   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c__0 = 0;
    static doublereal c_b47 = 0.;
    static doublereal c_b48 = 1.;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
	    vr_offset, i__1, i__2;
    doublereal d__1, d__2, d__3, d__4;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static logical pair;
    static doublereal anrm, bnrm;
    static integer ierr, itau;
    static doublereal temp;
    static logical ilvl, ilvr;
    static integer iwrk, iwrk1, i__, j, m;
    extern logical lsame_(char *, char *);
    static integer icols, irows;
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
    static integer jc;
    extern /* Subroutine */ int dggbak_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, integer *), dggbal_(char *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *);
    static integer in;
    extern doublereal dlamch_(char *);
    static integer mm;
    extern doublereal dlange_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *);
    static integer jr;
    extern /* Subroutine */ int dgghrd_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal 
	    *, doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *);
    static logical ilascl, ilbscl;
    extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *), 
	    dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static logical ldumma[1];
    static char chtemp[1];
    static doublereal bignum;
    extern /* Subroutine */ int dhgeqz_(char *, char *, char *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *,
	     integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *), dlaset_(char *, integer *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *);
    static integer ijobvl;
    extern /* Subroutine */ int dtgevc_(char *, char *, logical *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, integer *, 
	    doublereal *, integer *), dtgsna_(char *, char *, 
	    logical *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *, integer *), xerbla_(char *, 
	    integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static integer ijobvr;
    static logical wantsb;
    extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *);
    static doublereal anrmto;
    static logical wantse;
    static doublereal bnrmto;
    extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, integer *);
    static integer minwrk, maxwrk;
    static logical wantsn;
    static doublereal smlnum;
    static logical lquery, wantsv;
    static doublereal eps;
    static logical ilv;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define vl_ref(a_1,a_2) vl[(a_2)*vl_dim1 + a_1]
#define vr_ref(a_1,a_2) vr[(a_2)*vr_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --alphar;
    --alphai;
    --beta;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1 * 1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1 * 1;
    vr -= vr_offset;
    --lscale;
    --rscale;
    --rconde;
    --rcondv;
    --work;
    --iwork;
    --bwork;

    /* Function Body */
    if (lsame_(jobvl, "N")) {
	ijobvl = 1;
	ilvl = FALSE_;
    } else if (lsame_(jobvl, "V")) {
	ijobvl = 2;
	ilvl = TRUE_;
    } else {
	ijobvl = -1;
	ilvl = FALSE_;
    }

    if (lsame_(jobvr, "N")) {
	ijobvr = 1;
	ilvr = FALSE_;
    } else if (lsame_(jobvr, "V")) {
	ijobvr = 2;
	ilvr = TRUE_;
    } else {
	ijobvr = -1;
	ilvr = FALSE_;
    }
    ilv = ilvl || ilvr;

    wantsn = lsame_(sense, "N");
    wantse = lsame_(sense, "E");
    wantsv = lsame_(sense, "V");
    wantsb = lsame_(sense, "B");

/*     Test the input arguments */

    *info = 0;
    lquery = *lwork == -1;
    if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P") 
	    || lsame_(balanc, "B"))) {
	*info = -1;
    } else if (ijobvl <= 0) {
	*info = -2;
    } else if (ijobvr <= 0) {
	*info = -3;
    } else if (! (wantsn || wantse || wantsb || wantsv)) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,*n)) {
	*info = -7;
    } else if (*ldb < max(1,*n)) {
	*info = -9;
    } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
	*info = -14;
    } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
	*info = -16;
    }

/*     Compute workspace   
        (Note: Comments in the code beginning "Workspace:" describe the   
         minimal amount of workspace needed at that point in the code,   
         as well as the preferred amount for good performance.   
         NB refers to the optimal block size for the immediately   
         following subroutine, as returned by ILAENV. The workspace is   
         computed assuming ILO = 1 and IHI = N, the worst case.) */

    minwrk = 1;
    if (*info == 0 && (*lwork >= 1 || lquery)) {
	maxwrk = *n * 5 + *n * ilaenv_(&c__1, "DGEQRF", " ", n, &c__1, n, &
		c__0, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
	i__1 = 1, i__2 = *n * 6;
	minwrk = max(i__1,i__2);
	if (wantse) {
/* Computing MAX */
	    i__1 = 1, i__2 = *n * 12;
	    minwrk = max(i__1,i__2);
	} else if (wantsv || wantsb) {
	    minwrk = (*n << 1) * *n + *n * 12 + 16;
/* Computing MAX */
	    i__1 = maxwrk, i__2 = (*n << 1) * *n + *n * 12 + 16;
	    maxwrk = max(i__1,i__2);
	}
	work[1] = (doublereal) maxwrk;
    }

    if (*lwork < minwrk && ! lquery) {
	*info = -26;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGGEVX", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }


/*     Get machine constants */

    eps = dlamch_("P");
    smlnum = dlamch_("S");
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1. / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
    ilascl = FALSE_;
    if (anrm > 0. && anrm < smlnum) {
	anrmto = smlnum;
	ilascl = TRUE_;
    } else if (anrm > bignum) {
	anrmto = bignum;
	ilascl = TRUE_;
    }
    if (ilascl) {
	dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
		ierr);
    }

/*     Scale B if max element outside range [SMLNUM,BIGNUM] */

    bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
    ilbscl = FALSE_;
    if (bnrm > 0. && bnrm < smlnum) {
	bnrmto = smlnum;
	ilbscl = TRUE_;
    } else if (bnrm > bignum) {
	bnrmto = bignum;
	ilbscl = TRUE_;
    }
    if (ilbscl) {
	dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
		ierr);
    }

/*     Permute and/or balance the matrix pair (A,B)   
       (Workspace: need 6*N) */

    dggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, &
	    lscale[1], &rscale[1], &work[1], &ierr);

/*     Compute ABNRM and BBNRM */

    *abnrm = dlange_("1", n, n, &a[a_offset], lda, &work[1]);
    if (ilascl) {
	work[1] = *abnrm;
	dlascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &work[1], &
		c__1, &ierr);
	*abnrm = work[1];
    }

    *bbnrm = dlange_("1", n, n, &b[b_offset], ldb, &work[1]);
    if (ilbscl) {
	work[1] = *bbnrm;
	dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &work[1], &
		c__1, &ierr);
	*bbnrm = work[1];
    }

/*     Reduce B to triangular form (QR decomposition of B)   
       (Workspace: need N, prefer N*NB ) */

    irows = *ihi + 1 - *ilo;
    if (ilv || ! wantsn) {
	icols = *n + 1 - *ilo;
    } else {
	icols = irows;
    }
    itau = 1;
    iwrk = itau + irows;
    i__1 = *lwork + 1 - iwrk;
    dgeqrf_(&irows, &icols, &b_ref(*ilo, *ilo), ldb, &work[itau], &work[iwrk],
	     &i__1, &ierr);

/*     Apply the orthogonal transformation to A   
       (Workspace: need N, prefer N*NB) */

    i__1 = *lwork + 1 - iwrk;
    dormqr_("L", "T", &irows, &icols, &irows, &b_ref(*ilo, *ilo), ldb, &work[
	    itau], &a_ref(*ilo, *ilo), lda, &work[iwrk], &i__1, &ierr);

/*     Initialize VL and/or VR   
       (Workspace: need N, prefer N*NB) */

    if (ilvl) {
	dlaset_("Full", n, n, &c_b47, &c_b48, &vl[vl_offset], ldvl)
		;
	i__1 = irows - 1;
	i__2 = irows - 1;
	dlacpy_("L", &i__1, &i__2, &b_ref(*ilo + 1, *ilo), ldb, &vl_ref(*ilo 
		+ 1, *ilo), ldvl);
	i__1 = *lwork + 1 - iwrk;
	dorgqr_(&irows, &irows, &irows, &vl_ref(*ilo, *ilo), ldvl, &work[itau]
		, &work[iwrk], &i__1, &ierr);
    }

    if (ilvr) {
	dlaset_("Full", n, n, &c_b47, &c_b48, &vr[vr_offset], ldvr)
		;
    }

/*     Reduce to generalized Hessenberg form   
       (Workspace: none needed) */

    if (ilv || ! wantsn) {

/*        Eigenvectors requested -- work on whole matrix. */

	dgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset], 
		ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
    } else {
	dgghrd_("N", "N", &irows, &c__1, &irows, &a_ref(*ilo, *ilo), lda, &
		b_ref(*ilo, *ilo), ldb, &vl[vl_offset], ldvl, &vr[vr_offset], 
		ldvr, &ierr);
    }

/*     Perform QZ algorithm (Compute eigenvalues, and optionally, the   
       Schur forms and Schur vectors)   
       (Workspace: need N) */

    if (ilv || ! wantsn) {
	*(unsigned char *)chtemp = 'S';
    } else {
	*(unsigned char *)chtemp = 'E';
    }

    dhgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset]
	    , ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, &
	    vr[vr_offset], ldvr, &work[1], lwork, &ierr);
    if (ierr != 0) {
	if (ierr > 0 && ierr <= *n) {
	    *info = ierr;
	} else if (ierr > *n && ierr <= *n << 1) {
	    *info = ierr - *n;
	} else {
	    *info = *n + 1;
	}
	goto L130;
    }

/*     Compute Eigenvectors and estimate condition numbers if desired   
       (Workspace: DTGEVC: need 6*N   
                   DTGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B',   
                           need N otherwise ) */

    if (ilv || ! wantsn) {
	if (ilv) {
	    if (ilvl) {
		if (ilvr) {
		    *(unsigned char *)chtemp = 'B';
		} else {
		    *(unsigned char *)chtemp = 'L';
		}
	    } else {
		*(unsigned char *)chtemp = 'R';
	    }

	    dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], 
		    ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &
		    work[1], &ierr);
	    if (ierr != 0) {
		*info = *n + 2;
		goto L130;
	    }
	}

	if (! wantsn) {

/*           compute eigenvectors (DTGEVC) and estimate condition   
             numbers (DTGSNA). Note that the definition of the condition   
             number is not invariant under transformation (u,v) to   
             (Q*u, Z*v), where (u,v) are eigenvectors of the generalized   
             Schur form (S,T), Q and Z are orthogonal matrices. In order   
             to avoid using extra 2*N*N workspace, we have to recalculate   
             eigenvectors and estimate one condition numbers at a time. */

	    pair = FALSE_;
	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {

		if (pair) {
		    pair = FALSE_;
		    goto L20;
		}
		mm = 1;
		if (i__ < *n) {
		    if (a_ref(i__ + 1, i__) != 0.) {
			pair = TRUE_;
			mm = 2;
		    }
		}

		i__2 = *n;
		for (j = 1; j <= i__2; ++j) {
		    bwork[j] = FALSE_;
/* L10: */
		}
		if (mm == 1) {
		    bwork[i__] = TRUE_;
		} else if (mm == 2) {
		    bwork[i__] = TRUE_;
		    bwork[i__ + 1] = TRUE_;
		}

		iwrk = mm * *n + 1;
		iwrk1 = iwrk + mm * *n;

/*              Compute a pair of left and right eigenvectors.   
                (compute workspace: need up to 4*N + 6*N) */

		if (wantse || wantsb) {
		    dtgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[
			    b_offset], ldb, &work[1], n, &work[iwrk], n, &mm, 
			    &m, &work[iwrk1], &ierr);
		    if (ierr != 0) {
			*info = *n + 2;
			goto L130;
		    }
		}

		i__2 = *lwork - iwrk1 + 1;
		dtgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[
			b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[
			i__], &rcondv[i__], &mm, &m, &work[iwrk1], &i__2, &
			iwork[1], &ierr);

L20:
		;
	    }
	}
    }

/*     Undo balancing on VL and VR and normalization   
       (Workspace: none needed) */

    if (ilvl) {
	dggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[
		vl_offset], ldvl, &ierr);

	i__1 = *n;
	for (jc = 1; jc <= i__1; ++jc) {
	    if (alphai[jc] < 0.) {
		goto L70;
	    }
	    temp = 0.;
	    if (alphai[jc] == 0.) {
		i__2 = *n;
		for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
		    d__2 = temp, d__3 = (d__1 = vl_ref(jr, jc), abs(d__1));
		    temp = max(d__2,d__3);
/* L30: */
		}
	    } else {
		i__2 = *n;
		for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
		    d__3 = temp, d__4 = (d__1 = vl_ref(jr, jc), abs(d__1)) + (
			    d__2 = vl_ref(jr, jc + 1), abs(d__2));
		    temp = max(d__3,d__4);
/* L40: */
		}
	    }
	    if (temp < smlnum) {
		goto L70;
	    }
	    temp = 1. / temp;
	    if (alphai[jc] == 0.) {
		i__2 = *n;
		for (jr = 1; jr <= i__2; ++jr) {
		    vl_ref(jr, jc) = vl_ref(jr, jc) * temp;
/* L50: */
		}
	    } else {
		i__2 = *n;
		for (jr = 1; jr <= i__2; ++jr) {
		    vl_ref(jr, jc) = vl_ref(jr, jc) * temp;
		    vl_ref(jr, jc + 1) = vl_ref(jr, jc + 1) * temp;
/* L60: */
		}
	    }
L70:
	    ;
	}
    }
    if (ilvr) {
	dggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[
		vr_offset], ldvr, &ierr);
	i__1 = *n;
	for (jc = 1; jc <= i__1; ++jc) {
	    if (alphai[jc] < 0.) {
		goto L120;
	    }
	    temp = 0.;
	    if (alphai[jc] == 0.) {
		i__2 = *n;
		for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
		    d__2 = temp, d__3 = (d__1 = vr_ref(jr, jc), abs(d__1));
		    temp = max(d__2,d__3);
/* L80: */
		}
	    } else {
		i__2 = *n;
		for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
		    d__3 = temp, d__4 = (d__1 = vr_ref(jr, jc), abs(d__1)) + (
			    d__2 = vr_ref(jr, jc + 1), abs(d__2));
		    temp = max(d__3,d__4);
/* L90: */
		}
	    }
	    if (temp < smlnum) {
		goto L120;
	    }
	    temp = 1. / temp;
	    if (alphai[jc] == 0.) {
		i__2 = *n;
		for (jr = 1; jr <= i__2; ++jr) {
		    vr_ref(jr, jc) = vr_ref(jr, jc) * temp;
/* L100: */
		}
	    } else {
		i__2 = *n;
		for (jr = 1; jr <= i__2; ++jr) {
		    vr_ref(jr, jc) = vr_ref(jr, jc) * temp;
		    vr_ref(jr, jc + 1) = vr_ref(jr, jc + 1) * temp;
/* L110: */
		}
	    }
L120:
	    ;
	}
    }

/*     Undo scaling if necessary */

    if (ilascl) {
	dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
		ierr);
	dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
		ierr);
    }

    if (ilbscl) {
	dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
		ierr);
    }

L130:
    work[1] = (doublereal) maxwrk;

    return 0;

/*     End of DGGEVX */

} /* dggevx_ */
Esempio n. 3
0
/* Subroutine */ int dgegv_(char *jobvl, char *jobvr, integer *n, doublereal *
	a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar, 
	doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl, 
	doublereal *vr, integer *ldvr, doublereal *work, integer *lwork, 
	integer *info, ftnlen jobvl_len, ftnlen jobvr_len)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
	    vr_offset, i__1, i__2;
    doublereal d__1, d__2, d__3, d__4;

    /* Local variables */
    static integer jc, nb, in, jr, nb1, nb2, nb3, ihi, ilo;
    static doublereal eps;
    static logical ilv;
    static doublereal absb, anrm, bnrm;
    static integer itau;
    static doublereal temp;
    static logical ilvl, ilvr;
    static integer lopt;
    static doublereal anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    static integer ileft, iinfo, icols, iwork, irows;
    extern /* Subroutine */ int dggbak_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, integer *, ftnlen, ftnlen), dggbal_(char *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *, 
	    ftnlen);
    extern doublereal dlamch_(char *, ftnlen), dlange_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, ftnlen);
    static doublereal salfai;
    extern /* Subroutine */ int dgghrd_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    ftnlen, ftnlen), dlascl_(char *, integer *, integer *, doublereal 
	    *, doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *, ftnlen);
    static doublereal salfar;
    extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *), 
	    dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, ftnlen);
    static doublereal safmin;
    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, ftnlen);
    static doublereal safmax;
    static char chtemp[1];
    static logical ldumma[1];
    extern /* Subroutine */ int dhgeqz_(char *, char *, char *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *,
	     integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *, ftnlen, ftnlen, ftnlen), dtgevc_(char *, char *, 
	    logical *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *, integer *, doublereal *, integer *, ftnlen, ftnlen), 
	    xerbla_(char *, integer *, ftnlen);
    static integer ijobvl, iright;
    static logical ilimit;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static integer ijobvr;
    extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *);
    static doublereal onepls;
    static integer lwkmin;
    extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, ftnlen, ftnlen);
    static integer lwkopt;
    static logical lquery;


/*  -- LAPACK driver routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  This routine is deprecated and has been replaced by routine DGGEV. */

/*  DGEGV computes for a pair of n-by-n real nonsymmetric matrices A and */
/*  B, the generalized eigenvalues (alphar +/- alphai*i, beta), and */
/*  optionally, the left and/or right generalized eigenvectors (VL and */
/*  VR). */

/*  A generalized eigenvalue for a pair of matrices (A,B) is, roughly */
/*  speaking, a scalar w or a ratio  alpha/beta = w, such that  A - w*B */
/*  is singular.  It is usually represented as the pair (alpha,beta), */
/*  as there is a reasonable interpretation for beta=0, and even for */
/*  both being zero.  A good beginning reference is the book, "Matrix */
/*  Computations", by G. Golub & C. van Loan (Johns Hopkins U. Press) */

/*  A right generalized eigenvector corresponding to a generalized */
/*  eigenvalue  w  for a pair of matrices (A,B) is a vector  r  such */
/*  that  (A - w B) r = 0 .  A left generalized eigenvector is a vector */
/*  l such that l**H * (A - w B) = 0, where l**H is the */
/*  conjugate-transpose of l. */

/*  Note: this routine performs "full balancing" on A and B -- see */
/*  "Further Details", below. */

/*  Arguments */
/*  ========= */

/*  JOBVL   (input) CHARACTER*1 */
/*          = 'N':  do not compute the left generalized eigenvectors; */
/*          = 'V':  compute the left generalized eigenvectors. */

/*  JOBVR   (input) CHARACTER*1 */
/*          = 'N':  do not compute the right generalized eigenvectors; */
/*          = 'V':  compute the right generalized eigenvectors. */

/*  N       (input) INTEGER */
/*          The order of the matrices A, B, VL, and VR.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/*          On entry, the first of the pair of matrices whose */
/*          generalized eigenvalues and (optionally) generalized */
/*          eigenvectors are to be computed. */
/*          On exit, the contents will have been destroyed.  (For a */
/*          description of the contents of A on exit, see "Further */
/*          Details", below.) */

/*  LDA     (input) INTEGER */
/*          The leading dimension of A.  LDA >= max(1,N). */

/*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
/*          On entry, the second of the pair of matrices whose */
/*          generalized eigenvalues and (optionally) generalized */
/*          eigenvectors are to be computed. */
/*          On exit, the contents will have been destroyed.  (For a */
/*          description of the contents of B on exit, see "Further */
/*          Details", below.) */

/*  LDB     (input) INTEGER */
/*          The leading dimension of B.  LDB >= max(1,N). */

/*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N) */
/*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N) */
/*  BETA    (output) DOUBLE PRECISION array, dimension (N) */
/*          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
/*          be the generalized eigenvalues.  If ALPHAI(j) is zero, then */
/*          the j-th eigenvalue is real; if positive, then the j-th and */
/*          (j+1)-st eigenvalues are a complex conjugate pair, with */
/*          ALPHAI(j+1) negative. */

/*          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
/*          may easily over- or underflow, and BETA(j) may even be zero. */
/*          Thus, the user should avoid naively computing the ratio */
/*          alpha/beta.  However, ALPHAR and ALPHAI will be always less */
/*          than and usually comparable with norm(A) in magnitude, and */
/*          BETA always less than and usually comparable with norm(B). */

/*  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N) */
/*          If JOBVL = 'V', the left generalized eigenvectors.  (See */
/*          "Purpose", above.)  Real eigenvectors take one column, */
/*          complex take two columns, the first for the real part and */
/*          the second for the imaginary part.  Complex eigenvectors */
/*          correspond to an eigenvalue with positive imaginary part. */
/*          Each eigenvector will be scaled so the largest component */
/*          will have abs(real part) + abs(imag. part) = 1, *except* */
/*          that for eigenvalues with alpha=beta=0, a zero vector will */
/*          be returned as the corresponding eigenvector. */
/*          Not referenced if JOBVL = 'N'. */

/*  LDVL    (input) INTEGER */
/*          The leading dimension of the matrix VL. LDVL >= 1, and */
/*          if JOBVL = 'V', LDVL >= N. */

/*  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N) */
/*          If JOBVR = 'V', the right generalized eigenvectors.  (See */
/*          "Purpose", above.)  Real eigenvectors take one column, */
/*          complex take two columns, the first for the real part and */
/*          the second for the imaginary part.  Complex eigenvectors */
/*          correspond to an eigenvalue with positive imaginary part. */
/*          Each eigenvector will be scaled so the largest component */
/*          will have abs(real part) + abs(imag. part) = 1, *except* */
/*          that for eigenvalues with alpha=beta=0, a zero vector will */
/*          be returned as the corresponding eigenvector. */
/*          Not referenced if JOBVR = 'N'. */

/*  LDVR    (input) INTEGER */
/*          The leading dimension of the matrix VR. LDVR >= 1, and */
/*          if JOBVR = 'V', LDVR >= N. */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,8*N). */
/*          For good performance, LWORK must generally be larger. */
/*          To compute the optimal value of LWORK, call ILAENV to get */
/*          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute: */
/*          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR; */
/*          The optimal LWORK is: */
/*              2*N + MAX( 6*N, N*(NB+1) ). */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          = 1,...,N: */
/*                The QZ iteration failed.  No eigenvectors have been */
/*                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
/*                should be correct for j=INFO+1,...,N. */
/*          > N:  errors that usually indicate LAPACK problems: */
/*                =N+1: error return from DGGBAL */
/*                =N+2: error return from DGEQRF */
/*                =N+3: error return from DORMQR */
/*                =N+4: error return from DORGQR */
/*                =N+5: error return from DGGHRD */
/*                =N+6: error return from DHGEQZ (other than failed */
/*                                                iteration) */
/*                =N+7: error return from DTGEVC */
/*                =N+8: error return from DGGBAK (computing VL) */
/*                =N+9: error return from DGGBAK (computing VR) */
/*                =N+10: error return from DLASCL (various calls) */

/*  Further Details */
/*  =============== */

/*  Balancing */
/*  --------- */

/*  This driver calls DGGBAL to both permute and scale rows and columns */
/*  of A and B.  The permutations PL and PR are chosen so that PL*A*PR */
/*  and PL*B*R will be upper triangular except for the diagonal blocks */
/*  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as */
/*  possible.  The diagonal scaling matrices DL and DR are chosen so */
/*  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to */
/*  one (except for the elements that start out zero.) */

/*  After the eigenvalues and eigenvectors of the balanced matrices */
/*  have been computed, DGGBAK transforms the eigenvectors back to what */
/*  they would have been (in perfect arithmetic) if they had not been */
/*  balanced. */

/*  Contents of A and B on Exit */
/*  -------- -- - --- - -- ---- */

/*  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or */
/*  both), then on exit the arrays A and B will contain the real Schur */
/*  form[*] of the "balanced" versions of A and B.  If no eigenvectors */
/*  are computed, then only the diagonal blocks will be correct. */

/*  [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations", */
/*      by Golub & van Loan, pub. by Johns Hopkins U. Press. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Decode the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --alphar;
    --alphai;
    --beta;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --work;

    /* Function Body */
    if (lsame_(jobvl, "N", (ftnlen)1, (ftnlen)1)) {
	ijobvl = 1;
	ilvl = FALSE_;
    } else if (lsame_(jobvl, "V", (ftnlen)1, (ftnlen)1)) {
	ijobvl = 2;
	ilvl = TRUE_;
    } else {
	ijobvl = -1;
	ilvl = FALSE_;
    }

    if (lsame_(jobvr, "N", (ftnlen)1, (ftnlen)1)) {
	ijobvr = 1;
	ilvr = FALSE_;
    } else if (lsame_(jobvr, "V", (ftnlen)1, (ftnlen)1)) {
	ijobvr = 2;
	ilvr = TRUE_;
    } else {
	ijobvr = -1;
	ilvr = FALSE_;
    }
    ilv = ilvl || ilvr;

/*     Test the input arguments */

/* Computing MAX */
    i__1 = *n << 3;
    lwkmin = max(i__1,1);
    lwkopt = lwkmin;
    work[1] = (doublereal) lwkopt;
    lquery = *lwork == -1;
    *info = 0;
    if (ijobvl <= 0) {
	*info = -1;
    } else if (ijobvr <= 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
	*info = -12;
    } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
	*info = -14;
    } else if (*lwork < lwkmin && ! lquery) {
	*info = -16;
    }

    if (*info == 0) {
	nb1 = ilaenv_(&c__1, "DGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
		ftnlen)1);
	nb2 = ilaenv_(&c__1, "DORMQR", " ", n, n, n, &c_n1, (ftnlen)6, (
		ftnlen)1);
	nb3 = ilaenv_(&c__1, "DORGQR", " ", n, n, n, &c_n1, (ftnlen)6, (
		ftnlen)1);
/* Computing MAX */
	i__1 = max(nb1,nb2);
	nb = max(i__1,nb3);
/* Computing MAX */
	i__1 = *n * 6, i__2 = *n * (nb + 1);
	lopt = (*n << 1) + max(i__1,i__2);
	work[1] = (doublereal) lopt;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGEGV ", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Get machine constants */

    eps = dlamch_("E", (ftnlen)1) * dlamch_("B", (ftnlen)1);
    safmin = dlamch_("S", (ftnlen)1);
    safmin += safmin;
    safmax = 1. / safmin;
    onepls = eps * 4 + 1.;

/*     Scale A */

    anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1], (ftnlen)1);
    anrm1 = anrm;
    anrm2 = 1.;
    if (anrm < 1.) {
	if (safmax * anrm < 1.) {
	    anrm1 = safmin;
	    anrm2 = safmax * anrm;
	}
    }

    if (anrm > 0.) {
	dlascl_("G", &c_n1, &c_n1, &anrm, &c_b27, n, n, &a[a_offset], lda, &
		iinfo, (ftnlen)1);
	if (iinfo != 0) {
	    *info = *n + 10;
	    return 0;
	}
    }

/*     Scale B */

    bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1], (ftnlen)1);
    bnrm1 = bnrm;
    bnrm2 = 1.;
    if (bnrm < 1.) {
	if (safmax * bnrm < 1.) {
	    bnrm1 = safmin;
	    bnrm2 = safmax * bnrm;
	}
    }

    if (bnrm > 0.) {
	dlascl_("G", &c_n1, &c_n1, &bnrm, &c_b27, n, n, &b[b_offset], ldb, &
		iinfo, (ftnlen)1);
	if (iinfo != 0) {
	    *info = *n + 10;
	    return 0;
	}
    }

/*     Permute the matrix to make it more nearly triangular */
/*     Workspace layout:  (8*N words -- "work" requires 6*N words) */
/*        left_permutation, right_permutation, work... */

    ileft = 1;
    iright = *n + 1;
    iwork = iright + *n;
    dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
	    ileft], &work[iright], &work[iwork], &iinfo, (ftnlen)1);
    if (iinfo != 0) {
	*info = *n + 1;
	goto L120;
    }

/*     Reduce B to triangular form, and initialize VL and/or VR */
/*     Workspace layout:  ("work..." must have at least N words) */
/*        left_permutation, right_permutation, tau, work... */

    irows = ihi + 1 - ilo;
    if (ilv) {
	icols = *n + 1 - ilo;
    } else {
	icols = irows;
    }
    itau = iwork;
    iwork = itau + irows;
    i__1 = *lwork + 1 - iwork;
    dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
	    iwork], &i__1, &iinfo);
    if (iinfo >= 0) {
/* Computing MAX */
	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
	lwkopt = max(i__1,i__2);
    }
    if (iinfo != 0) {
	*info = *n + 2;
	goto L120;
    }

    i__1 = *lwork + 1 - iwork;
    dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
	    work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
	    iinfo, (ftnlen)1, (ftnlen)1);
    if (iinfo >= 0) {
/* Computing MAX */
	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
	lwkopt = max(i__1,i__2);
    }
    if (iinfo != 0) {
	*info = *n + 3;
	goto L120;
    }

    if (ilvl) {
	dlaset_("Full", n, n, &c_b38, &c_b27, &vl[vl_offset], ldvl, (ftnlen)4)
		;
	i__1 = irows - 1;
	i__2 = irows - 1;
	dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo + 
		1 + ilo * vl_dim1], ldvl, (ftnlen)1);
	i__1 = *lwork + 1 - iwork;
	dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
		itau], &work[iwork], &i__1, &iinfo);
	if (iinfo >= 0) {
/* Computing MAX */
	    i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
	    lwkopt = max(i__1,i__2);
	}
	if (iinfo != 0) {
	    *info = *n + 4;
	    goto L120;
	}
    }

    if (ilvr) {
	dlaset_("Full", n, n, &c_b38, &c_b27, &vr[vr_offset], ldvr, (ftnlen)4)
		;
    }

/*     Reduce to generalized Hessenberg form */

    if (ilv) {

/*        Eigenvectors requested -- work on whole matrix. */

	dgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 
		ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo, (
		ftnlen)1, (ftnlen)1);
    } else {
	dgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda, 
		&b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
		vr_offset], ldvr, &iinfo, (ftnlen)1, (ftnlen)1);
    }
    if (iinfo != 0) {
	*info = *n + 5;
	goto L120;
    }

/*     Perform QZ algorithm */
/*     Workspace layout:  ("work..." must have at least 1 word) */
/*        left_permutation, right_permutation, work... */

    iwork = itau;
    if (ilv) {
	*(unsigned char *)chtemp = 'S';
    } else {
	*(unsigned char *)chtemp = 'E';
    }
    i__1 = *lwork + 1 - iwork;
    dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
	    b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], 
	    ldvl, &vr[vr_offset], ldvr, &work[iwork], &i__1, &iinfo, (ftnlen)
	    1, (ftnlen)1, (ftnlen)1);
    if (iinfo >= 0) {
/* Computing MAX */
	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
	lwkopt = max(i__1,i__2);
    }
    if (iinfo != 0) {
	if (iinfo > 0 && iinfo <= *n) {
	    *info = iinfo;
	} else if (iinfo > *n && iinfo <= *n << 1) {
	    *info = iinfo - *n;
	} else {
	    *info = *n + 6;
	}
	goto L120;
    }

    if (ilv) {

/*        Compute Eigenvectors  (DTGEVC requires 6*N words of workspace) */

	if (ilvl) {
	    if (ilvr) {
		*(unsigned char *)chtemp = 'B';
	    } else {
		*(unsigned char *)chtemp = 'L';
	    }
	} else {
	    *(unsigned char *)chtemp = 'R';
	}

	dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, 
		&vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
		iwork], &iinfo, (ftnlen)1, (ftnlen)1);
	if (iinfo != 0) {
	    *info = *n + 7;
	    goto L120;
	}

/*        Undo balancing on VL and VR, rescale */

	if (ilvl) {
	    dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
		    vl[vl_offset], ldvl, &iinfo, (ftnlen)1, (ftnlen)1);
	    if (iinfo != 0) {
		*info = *n + 8;
		goto L120;
	    }
	    i__1 = *n;
	    for (jc = 1; jc <= i__1; ++jc) {
		if (alphai[jc] < 0.) {
		    goto L50;
		}
		temp = 0.;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1], 
				abs(d__1));
			temp = max(d__2,d__3);
/* L10: */
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1], 
				abs(d__1)) + (d__2 = vl[jr + (jc + 1) * 
				vl_dim1], abs(d__2));
			temp = max(d__3,d__4);
/* L20: */
		    }
		}
		if (temp < safmin) {
		    goto L50;
		}
		temp = 1. / temp;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vl[jr + jc * vl_dim1] *= temp;
/* L30: */
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vl[jr + jc * vl_dim1] *= temp;
			vl[jr + (jc + 1) * vl_dim1] *= temp;
/* L40: */
		    }
		}
L50:
		;
	    }
	}
	if (ilvr) {
	    dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
		    vr[vr_offset], ldvr, &iinfo, (ftnlen)1, (ftnlen)1);
	    if (iinfo != 0) {
		*info = *n + 9;
		goto L120;
	    }
	    i__1 = *n;
	    for (jc = 1; jc <= i__1; ++jc) {
		if (alphai[jc] < 0.) {
		    goto L100;
		}
		temp = 0.;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1], 
				abs(d__1));
			temp = max(d__2,d__3);
/* L60: */
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1], 
				abs(d__1)) + (d__2 = vr[jr + (jc + 1) * 
				vr_dim1], abs(d__2));
			temp = max(d__3,d__4);
/* L70: */
		    }
		}
		if (temp < safmin) {
		    goto L100;
		}
		temp = 1. / temp;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vr[jr + jc * vr_dim1] *= temp;
/* L80: */
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vr[jr + jc * vr_dim1] *= temp;
			vr[jr + (jc + 1) * vr_dim1] *= temp;
/* L90: */
		    }
		}
L100:
		;
	    }
	}

/*        End of eigenvector calculation */

    }

/*     Undo scaling in alpha, beta */

/*     Note: this does not give the alpha and beta for the unscaled */
/*     problem. */

/*     Un-scaling is limited to avoid underflow in alpha and beta */
/*     if they are significant. */

    i__1 = *n;
    for (jc = 1; jc <= i__1; ++jc) {
	absar = (d__1 = alphar[jc], abs(d__1));
	absai = (d__1 = alphai[jc], abs(d__1));
	absb = (d__1 = beta[jc], abs(d__1));
	salfar = anrm * alphar[jc];
	salfai = anrm * alphai[jc];
	sbeta = bnrm * beta[jc];
	ilimit = FALSE_;
	scale = 1.;

/*        Check for significant underflow in ALPHAI */

/* Computing MAX */
	d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps *
		 absb;
	if (abs(salfai) < safmin && absai >= max(d__1,d__2)) {
	    ilimit = TRUE_;
/* Computing MAX */
	    d__1 = onepls * safmin, d__2 = anrm2 * absai;
	    scale = onepls * safmin / anrm1 / max(d__1,d__2);

	} else if (salfai == 0.) {

/*           If insignificant underflow in ALPHAI, then make the */
/*           conjugate eigenvalue real. */

	    if (alphai[jc] < 0. && jc > 1) {
		alphai[jc - 1] = 0.;
	    } else if (alphai[jc] > 0. && jc < *n) {
		alphai[jc + 1] = 0.;
	    }
	}

/*        Check for significant underflow in ALPHAR */

/* Computing MAX */
	d__1 = safmin, d__2 = eps * absai, d__1 = max(d__1,d__2), d__2 = eps *
		 absb;
	if (abs(salfar) < safmin && absar >= max(d__1,d__2)) {
	    ilimit = TRUE_;
/* Computing MAX */
/* Computing MAX */
	    d__3 = onepls * safmin, d__4 = anrm2 * absar;
	    d__1 = scale, d__2 = onepls * safmin / anrm1 / max(d__3,d__4);
	    scale = max(d__1,d__2);
	}

/*        Check for significant underflow in BETA */

/* Computing MAX */
	d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps *
		 absai;
	if (abs(sbeta) < safmin && absb >= max(d__1,d__2)) {
	    ilimit = TRUE_;
/* Computing MAX */
/* Computing MAX */
	    d__3 = onepls * safmin, d__4 = bnrm2 * absb;
	    d__1 = scale, d__2 = onepls * safmin / bnrm1 / max(d__3,d__4);
	    scale = max(d__1,d__2);
	}

/*        Check for possible overflow when limiting scaling */

	if (ilimit) {
/* Computing MAX */
	    d__1 = abs(salfar), d__2 = abs(salfai), d__1 = max(d__1,d__2), 
		    d__2 = abs(sbeta);
	    temp = scale * safmin * max(d__1,d__2);
	    if (temp > 1.) {
		scale /= temp;
	    }
	    if (scale < 1.) {
		ilimit = FALSE_;
	    }
	}

/*        Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary. */

	if (ilimit) {
	    salfar = scale * alphar[jc] * anrm;
	    salfai = scale * alphai[jc] * anrm;
	    sbeta = scale * beta[jc] * bnrm;
	}
	alphar[jc] = salfar;
	alphai[jc] = salfai;
	beta[jc] = sbeta;
/* L110: */
    }

L120:
    work[1] = (doublereal) lwkopt;

    return 0;

/*     End of DGEGV */

} /* dgegv_ */
Esempio n. 4
0
/* Subroutine */ int dggevx_(char *balanc, char *jobvl, char *jobvr, char *
                             sense, integer *n, doublereal *a, integer *lda, doublereal *b,
                             integer *ldb, doublereal *alphar, doublereal *alphai, doublereal *
                             beta, doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr,
                             integer *ilo, integer *ihi, doublereal *lscale, doublereal *rscale,
                             doublereal *abnrm, doublereal *bbnrm, doublereal *rconde, doublereal *
                             rcondv, doublereal *work, integer *lwork, integer *iwork, logical *
                             bwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
            vr_offset, i__1, i__2;
    doublereal d__1, d__2, d__3, d__4;

    /* Local variables */
    integer i__, j, m, jc, in, mm, jr;
    doublereal eps;
    logical ilv, pair;
    doublereal anrm, bnrm;
    integer ierr, itau;
    doublereal temp;
    logical ilvl, ilvr;
    integer iwrk, iwrk1;
    integer icols;
    logical noscl;
    integer irows;
    logical ilascl, ilbscl;
    logical ldumma[1];
    char chtemp[1];
    doublereal bignum;
    integer ijobvl;
    integer ijobvr;
    logical wantsb;
    doublereal anrmto;
    logical wantse;
    doublereal bnrmto;
    integer minwrk, maxwrk;
    logical wantsn;
    doublereal smlnum;
    logical lquery, wantsv;

    /*  -- LAPACK driver routine (version 3.2) -- */
    /*     November 2006 */

    /*  Purpose */
    /*  ======= */

    /*  DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
    /*  the generalized eigenvalues, and optionally, the left and/or right */
    /*  generalized eigenvectors. */

    /*  Optionally also, it computes a balancing transformation to improve */
    /*  the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
    /*  LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for */
    /*  the eigenvalues (RCONDE), and reciprocal condition numbers for the */
    /*  right eigenvectors (RCONDV). */

    /*  A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
    /*  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
    /*  singular. It is usually represented as the pair (alpha,beta), as */
    /*  there is a reasonable interpretation for beta=0, and even for both */
    /*  being zero. */

    /*  The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
    /*  of (A,B) satisfies */

    /*                   A * v(j) = lambda(j) * B * v(j) . */

    /*  The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
    /*  of (A,B) satisfies */

    /*                   u(j)**H * A  = lambda(j) * u(j)**H * B. */

    /*  where u(j)**H is the conjugate-transpose of u(j). */

    /*  Arguments */
    /*  ========= */

    /*  BALANC  (input) CHARACTER*1 */
    /*          Specifies the balance option to be performed. */
    /*          = 'N':  do not diagonally scale or permute; */
    /*          = 'P':  permute only; */
    /*          = 'S':  scale only; */
    /*          = 'B':  both permute and scale. */
    /*          Computed reciprocal condition numbers will be for the */
    /*          matrices after permuting and/or balancing. Permuting does */
    /*          not change condition numbers (in exact arithmetic), but */
    /*          balancing does. */

    /*  JOBVL   (input) CHARACTER*1 */
    /*          = 'N':  do not compute the left generalized eigenvectors; */
    /*          = 'V':  compute the left generalized eigenvectors. */

    /*  JOBVR   (input) CHARACTER*1 */
    /*          = 'N':  do not compute the right generalized eigenvectors; */
    /*          = 'V':  compute the right generalized eigenvectors. */

    /*  SENSE   (input) CHARACTER*1 */
    /*          Determines which reciprocal condition numbers are computed. */
    /*          = 'N': none are computed; */
    /*          = 'E': computed for eigenvalues only; */
    /*          = 'V': computed for eigenvectors only; */
    /*          = 'B': computed for eigenvalues and eigenvectors. */

    /*  N       (input) INTEGER */
    /*          The order of the matrices A, B, VL, and VR.  N >= 0. */

    /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
    /*          On entry, the matrix A in the pair (A,B). */
    /*          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' */
    /*          or both, then A contains the first part of the real Schur */
    /*          form of the "balanced" versions of the input A and B. */

    /*  LDA     (input) INTEGER */
    /*          The leading dimension of A.  LDA >= max(1,N). */

    /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
    /*          On entry, the matrix B in the pair (A,B). */
    /*          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' */
    /*          or both, then B contains the second part of the real Schur */
    /*          form of the "balanced" versions of the input A and B. */

    /*  LDB     (input) INTEGER */
    /*          The leading dimension of B.  LDB >= max(1,N). */

    /*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N) */
    /*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N) */
    /*  BETA    (output) DOUBLE PRECISION array, dimension (N) */
    /*          be the generalized eigenvalues.  If ALPHAI(j) is zero, then */
    /*          the j-th eigenvalue is real; if positive, then the j-th and */
    /*          (j+1)-st eigenvalues are a complex conjugate pair, with */
    /*          ALPHAI(j+1) negative. */

    /*          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
    /*          may easily over- or underflow, and BETA(j) may even be zero. */
    /*          Thus, the user should avoid naively computing the ratio */
    /*          ALPHA/BETA. However, ALPHAR and ALPHAI will be always less */
    /*          than and usually comparable with norm(A) in magnitude, and */
    /*          BETA always less than and usually comparable with norm(B). */

    /*  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N) */
    /*          If JOBVL = 'V', the left eigenvectors u(j) are stored one */
    /*          after another in the columns of VL, in the same order as */
    /*          their eigenvalues. If the j-th eigenvalue is real, then */
    /*          u(j) = VL(:,j), the j-th column of VL. If the j-th and */
    /*          (j+1)-th eigenvalues form a complex conjugate pair, then */
    /*          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
    /*          Each eigenvector will be scaled so the largest component have */
    /*          abs(real part) + abs(imag. part) = 1. */
    /*          Not referenced if JOBVL = 'N'. */

    /*  LDVL    (input) INTEGER */
    /*          The leading dimension of the matrix VL. LDVL >= 1, and */
    /*          if JOBVL = 'V', LDVL >= N. */

    /*  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N) */
    /*          If JOBVR = 'V', the right eigenvectors v(j) are stored one */
    /*          after another in the columns of VR, in the same order as */
    /*          their eigenvalues. If the j-th eigenvalue is real, then */
    /*          v(j) = VR(:,j), the j-th column of VR. If the j-th and */
    /*          (j+1)-th eigenvalues form a complex conjugate pair, then */
    /*          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
    /*          Each eigenvector will be scaled so the largest component have */
    /*          abs(real part) + abs(imag. part) = 1. */
    /*          Not referenced if JOBVR = 'N'. */

    /*  LDVR    (input) INTEGER */
    /*          The leading dimension of the matrix VR. LDVR >= 1, and */
    /*          if JOBVR = 'V', LDVR >= N. */

    /*  ILO     (output) INTEGER */
    /*  IHI     (output) INTEGER */
    /*          ILO and IHI are integer values such that on exit */
    /*          A(i,j) = 0 and B(i,j) = 0 if i > j and */
    /*          If BALANC = 'N' or 'S', ILO = 1 and IHI = N. */

    /*  LSCALE  (output) DOUBLE PRECISION array, dimension (N) */
    /*          Details of the permutations and scaling factors applied */
    /*          to the left side of A and B.  If PL(j) is the index of the */
    /*          row interchanged with row j, and DL(j) is the scaling */
    /*          factor applied to row j, then */
    /*          The order in which the interchanges are made is N to IHI+1, */
    /*          then 1 to ILO-1. */

    /*  RSCALE  (output) DOUBLE PRECISION array, dimension (N) */
    /*          Details of the permutations and scaling factors applied */
    /*          to the right side of A and B.  If PR(j) is the index of the */
    /*          column interchanged with column j, and DR(j) is the scaling */
    /*          factor applied to column j, then */
    /*          The order in which the interchanges are made is N to IHI+1, */
    /*          then 1 to ILO-1. */

    /*  ABNRM   (output) DOUBLE PRECISION */
    /*          The one-norm of the balanced matrix A. */

    /*  BBNRM   (output) DOUBLE PRECISION */
    /*          The one-norm of the balanced matrix B. */

    /*  RCONDE  (output) DOUBLE PRECISION array, dimension (N) */
    /*          If SENSE = 'E' or 'B', the reciprocal condition numbers of */
    /*          the eigenvalues, stored in consecutive elements of the array. */
    /*          For a complex conjugate pair of eigenvalues two consecutive */
    /*          elements of RCONDE are set to the same value. Thus RCONDE(j), */
    /*          RCONDV(j), and the j-th columns of VL and VR all correspond */
    /*          to the j-th eigenpair. */
    /*          If SENSE = 'N or 'V', RCONDE is not referenced. */

    /*  RCONDV  (output) DOUBLE PRECISION array, dimension (N) */
    /*          If SENSE = 'V' or 'B', the estimated reciprocal condition */
    /*          numbers of the eigenvectors, stored in consecutive elements */
    /*          of the array. For a complex eigenvector two consecutive */
    /*          elements of RCONDV are set to the same value. If the */
    /*          eigenvalues cannot be reordered to compute RCONDV(j), */
    /*          RCONDV(j) is set to 0; this can only occur when the true */
    /*          value would be very small anyway. */
    /*          If SENSE = 'N' or 'E', RCONDV is not referenced. */

    /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
    /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

    /*  LWORK   (input) INTEGER */
    /*          The dimension of the array WORK. LWORK >= max(1,2*N). */
    /*          If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V', */
    /*          LWORK >= max(1,6*N). */
    /*          If SENSE = 'E' or 'B', LWORK >= max(1,10*N). */
    /*          If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16. */

    /*          If LWORK = -1, then a workspace query is assumed; the routine */
    /*          only calculates the optimal size of the WORK array, returns */
    /*          this value as the first entry of the WORK array, and no error */
    /*          message related to LWORK is issued by XERBLA. */

    /*  IWORK   (workspace) INTEGER array, dimension (N+6) */
    /*          If SENSE = 'E', IWORK is not referenced. */

    /*  BWORK   (workspace) LOGICAL array, dimension (N) */
    /*          If SENSE = 'N', BWORK is not referenced. */

    /*  INFO    (output) INTEGER */
    /*          = 0:  successful exit */
    /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
    /*                The QZ iteration failed.  No eigenvectors have been */
    /*                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
    /*          > N:  =N+1: other than QZ iteration failed in DHGEQZ. */
    /*                =N+2: error return from DTGEVC. */

    /*  Further Details */
    /*  =============== */

    /*  Balancing a matrix pair (A,B) includes, first, permuting rows and */
    /*  columns to isolate eigenvalues, second, applying diagonal similarity */
    /*  transformation to the rows and columns to make the rows and columns */
    /*  as close in norm as possible. The computed reciprocal condition */
    /*  numbers correspond to the balanced matrix. Permuting rows and columns */
    /*  will not change the condition numbers (in exact arithmetic) but */
    /*  diagonal scaling will.  For further explanation of balancing, see */
    /*  section 4.11.1.2 of LAPACK Users' Guide. */

    /*  An approximate error bound on the chordal distance between the i-th */
    /*  computed generalized eigenvalue w and the corresponding exact */
    /*  eigenvalue lambda is */

    /*       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) */

    /*  An approximate error bound for the angle between the i-th computed */
    /*  eigenvector VL(i) or VR(i) is given by */

    /*       EPS * norm(ABNRM, BBNRM) / DIF(i). */

    /*  For further explanation of the reciprocal condition numbers RCONDE */
    /*  and RCONDV, see section 4.11 of LAPACK User's Guide. */

    /*  ===================================================================== */

    /*     Decode the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --alphar;
    --alphai;
    --beta;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --lscale;
    --rscale;
    --rconde;
    --rcondv;
    --work;
    --iwork;
    --bwork;

    /* Function Body */
    if (lsame_(jobvl, "N")) {
        ijobvl = 1;
        ilvl = FALSE_;
    } else if (lsame_(jobvl, "V")) {
        ijobvl = 2;
        ilvl = TRUE_;
    } else {
        ijobvl = -1;
        ilvl = FALSE_;
    }

    if (lsame_(jobvr, "N")) {
        ijobvr = 1;
        ilvr = FALSE_;
    } else if (lsame_(jobvr, "V")) {
        ijobvr = 2;
        ilvr = TRUE_;
    } else {
        ijobvr = -1;
        ilvr = FALSE_;
    }
    ilv = ilvl || ilvr;

    noscl = lsame_(balanc, "N") || lsame_(balanc, "P");
    wantsn = lsame_(sense, "N");
    wantse = lsame_(sense, "E");
    wantsv = lsame_(sense, "V");
    wantsb = lsame_(sense, "B");

    /*     Test the input arguments */

    *info = 0;
    lquery = *lwork == -1;
    if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P")
            || lsame_(balanc, "B"))) {
        *info = -1;
    } else if (ijobvl <= 0) {
        *info = -2;
    } else if (ijobvr <= 0) {
        *info = -3;
    } else if (! (wantsn || wantse || wantsb || wantsv)) {
        *info = -4;
    } else if (*n < 0) {
        *info = -5;
    } else if (*lda < max(1,*n)) {
        *info = -7;
    } else if (*ldb < max(1,*n)) {
        *info = -9;
    } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
        *info = -14;
    } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
        *info = -16;
    }

    /*     Compute workspace */
    /*      (Note: Comments in the code beginning "Workspace:" describe the */
    /*       minimal amount of workspace needed at that point in the code, */
    /*       as well as the preferred amount for good performance. */
    /*       NB refers to the optimal block size for the immediately */
    /*       following subroutine, as returned by ILAENV. The workspace is */
    /*       computed assuming ILO = 1 and IHI = N, the worst case.) */

    if (*info == 0) {
        if (*n == 0) {
            minwrk = 1;
            maxwrk = 1;
        } else {
            if (noscl && ! ilv) {
                minwrk = *n << 1;
            } else {
                minwrk = *n * 6;
            }
            if (wantse || wantsb) {
                minwrk = *n * 10;
            }
            if (wantsv || wantsb) {
                /* Computing MAX */
                i__1 = minwrk, i__2 = (*n << 1) * (*n + 4) + 16;
                minwrk = max(i__1,i__2);
            }
            maxwrk = minwrk;
            /* Computing MAX */
            i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", n, &
                                                    c__1, n, &c__0);
            maxwrk = max(i__1,i__2);
            /* Computing MAX */
            i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "DORMQR", " ", n, &
                                                    c__1, n, &c__0);
            maxwrk = max(i__1,i__2);
            if (ilvl) {
                /* Computing MAX */
                i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "DORGQR",
                                                        " ", n, &c__1, n, &c__0);
                maxwrk = max(i__1,i__2);
            }
        }
        work[1] = (doublereal) maxwrk;

        if (*lwork < minwrk && ! lquery) {
            *info = -26;
        }
    }

    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("DGGEVX", &i__1);
        return 0;
    } else if (lquery) {
        return 0;
    }

    /*     Quick return if possible */

    if (*n == 0) {
        return 0;
    }

    /*     Get machine constants */

    eps = dlamch_("P");
    smlnum = dlamch_("S");
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1. / smlnum;

    /*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
    ilascl = FALSE_;
    if (anrm > 0. && anrm < smlnum) {
        anrmto = smlnum;
        ilascl = TRUE_;
    } else if (anrm > bignum) {
        anrmto = bignum;
        ilascl = TRUE_;
    }
    if (ilascl) {
        dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
                ierr);
    }

    /*     Scale B if max element outside range [SMLNUM,BIGNUM] */

    bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
    ilbscl = FALSE_;
    if (bnrm > 0. && bnrm < smlnum) {
        bnrmto = smlnum;
        ilbscl = TRUE_;
    } else if (bnrm > bignum) {
        bnrmto = bignum;
        ilbscl = TRUE_;
    }
    if (ilbscl) {
        dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
                ierr);
    }

    /*     Permute and/or balance the matrix pair (A,B) */
    /*     (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) */

    dggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, &
            lscale[1], &rscale[1], &work[1], &ierr);

    /*     Compute ABNRM and BBNRM */

    *abnrm = dlange_("1", n, n, &a[a_offset], lda, &work[1]);
    if (ilascl) {
        work[1] = *abnrm;
        dlascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &work[1], &
                c__1, &ierr);
        *abnrm = work[1];
    }

    *bbnrm = dlange_("1", n, n, &b[b_offset], ldb, &work[1]);
    if (ilbscl) {
        work[1] = *bbnrm;
        dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &work[1], &
                c__1, &ierr);
        *bbnrm = work[1];
    }

    /*     Reduce B to triangular form (QR decomposition of B) */
    /*     (Workspace: need N, prefer N*NB ) */

    irows = *ihi + 1 - *ilo;
    if (ilv || ! wantsn) {
        icols = *n + 1 - *ilo;
    } else {
        icols = irows;
    }
    itau = 1;
    iwrk = itau + irows;
    i__1 = *lwork + 1 - iwrk;
    dgeqrf_(&irows, &icols, &b[*ilo + *ilo * b_dim1], ldb, &work[itau], &work[
                iwrk], &i__1, &ierr);

    /*     Apply the orthogonal transformation to A */
    /*     (Workspace: need N, prefer N*NB) */

    i__1 = *lwork + 1 - iwrk;
    dormqr_("L", "T", &irows, &icols, &irows, &b[*ilo + *ilo * b_dim1], ldb, &
            work[itau], &a[*ilo + *ilo * a_dim1], lda, &work[iwrk], &i__1, &
            ierr);

    /*     Initialize VL and/or VR */
    /*     (Workspace: need N, prefer N*NB) */

    if (ilvl) {
        dlaset_("Full", n, n, &c_b59, &c_b60, &vl[vl_offset], ldvl)
        ;
        if (irows > 1) {
            i__1 = irows - 1;
            i__2 = irows - 1;
            dlacpy_("L", &i__1, &i__2, &b[*ilo + 1 + *ilo * b_dim1], ldb, &vl[
                        *ilo + 1 + *ilo * vl_dim1], ldvl);
        }
        i__1 = *lwork + 1 - iwrk;
        dorgqr_(&irows, &irows, &irows, &vl[*ilo + *ilo * vl_dim1], ldvl, &
                work[itau], &work[iwrk], &i__1, &ierr);
    }

    if (ilvr) {
        dlaset_("Full", n, n, &c_b59, &c_b60, &vr[vr_offset], ldvr)
        ;
    }

    /*     Reduce to generalized Hessenberg form */
    /*     (Workspace: none needed) */

    if (ilv || ! wantsn) {

        /*        Eigenvectors requested -- work on whole matrix. */

        dgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset],
                ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
    } else {
        dgghrd_("N", "N", &irows, &c__1, &irows, &a[*ilo + *ilo * a_dim1],
                lda, &b[*ilo + *ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
                    vr_offset], ldvr, &ierr);
    }

    /*     Perform QZ algorithm (Compute eigenvalues, and optionally, the */
    /*     Schur forms and Schur vectors) */
    /*     (Workspace: need N) */

    if (ilv || ! wantsn) {
        *(unsigned char *)chtemp = 'S';
    } else {
        *(unsigned char *)chtemp = 'E';
    }

    dhgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset]
            , ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, &
            vr[vr_offset], ldvr, &work[1], lwork, &ierr);
    if (ierr != 0) {
        if (ierr > 0 && ierr <= *n) {
            *info = ierr;
        } else if (ierr > *n && ierr <= *n << 1) {
            *info = ierr - *n;
        } else {
            *info = *n + 1;
        }
        goto L130;
    }

    /*     Compute Eigenvectors and estimate condition numbers if desired */
    /*     (Workspace: DTGEVC: need 6*N */
    /*                 DTGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B', */
    /*                         need N otherwise ) */

    if (ilv || ! wantsn) {
        if (ilv) {
            if (ilvl) {
                if (ilvr) {
                    *(unsigned char *)chtemp = 'B';
                } else {
                    *(unsigned char *)chtemp = 'L';
                }
            } else {
                *(unsigned char *)chtemp = 'R';
            }

            dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset],
                    ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &
                    work[1], &ierr);
            if (ierr != 0) {
                *info = *n + 2;
                goto L130;
            }
        }

        if (! wantsn) {

            /*           compute eigenvectors (DTGEVC) and estimate condition */
            /*           numbers (DTGSNA). Note that the definition of the condition */
            /*           number is not invariant under transformation (u,v) to */
            /*           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized */
            /*           Schur form (S,T), Q and Z are orthogonal matrices. In order */
            /*           to avoid using extra 2*N*N workspace, we have to recalculate */
            /*           eigenvectors and estimate one condition numbers at a time. */

            pair = FALSE_;
            i__1 = *n;
            for (i__ = 1; i__ <= i__1; ++i__) {

                if (pair) {
                    pair = FALSE_;
                    goto L20;
                }
                mm = 1;
                if (i__ < *n) {
                    if (a[i__ + 1 + i__ * a_dim1] != 0.) {
                        pair = TRUE_;
                        mm = 2;
                    }
                }

                i__2 = *n;
                for (j = 1; j <= i__2; ++j) {
                    bwork[j] = FALSE_;
                }
                if (mm == 1) {
                    bwork[i__] = TRUE_;
                } else if (mm == 2) {
                    bwork[i__] = TRUE_;
                    bwork[i__ + 1] = TRUE_;
                }

                iwrk = mm * *n + 1;
                iwrk1 = iwrk + mm * *n;

                /*              Compute a pair of left and right eigenvectors. */
                /*              (compute workspace: need up to 4*N + 6*N) */

                if (wantse || wantsb) {
                    dtgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[
                                b_offset], ldb, &work[1], n, &work[iwrk], n, &mm,
                            &m, &work[iwrk1], &ierr);
                    if (ierr != 0) {
                        *info = *n + 2;
                        goto L130;
                    }
                }

                i__2 = *lwork - iwrk1 + 1;
                dtgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[
                            b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[
                            i__], &rcondv[i__], &mm, &m, &work[iwrk1], &i__2, &
                        iwork[1], &ierr);

L20:
                ;
            }
        }
    }

    /*     Undo balancing on VL and VR and normalization */
    /*     (Workspace: none needed) */

    if (ilvl) {
        dggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[
                    vl_offset], ldvl, &ierr);

        i__1 = *n;
        for (jc = 1; jc <= i__1; ++jc) {
            if (alphai[jc] < 0.) {
                goto L70;
            }
            temp = 0.;
            if (alphai[jc] == 0.) {
                i__2 = *n;
                for (jr = 1; jr <= i__2; ++jr) {
                    /* Computing MAX */
                    d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1], abs(
                                             d__1));
                    temp = max(d__2,d__3);
                }
            } else {
                i__2 = *n;
                for (jr = 1; jr <= i__2; ++jr) {
                    /* Computing MAX */
                    d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1], abs(
                                             d__1)) + (d__2 = vl[jr + (jc + 1) * vl_dim1], abs(
                                                           d__2));
                    temp = max(d__3,d__4);
                }
            }
            if (temp < smlnum) {
                goto L70;
            }
            temp = 1. / temp;
            if (alphai[jc] == 0.) {
                i__2 = *n;
                for (jr = 1; jr <= i__2; ++jr) {
                    vl[jr + jc * vl_dim1] *= temp;
                }
            } else {
                i__2 = *n;
                for (jr = 1; jr <= i__2; ++jr) {
                    vl[jr + jc * vl_dim1] *= temp;
                    vl[jr + (jc + 1) * vl_dim1] *= temp;
                }
            }
L70:
            ;
        }
    }
    if (ilvr) {
        dggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[
                    vr_offset], ldvr, &ierr);
        i__1 = *n;
        for (jc = 1; jc <= i__1; ++jc) {
            if (alphai[jc] < 0.) {
                goto L120;
            }
            temp = 0.;
            if (alphai[jc] == 0.) {
                i__2 = *n;
                for (jr = 1; jr <= i__2; ++jr) {
                    /* Computing MAX */
                    d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1], abs(
                                             d__1));
                    temp = max(d__2,d__3);
                }
            } else {
                i__2 = *n;
                for (jr = 1; jr <= i__2; ++jr) {
                    /* Computing MAX */
                    d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1], abs(
                                             d__1)) + (d__2 = vr[jr + (jc + 1) * vr_dim1], abs(
                                                           d__2));
                    temp = max(d__3,d__4);
                }
            }
            if (temp < smlnum) {
                goto L120;
            }
            temp = 1. / temp;
            if (alphai[jc] == 0.) {
                i__2 = *n;
                for (jr = 1; jr <= i__2; ++jr) {
                    vr[jr + jc * vr_dim1] *= temp;
                }
            } else {
                i__2 = *n;
                for (jr = 1; jr <= i__2; ++jr) {
                    vr[jr + jc * vr_dim1] *= temp;
                    vr[jr + (jc + 1) * vr_dim1] *= temp;
                }
            }
L120:
            ;
        }
    }

    /*     Undo scaling if necessary */

    if (ilascl) {
        dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
                ierr);
        dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
                ierr);
    }

    if (ilbscl) {
        dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
                ierr);
    }

L130:
    work[1] = (doublereal) maxwrk;

    return 0;

    /*     End of DGGEVX */

} /* dggevx_ */
Esempio n. 5
0
/* Subroutine */ int dggev_(char *jobvl, char *jobvr, integer *n, doublereal *
	a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar, 
	doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl, 
	doublereal *vr, integer *ldvr, doublereal *work, integer *lwork, 
	integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)   
    the generalized eigenvalues, and optionally, the left and/or right   
    generalized eigenvectors.   

    A generalized eigenvalue for a pair of matrices (A,B) is a scalar   
    lambda or a ratio alpha/beta = lambda, such that A - lambda*B is   
    singular. It is usually represented as the pair (alpha,beta), as   
    there is a reasonable interpretation for beta=0, and even for both   
    being zero.   

    The right eigenvector v(j) corresponding to the eigenvalue lambda(j)   
    of (A,B) satisfies   

                     A * v(j) = lambda(j) * B * v(j).   

    The left eigenvector u(j) corresponding to the eigenvalue lambda(j)   
    of (A,B) satisfies   

                     u(j)**H * A  = lambda(j) * u(j)**H * B .   

    where u(j)**H is the conjugate-transpose of u(j).   


    Arguments   
    =========   

    JOBVL   (input) CHARACTER*1   
            = 'N':  do not compute the left generalized eigenvectors;   
            = 'V':  compute the left generalized eigenvectors.   

    JOBVR   (input) CHARACTER*1   
            = 'N':  do not compute the right generalized eigenvectors;   
            = 'V':  compute the right generalized eigenvectors.   

    N       (input) INTEGER   
            The order of the matrices A, B, VL, and VR.  N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)   
            On entry, the matrix A in the pair (A,B).   
            On exit, A has been overwritten.   

    LDA     (input) INTEGER   
            The leading dimension of A.  LDA >= max(1,N).   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)   
            On entry, the matrix B in the pair (A,B).   
            On exit, B has been overwritten.   

    LDB     (input) INTEGER   
            The leading dimension of B.  LDB >= max(1,N).   

    ALPHAR  (output) DOUBLE PRECISION array, dimension (N)   
    ALPHAI  (output) DOUBLE PRECISION array, dimension (N)   
    BETA    (output) DOUBLE PRECISION array, dimension (N)   
            On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will   
            be the generalized eigenvalues.  If ALPHAI(j) is zero, then   
            the j-th eigenvalue is real; if positive, then the j-th and   
            (j+1)-st eigenvalues are a complex conjugate pair, with   
            ALPHAI(j+1) negative.   

            Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)   
            may easily over- or underflow, and BETA(j) may even be zero.   
            Thus, the user should avoid naively computing the ratio   
            alpha/beta.  However, ALPHAR and ALPHAI will be always less   
            than and usually comparable with norm(A) in magnitude, and   
            BETA always less than and usually comparable with norm(B).   

    VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)   
            If JOBVL = 'V', the left eigenvectors u(j) are stored one   
            after another in the columns of VL, in the same order as   
            their eigenvalues. If the j-th eigenvalue is real, then   
            u(j) = VL(:,j), the j-th column of VL. If the j-th and   
            (j+1)-th eigenvalues form a complex conjugate pair, then   
            u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).   
            Each eigenvector will be scaled so the largest component have   
            abs(real part)+abs(imag. part)=1.   
            Not referenced if JOBVL = 'N'.   

    LDVL    (input) INTEGER   
            The leading dimension of the matrix VL. LDVL >= 1, and   
            if JOBVL = 'V', LDVL >= N.   

    VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)   
            If JOBVR = 'V', the right eigenvectors v(j) are stored one   
            after another in the columns of VR, in the same order as   
            their eigenvalues. If the j-th eigenvalue is real, then   
            v(j) = VR(:,j), the j-th column of VR. If the j-th and   
            (j+1)-th eigenvalues form a complex conjugate pair, then   
            v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).   
            Each eigenvector will be scaled so the largest component have   
            abs(real part)+abs(imag. part)=1.   
            Not referenced if JOBVR = 'N'.   

    LDVR    (input) INTEGER   
            The leading dimension of the matrix VR. LDVR >= 1, and   
            if JOBVR = 'V', LDVR >= N.   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= max(1,8*N).   
            For good performance, LWORK must generally be larger.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            = 1,...,N:   
                  The QZ iteration failed.  No eigenvectors have been   
                  calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)   
                  should be correct for j=INFO+1,...,N.   
            > N:  =N+1: other than QZ iteration failed in DHGEQZ.   
                  =N+2: error return from DTGEVC.   

    =====================================================================   


       Decode the input arguments   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c__0 = 0;
    static doublereal c_b26 = 0.;
    static doublereal c_b27 = 1.;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
	    vr_offset, i__1, i__2;
    doublereal d__1, d__2, d__3, d__4;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static doublereal anrm, bnrm;
    static integer ierr, itau;
    static doublereal temp;
    static logical ilvl, ilvr;
    static integer iwrk;
    extern logical lsame_(char *, char *);
    static integer ileft, icols, irows;
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
    static integer jc;
    extern /* Subroutine */ int dggbak_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, integer *), dggbal_(char *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *);
    static integer in;
    extern doublereal dlamch_(char *), dlange_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *);
    static integer jr;
    extern /* Subroutine */ int dgghrd_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal 
	    *, doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *);
    static logical ilascl, ilbscl;
    extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *), 
	    dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *), dlaset_(char *, integer *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *), dtgevc_(char *, char *, logical *, integer *, doublereal 
	    *, integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, integer *, integer *, doublereal *, 
	    integer *);
    static logical ldumma[1];
    static char chtemp[1];
    static doublereal bignum;
    extern /* Subroutine */ int dhgeqz_(char *, char *, char *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *,
	     integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static integer ijobvl, iright, ijobvr;
    extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *);
    static doublereal anrmto, bnrmto;
    extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, integer *);
    static integer minwrk, maxwrk;
    static doublereal smlnum;
    static logical lquery;
    static integer ihi, ilo;
    static doublereal eps;
    static logical ilv;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define vl_ref(a_1,a_2) vl[(a_2)*vl_dim1 + a_1]
#define vr_ref(a_1,a_2) vr[(a_2)*vr_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --alphar;
    --alphai;
    --beta;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1 * 1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1 * 1;
    vr -= vr_offset;
    --work;

    /* Function Body */
    if (lsame_(jobvl, "N")) {
	ijobvl = 1;
	ilvl = FALSE_;
    } else if (lsame_(jobvl, "V")) {
	ijobvl = 2;
	ilvl = TRUE_;
    } else {
	ijobvl = -1;
	ilvl = FALSE_;
    }

    if (lsame_(jobvr, "N")) {
	ijobvr = 1;
	ilvr = FALSE_;
    } else if (lsame_(jobvr, "V")) {
	ijobvr = 2;
	ilvr = TRUE_;
    } else {
	ijobvr = -1;
	ilvr = FALSE_;
    }
    ilv = ilvl || ilvr;

/*     Test the input arguments */

    *info = 0;
    lquery = *lwork == -1;
    if (ijobvl <= 0) {
	*info = -1;
    } else if (ijobvr <= 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
	*info = -12;
    } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
	*info = -14;
    }

/*     Compute workspace   
        (Note: Comments in the code beginning "Workspace:" describe the   
         minimal amount of workspace needed at that point in the code,   
         as well as the preferred amount for good performance.   
         NB refers to the optimal block size for the immediately   
         following subroutine, as returned by ILAENV. The workspace is   
         computed assuming ILO = 1 and IHI = N, the worst case.) */

    minwrk = 1;
    if (*info == 0 && (*lwork >= 1 || lquery)) {
	maxwrk = *n * 7 + *n * ilaenv_(&c__1, "DGEQRF", " ", n, &c__1, n, &
		c__0, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
	i__1 = 1, i__2 = *n << 3;
	minwrk = max(i__1,i__2);
	work[1] = (doublereal) maxwrk;
    }

    if (*lwork < minwrk && ! lquery) {
	*info = -16;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGGEV ", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Get machine constants */

    eps = dlamch_("P");
    smlnum = dlamch_("S");
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1. / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
    ilascl = FALSE_;
    if (anrm > 0. && anrm < smlnum) {
	anrmto = smlnum;
	ilascl = TRUE_;
    } else if (anrm > bignum) {
	anrmto = bignum;
	ilascl = TRUE_;
    }
    if (ilascl) {
	dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
		ierr);
    }

/*     Scale B if max element outside range [SMLNUM,BIGNUM] */

    bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
    ilbscl = FALSE_;
    if (bnrm > 0. && bnrm < smlnum) {
	bnrmto = smlnum;
	ilbscl = TRUE_;
    } else if (bnrm > bignum) {
	bnrmto = bignum;
	ilbscl = TRUE_;
    }
    if (ilbscl) {
	dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
		ierr);
    }

/*     Permute the matrices A, B to isolate eigenvalues if possible   
       (Workspace: need 6*N) */

    ileft = 1;
    iright = *n + 1;
    iwrk = iright + *n;
    dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
	    ileft], &work[iright], &work[iwrk], &ierr);

/*     Reduce B to triangular form (QR decomposition of B)   
       (Workspace: need N, prefer N*NB) */

    irows = ihi + 1 - ilo;
    if (ilv) {
	icols = *n + 1 - ilo;
    } else {
	icols = irows;
    }
    itau = iwrk;
    iwrk = itau + irows;
    i__1 = *lwork + 1 - iwrk;
    dgeqrf_(&irows, &icols, &b_ref(ilo, ilo), ldb, &work[itau], &work[iwrk], &
	    i__1, &ierr);

/*     Apply the orthogonal transformation to matrix A   
       (Workspace: need N, prefer N*NB) */

    i__1 = *lwork + 1 - iwrk;
    dormqr_("L", "T", &irows, &icols, &irows, &b_ref(ilo, ilo), ldb, &work[
	    itau], &a_ref(ilo, ilo), lda, &work[iwrk], &i__1, &ierr);

/*     Initialize VL   
       (Workspace: need N, prefer N*NB) */

    if (ilvl) {
	dlaset_("Full", n, n, &c_b26, &c_b27, &vl[vl_offset], ldvl)
		;
	i__1 = irows - 1;
	i__2 = irows - 1;
	dlacpy_("L", &i__1, &i__2, &b_ref(ilo + 1, ilo), ldb, &vl_ref(ilo + 1,
		 ilo), ldvl);
	i__1 = *lwork + 1 - iwrk;
	dorgqr_(&irows, &irows, &irows, &vl_ref(ilo, ilo), ldvl, &work[itau], 
		&work[iwrk], &i__1, &ierr);
    }

/*     Initialize VR */

    if (ilvr) {
	dlaset_("Full", n, n, &c_b26, &c_b27, &vr[vr_offset], ldvr)
		;
    }

/*     Reduce to generalized Hessenberg form   
       (Workspace: none needed) */

    if (ilv) {

/*        Eigenvectors requested -- work on whole matrix. */

	dgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 
		ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
    } else {
	dgghrd_("N", "N", &irows, &c__1, &irows, &a_ref(ilo, ilo), lda, &
		b_ref(ilo, ilo), ldb, &vl[vl_offset], ldvl, &vr[vr_offset], 
		ldvr, &ierr);
    }

/*     Perform QZ algorithm (Compute eigenvalues, and optionally, the   
       Schur forms and Schur vectors)   
       (Workspace: need N) */

    iwrk = itau;
    if (ilv) {
	*(unsigned char *)chtemp = 'S';
    } else {
	*(unsigned char *)chtemp = 'E';
    }
    i__1 = *lwork + 1 - iwrk;
    dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
	    b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], 
	    ldvl, &vr[vr_offset], ldvr, &work[iwrk], &i__1, &ierr);
    if (ierr != 0) {
	if (ierr > 0 && ierr <= *n) {
	    *info = ierr;
	} else if (ierr > *n && ierr <= *n << 1) {
	    *info = ierr - *n;
	} else {
	    *info = *n + 1;
	}
	goto L110;
    }

/*     Compute Eigenvectors   
       (Workspace: need 6*N) */

    if (ilv) {
	if (ilvl) {
	    if (ilvr) {
		*(unsigned char *)chtemp = 'B';
	    } else {
		*(unsigned char *)chtemp = 'L';
	    }
	} else {
	    *(unsigned char *)chtemp = 'R';
	}
	dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, 
		&vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
		iwrk], &ierr);
	if (ierr != 0) {
	    *info = *n + 2;
	    goto L110;
	}

/*        Undo balancing on VL and VR and normalization   
          (Workspace: none needed) */

	if (ilvl) {
	    dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
		    vl[vl_offset], ldvl, &ierr);
	    i__1 = *n;
	    for (jc = 1; jc <= i__1; ++jc) {
		if (alphai[jc] < 0.) {
		    goto L50;
		}
		temp = 0.;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__2 = temp, d__3 = (d__1 = vl_ref(jr, jc), abs(d__1))
				;
			temp = max(d__2,d__3);
/* L10: */
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__3 = temp, d__4 = (d__1 = vl_ref(jr, jc), abs(d__1))
				 + (d__2 = vl_ref(jr, jc + 1), abs(d__2));
			temp = max(d__3,d__4);
/* L20: */
		    }
		}
		if (temp < smlnum) {
		    goto L50;
		}
		temp = 1. / temp;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vl_ref(jr, jc) = vl_ref(jr, jc) * temp;
/* L30: */
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vl_ref(jr, jc) = vl_ref(jr, jc) * temp;
			vl_ref(jr, jc + 1) = vl_ref(jr, jc + 1) * temp;
/* L40: */
		    }
		}
L50:
		;
	    }
	}
	if (ilvr) {
	    dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
		    vr[vr_offset], ldvr, &ierr);
	    i__1 = *n;
	    for (jc = 1; jc <= i__1; ++jc) {
		if (alphai[jc] < 0.) {
		    goto L100;
		}
		temp = 0.;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__2 = temp, d__3 = (d__1 = vr_ref(jr, jc), abs(d__1))
				;
			temp = max(d__2,d__3);
/* L60: */
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__3 = temp, d__4 = (d__1 = vr_ref(jr, jc), abs(d__1))
				 + (d__2 = vr_ref(jr, jc + 1), abs(d__2));
			temp = max(d__3,d__4);
/* L70: */
		    }
		}
		if (temp < smlnum) {
		    goto L100;
		}
		temp = 1. / temp;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vr_ref(jr, jc) = vr_ref(jr, jc) * temp;
/* L80: */
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vr_ref(jr, jc) = vr_ref(jr, jc) * temp;
			vr_ref(jr, jc + 1) = vr_ref(jr, jc + 1) * temp;
/* L90: */
		    }
		}
L100:
		;
	    }
	}

/*        End of eigenvector calculation */

    }

/*     Undo scaling if necessary */

    if (ilascl) {
	dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
		ierr);
	dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
		ierr);
    }

    if (ilbscl) {
	dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
		ierr);
    }

L110:

    work[1] = (doublereal) maxwrk;

    return 0;

/*     End of DGGEV */

} /* dggev_ */