Esempio n. 1
0
/*
 * Free a fragment reassembly header and all
 * associated datagrams.
 */
void ip_freef(struct ipq *fp)
{
	struct ipasfrag *q, *p;

	for (q = (struct ipasfrag *) fp->ipq_next; q != (struct ipasfrag *)fp;
	    q = p) {
		p = (struct ipasfrag *) q->ipf_next;
		ip_deq(q);
		m_freem(dtom(q));
	}
	remque_32(fp);
	(void) m_free(dtom(fp));
}
Esempio n. 2
0
/* FUNCTION: tcp_close()
 *
 * Close a TCP control block:
 *   discard all space held by the tcp
 *   discard internet protocol block
 *   wake up any sleepers
 *
 * 
 * PARAM1: struct tcpcb *tp
 *
 * RETURNS: 
 */
struct tcpcb * 
tcp_close(struct tcpcb *tp)
{
   struct tcpiphdr *t;
   struct inpcb *inp = tp->t_inpcb;
   struct socket *so = inp->inp_socket;

   t = tp->seg_next;
   while (t != (struct tcpiphdr *)tp) 
   {
      struct mbuf *m;

      t = (struct tcpiphdr *)t->ti_next;
      m = dtom(t->ti_prev);
      remque(t->ti_prev);
      M_FREEM(m);
   }
   if (tp->t_template)
      TPH_FREE(tp->t_template);
   TCB_FREE(tp);
   inp->inp_ppcb = (char *)NULL;
   soisdisconnected(so);
   in_pcbdetach(inp);
   tcpstat.tcps_closed++;
   return ((struct tcpcb *)NULL);
}
Esempio n. 3
0
/*
 * Disconnect raw socket.
 */
void
raw_disconnect(struct rawcb *rp)
{

#ifdef notdef
	if (rp->rcb_faddr)
		m_freem(dtom(rp->rcb_faddr));
	rp->rcb_faddr = 0;
#endif
}
Esempio n. 4
0
/*
 * Disconnect and possibly release resources.
 */
void
raw_disconnect(struct rawcb *rp)
{
#ifdef notdef
    if (rp->rcb_faddr)
        m_freem(dtom(rp->rcb_faddr));
    rp->rcb_faddr = 0;
#endif
    if (rp->rcb_socket->so_state & SS_NOFDREF)
        raw_detach(rp);
}
Esempio n. 5
0
/*
 * Detach the raw connection block and discard
 * socket resources.
 */
void
raw_detach(struct rawcb *rp)
{
	struct socket *so = rp->rcb_socket;

	so->so_pcb = 0;
	sofree(so);
	LIST_REMOVE(rp, rcb_list);
#ifdef notdef
	if (rp->rcb_laddr)
		m_freem(dtom(rp->rcb_laddr));
	rp->rcb_laddr = 0;
#endif
	free((caddr_t)(rp), M_PCB, 0);
}
Esempio n. 6
0
/*
 * Detach the raw connection block and discard
 * socket resources.
 */
void
raw_detach(struct rawcb *rp)
{
	struct socket *so = rp->rcb_socket;

	KASSERT(so->so_pcb == rp, ("raw_detach: so_pcb != rp"));

	so->so_pcb = NULL;
	mtx_lock(&rawcb_mtx);
	LIST_REMOVE(rp, list);
	mtx_unlock(&rawcb_mtx);
#ifdef notdef
	if (rp->rcb_laddr)
		m_freem(dtom(rp->rcb_laddr));
	rp->rcb_laddr = 0;
#endif
	free((caddr_t)(rp), M_PCB);
}
Esempio n. 7
0
/*
 * Detach the raw connection block and discard
 * socket resources.
 */
void
raw_detach(struct rawcb *rp)
{
	struct socket *so = rp->rcb_socket;

	so->so_pcb = NULL;
	KASSERT(so->so_lock == softnet_lock);	/* XXX */
	LIST_REMOVE(rp, rcb_list);		/* remove last reference */
	/* sofree drops the socket's lock. */
	sofree(so);
#ifdef notdef
	if (rp->rcb_laddr)
		m_freem(dtom(rp->rcb_laddr));
	rp->rcb_laddr = 0;
#endif
	free((void *)rp, M_PCB);
	mutex_enter(softnet_lock);
}
Esempio n. 8
0
/*
 * Detach the raw connection block and discard
 * socket resources.
 */
void
raw_detach(struct rawcb *rp)
{
    struct socket *so = rp->rcb_socket;

    so->so_pcb = 0;
    so->so_flags |= SOF_PCBCLEARING;
    sofree(so);
    if (!lck_mtx_try_lock(raw_mtx)) {
        socket_unlock(so, 0);
        lck_mtx_lock(raw_mtx);
        socket_lock(so, 0);
    }
    LIST_REMOVE(rp, list);
    lck_mtx_unlock(raw_mtx);
#ifdef notdef
    if (rp->rcb_laddr)
        m_freem(dtom(rp->rcb_laddr));
    rp->rcb_laddr = 0;
#endif
    rp->rcb_socket = NULL;
    FREE((caddr_t)(rp), M_PCB);
}
Esempio n. 9
0
void Lpx_PCB_dispense(struct lpxpcb *lpxp )
{	
	struct stream_pcb *cb = NULL;

	DEBUG_PRINT(DEBUG_MASK_PCB_TRACE, ("Lpx_PCB_dispense: Entered.\n"));

	if (lpxp == 0) {
		return;
	}
	
	cb = (struct stream_pcb *)lpxp->lpxp_pcb;
	
	if (cb != 0) {
		
		register struct lpx_stream_q *q;
				
		for (q = cb->s_q.si_next; q != &cb->s_q; q = q->si_next) {
			q = q->si_prev;
			remque(q->si_next);
		}
		
		m_freem(dtom(cb->s_lpx));
		FREE(cb, M_PCB);
		lpxp->lpxp_pcb = 0;
	}	
	
    // Free Lock.
	if (lpxp->lpxp_mtx != NULL) {
		lck_mtx_free(lpxp->lpxp_mtx, lpxp->lpxp_mtx_grp);  
	}
				
	lck_rw_lock_exclusive(lpxp->lpxp_head->lpxp_list_rw);
	remque(lpxp);
	lck_rw_unlock_exclusive(lpxp->lpxp_head->lpxp_list_rw);
		
	FREE(lpxp, M_PCB);		
}
Esempio n. 10
0
/*
 * Ip input routine.  Checksum and byte swap header.  If fragmented
 * try to reassemble.  Process options.  Pass to next level.
 */
void
ip_input(struct mbuf *m)
{
    Slirp *slirp = m->slirp;
    struct ip *ip;
    int hlen;

    DEBUG_CALL("ip_input");
    DEBUG_ARG("m = %lx", (long)m);
    DEBUG_ARG("m_len = %d", m->m_len);

    if (m->m_len < sizeof (struct ip)) {
        return;
    }

    ip = mtod(m, struct ip *);

    if (ip->ip_v != IPVERSION) {
        goto bad;
    }

    hlen = ip->ip_hl << 2;
    if (hlen<sizeof(struct ip ) || hlen>m->m_len) {/* min header length */
        goto bad;                                  /* or packet too short */
    }

    /* keep ip header intact for ICMP reply
    * ip->ip_sum = cksum(m, hlen);
     * if (ip->ip_sum) {
     */
    if(cksum(m,hlen)) {
        goto bad;
    }

    /*
     * Convert fields to host representation.
     */
    NTOHS(ip->ip_len);
    if (ip->ip_len < hlen) {
        goto bad;
    }
    NTOHS(ip->ip_id);
    NTOHS(ip->ip_off);

    /*
     * Check that the amount of data in the buffers
     * is as at least much as the IP header would have us expect.
     * Trim mbufs if longer than we expect.
     * Drop packet if shorter than we expect.
     */
    if (m->m_len < ip->ip_len) {
        goto bad;
    }

    if (slirp->restricted) {
        if ((ip->ip_dst.s_addr & slirp->vnetwork_mask.s_addr) ==
                slirp->vnetwork_addr.s_addr) {
            if (ip->ip_dst.s_addr == 0xffffffff && ip->ip_p != IPPROTO_UDP)
                goto bad;
        } else {
            uint32_t inv_mask = ~slirp->vnetwork_mask.s_addr;
            struct ex_list *ex_ptr;

            if ((ip->ip_dst.s_addr & inv_mask) == inv_mask) {
                goto bad;
            }
            for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next)
                if (ex_ptr->ex_addr.s_addr == ip->ip_dst.s_addr)
                    break;

            if (!ex_ptr)
                goto bad;
        }
    }

    /* Should drop packet if mbuf too long? hmmm... */
    if (m->m_len > ip->ip_len)
        m_adj(m, ip->ip_len - m->m_len);

    /* check ip_ttl for a correct ICMP reply */
    if(ip->ip_ttl==0 || ip->ip_ttl==1) {
        icmp_error(m, ICMP_TIMXCEED,ICMP_TIMXCEED_INTRANS, 0,"ttl");
        goto bad;
    }

    /*
     * If offset or IP_MF are set, must reassemble.
     * Otherwise, nothing need be done.
     * (We could look in the reassembly queue to see
     * if the packet was previously fragmented,
     * but it's not worth the time; just let them time out.)
     *
     * XXX This should fail, don't fragment yet
     */
    if (ip->ip_off &~ IP_DF) {
        struct ipq *fp;
        struct qlink *l;
        /*
         * Look for queue of fragments
         * of this datagram.
         */
        for (l = slirp->ipq.ip_link.next; l != &slirp->ipq.ip_link;
                l = l->next) {
            fp = container_of(l, struct ipq, ip_link);
            if (ip->ip_id == fp->ipq_id &&
                    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
                    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
                    ip->ip_p == fp->ipq_p)
                goto found;
        }
        fp = NULL;
found:

        /*
         * Adjust ip_len to not reflect header,
         * set ip_mff if more fragments are expected,
         * convert offset of this to bytes.
         */
        ip->ip_len -= hlen;
        if (ip->ip_off & IP_MF)
            ip->ip_tos |= 1;
        else
            ip->ip_tos &= ~1;

        ip->ip_off <<= 3;

        /*
         * If datagram marked as having more fragments
         * or if this is not the first fragment,
         * attempt reassembly; if it succeeds, proceed.
         */
        if (ip->ip_tos & 1 || ip->ip_off) {
            ip = ip_reass(slirp, ip, fp);
            if (ip == NULL)
                return;
            m = dtom(slirp, ip);
        } else if (fp)
            ip_freef(slirp, fp);

    } else
Esempio n. 11
0
/*
 * Allocate memory for mbufs.
 * and place on the mbuf free list.
 * The canwait argument is currently ignored.
 *
 * MUST be called at splimp!
 */
BOOL
m_alloc(int howmany, int canwait)
{
 /*
  * Note that mbufs must be aligned on MSIZE boundary
  * for dtom to work correctly. This is archieved by allocating size for one 
  * additional mbuf per chunk so that given memory can be aligned properly.
  */ 
  struct mbuf *m;
  struct memHeader *mh;
  ULONG  size;
#if defined(__AROS__)
D(bug("[AROSTCP](uipc_mbuf.c) m_alloc()\n"));
#endif

  size = MSIZE * (howmany + 1) + sizeof(struct memHeader);

  /*
   * check if allowed to allocate more
   */
  if (mbstat.m_memused + size > mbconf.maxmem * 1024) {
#if defined(__AROS__)
D(bug("[AROSTCP](uipc_mbuf.c) m_alloc: max amount of memory already used (%ld bytes).\n",
	mbstat.m_memused));
#endif
    __log(LOG_ERR, "m_alloc: max amount of memory already used (%ld bytes).",
	mbstat.m_memused);
    return FALSE;
  }

  mh = AllocMem(size, MEMF_PUBLIC);	/* public since used from interrupts */
  if (mh == NULL) {
#if defined(__AROS__)
D(bug("[AROSTCP](uipc_mbuf.c) m_alloc: Cannot allocate memory for mbufs\n"));
#endif
    __log(LOG_ERR, "m_alloc: Cannot allocate memory for mbufs.");
    return FALSE;
  }

  /*
   * initialize the memHeader and link it to the chain of allocated memory 
   * blocks
   */
  mbstat.m_memused += size;		/* add to the total */
  mh->size = size;
  mh->next = mbufmem;
  mbufmem = mh;
  mh++;				/* pass by the memHeader */

  /*
   * update the statistics
   */
  mbstat.m_mbufs += howmany;

  /*
   * link mbufs into the free list
   */
  m = dtom(((caddr_t)mh) + MSIZE - 1); /* correctly aligned mbuf pointer */
  while(howmany--) {
    m->m_next = mfree;
    mfree = m++;
  }
  return TRUE;
}  
Esempio n. 12
0
/*
 * Ip input routine.  Checksum and byte swap header.  If fragmented
 * try to reassemble.  Process options.  Pass to next level.
 */
void
ipintr()
{
    register struct ip *ip;
    register struct mbuf *m;
    register struct ipq *fp;
    register struct in_ifaddr *ia;
    int hlen, s;

next:
    /*
     * Get next datagram off input queue and get IP header
     * in first mbuf.
     */
    s = splimp();
    IF_DEQUEUE(&ipintrq, m);
    splx(s);
    if (m == 0)
        return;
#ifdef  DIAGNOSTIC
    if ((m->m_flags & M_PKTHDR) == 0)
        panic("ipintr no HDR");
#endif
    /*
     * If no IP addresses have been set yet but the interfaces
     * are receiving, can't do anything with incoming packets yet.
     */
    if (in_ifaddr == NULL)
        goto bad;
    ipstat.ips_total++;
    if (m->m_len < sizeof (struct ip) &&
        (m = m_pullup(m, sizeof (struct ip))) == 0) {
        ipstat.ips_toosmall++;
        goto next;
    }
    ip = mtod(m, struct ip *);
    if (ip->ip_v != IPVERSION) {
        ipstat.ips_badvers++;
        goto bad;
    }
    hlen = ip->ip_hl << 2;
    if (hlen < sizeof(struct ip)) { /* minimum header length */
        ipstat.ips_badhlen++;
        goto bad;
    }
    if (hlen > m->m_len) {
        if ((m = m_pullup(m, hlen)) == 0) {
            ipstat.ips_badhlen++;
            goto next;
        }
        ip = mtod(m, struct ip *);
    }
    ip->ip_sum = in_cksum(m, hlen);
    if (ip->ip_sum) {
        ipstat.ips_badsum++;
        goto bad;
    }

    /*
     * Convert fields to host representation.
     */
    NTOHS(ip->ip_len);
    if (ip->ip_len < hlen) {
        ipstat.ips_badlen++;
        goto bad;
    }
    NTOHS(ip->ip_id);
    NTOHS(ip->ip_off);

    /*
     * Check that the amount of data in the buffers
     * is as at least much as the IP header would have us expect.
     * Trim mbufs if longer than we expect.
     * Drop packet if shorter than we expect.
     */
    if (m->m_pkthdr.len < ip->ip_len) {
        ipstat.ips_tooshort++;
        goto bad;
    }
    if (m->m_pkthdr.len > ip->ip_len) {
        if (m->m_len == m->m_pkthdr.len) {
            m->m_len = ip->ip_len;
            m->m_pkthdr.len = ip->ip_len;
        } else
            m_adj(m, ip->ip_len - m->m_pkthdr.len);
    }

    /*
     * Process options and, if not destined for us,
     * ship it on.  ip_dooptions returns 1 when an
     * error was detected (causing an icmp message
     * to be sent and the original packet to be freed).
     */
    ip_nhops = 0;       /* for source routed packets */
    if (hlen > sizeof (struct ip) && ip_dooptions(m))
        goto next;

    /*
     * Check our list of addresses, to see if the packet is for us.
     */
    for (ia = in_ifaddr; ia; ia = ia->ia_next) {
#define satosin(sa) ((struct sockaddr_in *)(sa))

        if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
            goto ours;
        if (
#ifdef  DIRECTED_BROADCAST
            ia->ia_ifp == m->m_pkthdr.rcvif &&
#endif
            (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
            u_long t;

            if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
                ip->ip_dst.s_addr)
                goto ours;
            if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
                goto ours;
            /*
             * Look for all-0's host part (old broadcast addr),
             * either for subnet or net.
             */
            t = ntohl(ip->ip_dst.s_addr);
            if (t == ia->ia_subnet)
                goto ours;
            if (t == ia->ia_net)
                goto ours;
        }
    }
    if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
        struct in_multi *inm;
#ifdef MROUTING
        extern struct socket *ip_mrouter;

        if (ip_mrouter) {
            /*
             * If we are acting as a multicast router, all
             * incoming multicast packets are passed to the
             * kernel-level multicast forwarding function.
             * The packet is returned (relatively) intact; if
             * ip_mforward() returns a non-zero value, the packet
             * must be discarded, else it may be accepted below.
             *
             * (The IP ident field is put in the same byte order
             * as expected when ip_mforward() is called from
             * ip_output().)
             */
            ip->ip_id = htons(ip->ip_id);
            if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
                ipstat.ips_cantforward++;
                m_freem(m);
                goto next;
            }
            ip->ip_id = ntohs(ip->ip_id);

            /*
             * The process-level routing demon needs to receive
             * all multicast IGMP packets, whether or not this
             * host belongs to their destination groups.
             */
            if (ip->ip_p == IPPROTO_IGMP)
                goto ours;
            ipstat.ips_forward++;
        }
#endif
        /*
         * See if we belong to the destination multicast group on the
         * arrival interface.
         */
        IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
        if (inm == NULL) {
            ipstat.ips_cantforward++;
            m_freem(m);
            goto next;
        }
        goto ours;
    }
    if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
        goto ours;
    if (ip->ip_dst.s_addr == INADDR_ANY)
        goto ours;

    /*
     * Not for us; forward if possible and desirable.
     */
    if (ipforwarding == 0) {
        ipstat.ips_cantforward++;
        m_freem(m);
    } else
        ip_forward(m, 0);
    goto next;

ours:
    /*
     * If offset or IP_MF are set, must reassemble.
     * Otherwise, nothing need be done.
     * (We could look in the reassembly queue to see
     * if the packet was previously fragmented,
     * but it's not worth the time; just let them time out.)
     */
    if (ip->ip_off &~ IP_DF) {
        if (m->m_flags & M_EXT) {       /* XXX */
            if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
                ipstat.ips_toosmall++;
                goto next;
            }
            ip = mtod(m, struct ip *);
        }
        /*
         * Look for queue of fragments
         * of this datagram.
         */
        for (fp = ipq.next; fp != &ipq; fp = fp->next)
            if (ip->ip_id == fp->ipq_id &&
                ip->ip_src.s_addr == fp->ipq_src.s_addr &&
                ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
                ip->ip_p == fp->ipq_p)
                goto found;
        fp = 0;
found:

        /*
         * Adjust ip_len to not reflect header,
         * set ip_mff if more fragments are expected,
         * convert offset of this to bytes.
         */
        ip->ip_len -= hlen;
        ((struct ipasfrag *)ip)->ipf_mff &= ~1;
        if (ip->ip_off & IP_MF)
            ((struct ipasfrag *)ip)->ipf_mff |= 1;
        ip->ip_off <<= 3;

        /*
         * If datagram marked as having more fragments
         * or if this is not the first fragment,
         * attempt reassembly; if it succeeds, proceed.
         */
        if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
            ipstat.ips_fragments++;
            ip = ip_reass((struct ipasfrag *)ip, fp);
            if (ip == 0)
                goto next;
            ipstat.ips_reassembled++;
            m = dtom(ip);
        } else
            if (fp)
                ip_freef(fp);
    } else
Esempio n. 13
0
/*
 * Ip input routine.  Checksum and byte swap header.  If fragmented
 * try to reassemble.  Process options.  Pass to next level.
 */
void
ip_input(struct mbuf *m)
{
    register struct ip *ip;
    int hlen;

    DEBUG_CALL("ip_input");
    DEBUG_ARG("m = %lx", (long)m);
    DEBUG_ARG("m_len = %d", m->m_len);

    STAT(ipstat.ips_total++);

    if (m->m_len < (int)sizeof (struct ip)) {
        STAT(ipstat.ips_toosmall++);
        return;
    }

    ip = mtod(m, struct ip *);

    if (ip->ip_v != IPVERSION) {
        STAT(ipstat.ips_badvers++);
        goto bad;
    }

    hlen = ip->ip_hl << 2;
    if (hlen < (int)sizeof(struct ip ) || hlen>m->m_len) {/* min header length */
        STAT(ipstat.ips_badhlen++);                     /* or packet too short */
        goto bad;
    }

    /* keep ip header intact for ICMP reply
    * ip->ip_sum = cksum(m, hlen);
     * if (ip->ip_sum) {
     */
    if(cksum(m,hlen)) {
        STAT(ipstat.ips_badsum++);
        goto bad;
    }

    /*
     * Convert fields to host representation.
     */
    NTOHS(ip->ip_len);
    if (ip->ip_len < hlen) {
        STAT(ipstat.ips_badlen++);
        goto bad;
    }
    NTOHS(ip->ip_id);
    NTOHS(ip->ip_off);

    /*
     * Check that the amount of data in the buffers
     * is as at least much as the IP header would have us expect.
     * Trim mbufs if longer than we expect.
     * Drop packet if shorter than we expect.
     */
    if (m->m_len < ip->ip_len) {
        STAT(ipstat.ips_tooshort++);
        goto bad;
    }

    if (slirp_restrict) {
        if (ip_geth(ip->ip_dst) != special_addr_ip) {
            if (ip_getn(ip->ip_dst) == 0xffffffffu && ip->ip_p != IPPROTO_UDP)
                goto bad;
        } else {
            int host = ip_geth(ip->ip_dst) & 0xff;
            struct ex_list *ex_ptr;

            if (host == 0xff)
                goto bad;

            for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next)
                if (ex_ptr->ex_addr == host)
                    break;

            if (!ex_ptr)
                goto bad;
        }
    }

    /* Should drop packet if mbuf too long? hmmm... */
    if (m->m_len > ip->ip_len)
        m_adj(m, ip->ip_len - m->m_len);

    /* check ip_ttl for a correct ICMP reply */
    if(ip->ip_ttl==0 || ip->ip_ttl==1) {
        icmp_error(m, ICMP_TIMXCEED,ICMP_TIMXCEED_INTRANS, 0,"ttl");
        goto bad;
    }

    /*
     * Process options and, if not destined for us,
     * ship it on.  ip_dooptions returns 1 when an
     * error was detected (causing an icmp message
     * to be sent and the original packet to be freed).
     */
    /* We do no IP options */
    /*	if (hlen > sizeof (struct ip) && ip_dooptions(m))
     *		goto next;
     */
    /*
     * If offset or IP_MF are set, must reassemble.
     * Otherwise, nothing need be done.
     * (We could look in the reassembly queue to see
     * if the packet was previously fragmented,
     * but it's not worth the time; just let them time out.)
     *
     * XXX This should fail, don't fragment yet
     */
    if (ip->ip_off &~ IP_DF) {
        register struct ipq *fp;
        struct qlink *l;
        /*
         * Look for queue of fragments
         * of this datagram.
         */
        for (l = ipq.ip_link.next; l != &ipq.ip_link; l = l->next) {
            fp = container_of(l, struct ipq, ip_link);
            if (ip->ip_id == fp->ipq_id &&
                    ip_equal(ip->ip_src, fp->ipq_src) &&
                    ip_equal(ip->ip_dst, fp->ipq_dst) &&
                    ip->ip_p == fp->ipq_p)
                goto found;
        }
        fp = NULL;
found:

        /*
         * Adjust ip_len to not reflect header,
         * set ip_mff if more fragments are expected,
         * convert offset of this to bytes.
         */
        ip->ip_len -= hlen;
        if (ip->ip_off & IP_MF)
            ip->ip_tos |= 1;
        else
            ip->ip_tos &= ~1;

        ip->ip_off <<= 3;

        /*
         * If datagram marked as having more fragments
         * or if this is not the first fragment,
         * attempt reassembly; if it succeeds, proceed.
         */
        if (ip->ip_tos & 1 || ip->ip_off) {
            STAT(ipstat.ips_fragments++);
            ip = ip_reass(ip, fp);
            if (ip == NULL)
                return;
            STAT(ipstat.ips_reassembled++);
            m = dtom(ip);
        } else if (fp)
            ip_freef(fp);

    } else
Esempio n. 14
0
/*
 * Ip input routine.  Checksum and byte swap header.  If fragmented
 * try to reassemble.  Process options.  Pass to next level.
 */
void ip_input(struct mbuf *m)
{
	struct ip *ip;
	int hlen;
	
	DEBUG_CALL("ip_input");
	DEBUG_ARG("m = %lx", (long)m);
	DEBUG_ARG("m_len = %d", m->m_len);

	ipstat.ips_total++;
	
	if (m->m_len < sizeof (struct ip)) {
		ipstat.ips_toosmall++;
		return;
	}
	
	ip = mtod(m, struct ip *);
	
	if (ip->ip_v != IPVERSION) {
		ipstat.ips_badvers++;
		goto bad;
	}

	hlen = ip->ip_hl << 2;
	if (hlen<sizeof(struct ip ) || hlen>m->m_len) {/* min header length */
	  ipstat.ips_badhlen++;                     /* or packet too short */
	  goto bad;
	}

        /* keep ip header intact for ICMP reply
	 * ip->ip_sum = cksum(m, hlen); 
	 * if (ip->ip_sum) { 
	 */
	if(cksum(m,hlen)) {
	  ipstat.ips_badsum++;
	  goto bad;
	}

	/*
	 * Convert fields to host representation.
	 */
	NTOHS(ip->ip_len);
	if (ip->ip_len < hlen) {
		ipstat.ips_badlen++;
		goto bad;
	}
	NTOHS(ip->ip_id);
	NTOHS(ip->ip_off);

	/*
	 * Check that the amount of data in the buffers
	 * is as at least much as the IP header would have us expect.
	 * Trim mbufs if longer than we expect.
	 * Drop packet if shorter than we expect.
	 */
	if (m->m_len < ip->ip_len) {
		ipstat.ips_tooshort++;
		goto bad;
	}
	/* Should drop packet if mbuf too long? hmmm... */
	if (m->m_len > ip->ip_len)
	   m_adj(m, ip->ip_len - m->m_len);

	/* check ip_ttl for a correct ICMP reply */
	if(ip->ip_ttl==0 || ip->ip_ttl==1) {
	  icmp_error(m, ICMP_TIMXCEED,ICMP_TIMXCEED_INTRANS, 0,"ttl");
	  goto bad;
	}

	/*
	 * Process options and, if not destined for us,
	 * ship it on.  ip_dooptions returns 1 when an
	 * error was detected (causing an icmp message
	 * to be sent and the original packet to be freed).
	 */
/* We do no IP options */
/*	if (hlen > sizeof (struct ip) && ip_dooptions(m))
 *		goto next;
 */
	/*
	 * If offset or IP_MF are set, must reassemble.
	 * Otherwise, nothing need be done.
	 * (We could look in the reassembly queue to see
	 * if the packet was previously fragmented,
	 * but it's not worth the time; just let them time out.)
	 * 
	 * XXX This should fail, don't fragment yet
	 */
	if (ip->ip_off &~ IP_DF) {
	  register struct ipq *fp;
		/*
		 * Look for queue of fragments
		 * of this datagram.
		 */
		for (fp = (struct ipq *) ipq.next; fp != &ipq;
		     fp = (struct ipq *) fp->next)
		  if (ip->ip_id == fp->ipq_id &&
		      ip->ip_src.s_addr == fp->ipq_src.s_addr &&
		      ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
		      ip->ip_p == fp->ipq_p)
		    goto found;
		fp = 0;
	found:

		/*
		 * Adjust ip_len to not reflect header,
		 * set ip_mff if more fragments are expected,
		 * convert offset of this to bytes.
		 */
		ip->ip_len -= hlen;
		if (ip->ip_off & IP_MF)
		  ((struct ipasfrag *)ip)->ipf_mff |= 1;
		else 
		  ((struct ipasfrag *)ip)->ipf_mff &= ~1;

		ip->ip_off <<= 3;

		/*
		 * If datagram marked as having more fragments
		 * or if this is not the first fragment,
		 * attempt reassembly; if it succeeds, proceed.
		 */
		if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
			ipstat.ips_fragments++;
			ip = ip_reass((struct ipasfrag *)ip, fp);
			if (ip == 0)
				return;
			ipstat.ips_reassembled++;
			m = dtom(ip);
		} else
			if (fp)
		   	   ip_freef(fp);

	} else
		ip->ip_len -= hlen;

	/*
	 * Switch out to protocol's input routine.
	 */
	ipstat.ips_delivered++;
	switch (ip->ip_p) {
	 case IPPROTO_TCP:
		tcp_input(m, hlen, (struct socket *)NULL);
		break;
	 case IPPROTO_UDP:
		udp_input(m, hlen);
		break;
	 case IPPROTO_ICMP:
		icmp_input(m, hlen);
		break;
	 default:
		ipstat.ips_noproto++;
		m_free(m);
	}
	return;
bad:
	m_freem(m);
	return;
}
Esempio n. 15
0
/*
 * Take incoming datagram fragment and try to
 * reassemble it into whole datagram.  If a chain for
 * reassembly of this datagram already exists, then it
 * is given as fp; otherwise have to make a chain.
 */
struct ip *ip_reass(struct ipasfrag *ip, struct ipq *fp)
{
	struct mbuf *m = dtom(ip);
	struct ipasfrag *q;
	int hlen = ip->ip_hl << 2;
	int i, next;
	
	DEBUG_CALL("ip_reass");
	DEBUG_ARG("ip = %lx", (long)ip);
	DEBUG_ARG("fp = %lx", (long)fp);
	DEBUG_ARG("m = %lx", (long)m);

	/*
	 * Presence of header sizes in mbufs
	 * would confuse code below.
         * Fragment m_data is concatenated.
	 */
	m->m_data += hlen;
	m->m_len -= hlen;

	/*
	 * If first fragment to arrive, create a reassembly queue.
	 */
	if (fp == 0) {
	  struct mbuf *t;
	  if ((t = m_get()) == NULL) goto dropfrag;
	  fp = mtod(t, struct ipq *);
	  insque_32(fp, &ipq);
	  fp->ipq_ttl = IPFRAGTTL;
	  fp->ipq_p = ip->ip_p;
	  fp->ipq_id = ip->ip_id;
	  fp->ipq_next = fp->ipq_prev = (ipasfragp_32)fp;
	  fp->ipq_src = ((struct ip *)ip)->ip_src;
	  fp->ipq_dst = ((struct ip *)ip)->ip_dst;
	  q = (struct ipasfrag *)fp;
	  goto insert;
	}
	
	/*
	 * Find a segment which begins after this one does.
	 */
	for (q = (struct ipasfrag *)fp->ipq_next; q != (struct ipasfrag *)fp;
	    q = (struct ipasfrag *)q->ipf_next)
		if (q->ip_off > ip->ip_off)
			break;

	/*
	 * If there is a preceding segment, it may provide some of
	 * our data already.  If so, drop the data from the incoming
	 * segment.  If it provides all of our data, drop us.
	 */
	if (q->ipf_prev != (ipasfragp_32)fp) {
		i = ((struct ipasfrag *)(q->ipf_prev))->ip_off +
		  ((struct ipasfrag *)(q->ipf_prev))->ip_len - ip->ip_off;
		if (i > 0) {
			if (i >= ip->ip_len)
				goto dropfrag;
			m_adj(dtom(ip), i);
			ip->ip_off += i;
			ip->ip_len -= i;
		}
	}

	/*
	 * While we overlap succeeding segments trim them or,
	 * if they are completely covered, dequeue them.
	 */
	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
		i = (ip->ip_off + ip->ip_len) - q->ip_off;
		if (i < q->ip_len) {
			q->ip_len -= i;
			q->ip_off += i;
			m_adj(dtom(q), i);
			break;
		}
		q = (struct ipasfrag *) q->ipf_next;
		m_freem(dtom((struct ipasfrag *) q->ipf_prev));
		ip_deq((struct ipasfrag *) q->ipf_prev);
	}

insert:
	/*
	 * Stick new segment in its place;
	 * check for complete reassembly.
	 */
	ip_enq(ip, (struct ipasfrag *) q->ipf_prev);
	next = 0;
	for (q = (struct ipasfrag *) fp->ipq_next; q != (struct ipasfrag *)fp;
	     q = (struct ipasfrag *) q->ipf_next) {
		if (q->ip_off != next)
			return (0);
		next += q->ip_len;
	}
	if (((struct ipasfrag *)(q->ipf_prev))->ipf_mff & 1)
		return (0);

	/*
	 * Reassembly is complete; concatenate fragments.
	 */
	q = (struct ipasfrag *) fp->ipq_next;
	m = dtom(q);

	q = (struct ipasfrag *) q->ipf_next;
	while (q != (struct ipasfrag *)fp) {
	  struct mbuf *t;
	  t = dtom(q);
	  q = (struct ipasfrag *) q->ipf_next;
	  m_cat(m, t);
	}

	/*
	 * Create header for new ip packet by
	 * modifying header of first packet;
	 * dequeue and discard fragment reassembly header.
	 * Make header visible.
	 */
	ip = (struct ipasfrag *) fp->ipq_next;

	/*
	 * If the fragments concatenated to an mbuf that's
	 * bigger than the total size of the fragment, then and
	 * m_ext buffer was alloced. But fp->ipq_next points to
	 * the old buffer (in the mbuf), so we must point ip
	 * into the new buffer.
	 */
	if (m->m_flags & M_EXT) {
	  int delta;
	  delta = (char *)ip - m->m_dat;
	  ip = (struct ipasfrag *)(m->m_ext + delta);
	}

	/* DEBUG_ARG("ip = %lx", (long)ip); 
	 * ip=(struct ipasfrag *)m->m_data; */

	ip->ip_len = next;
	ip->ipf_mff &= ~1;
	((struct ip *)ip)->ip_src = fp->ipq_src;
	((struct ip *)ip)->ip_dst = fp->ipq_dst;
	remque_32(fp);
	(void) m_free(dtom(fp));
	m = dtom(ip);
	m->m_len += (ip->ip_hl << 2);
	m->m_data -= (ip->ip_hl << 2);

	return ((struct ip *)ip);

dropfrag:
	ipstat.ips_fragdropped++;
	m_freem(m);
	return (0);
}
Esempio n. 16
0
/*
 * Ip input routine.  Checksum and byte swap header.  If fragmented
 * try to reassamble.  If complete and fragment queue exists, discard.
 * Process options.  Pass to next level.
 */
ipintr()
{
	register struct ip *ip;
	register struct mbuf *m;
	struct mbuf *m0;
	register int i;
	register struct ipq *fp;
	register struct in_ifaddr *ia;
	struct ifnet *ifp;
	int hlen, s;

	
	/* IOdebug( "ipintr: called" ); */
next:
	/*
	 * Get next datagram off input queue and get IP header
	 * in first mbuf.
	 */
	s = splimp();
	
	IF_DEQUEUEIF(&ipintrq, m, ifp);
	
	splx(s);
	
	if (m == NULL)
	  {
	    /* IOdebug( "ipintr: no more mbufs" ); */
	    
	    return;
	  }

	/*
	 * If no IP addresses have been set yet but the interfaces
	 * are receiving, can't do anything with incoming packets yet.
	 */
	if (in_ifaddr == NULL)
		goto bad;
	ipstat.ips_total++;
	if ((m->m_off > MMAXOFF || m->m_len < sizeof (struct ip)) &&
	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
		ipstat.ips_toosmall++;
		goto next;
	}
	ip = mtod(m, struct ip *);
	hlen = ip->ip_hl << 2;
	if (hlen < sizeof(struct ip)) {	/* minimum header length */
		ipstat.ips_badhlen++;
		goto bad;
	}
	if (hlen > m->m_len) {
		if ((m = m_pullup(m, hlen)) == 0) {
			ipstat.ips_badhlen++;
			goto next;
		}
		ip = mtod(m, struct ip *);
	}
	if (ipcksum)
		if (ip->ip_sum = in_cksum(m, hlen)) {
			ipstat.ips_badsum++;
			/* IOdebug( "ipintr: bad checksum" ); */
			goto bad;
		}

	/*
	 * Convert fields to host representation.
	 */
	ip->ip_len = ntohs((u_short)ip->ip_len);
	if (ip->ip_len < hlen) {
		ipstat.ips_badlen++;
		goto bad;
	}
	ip->ip_id = ntohs(ip->ip_id);
	ip->ip_off = ntohs((u_short)ip->ip_off);

	/*
	 * Check that the amount of data in the buffers
	 * is as at least much as the IP header would have us expect.
	 * Trim mbufs if longer than we expect.
	 * Drop packet if shorter than we expect.
	 */
	i = -(u_short)ip->ip_len;
	m0 = m;
	for (;;) {
		i += m->m_len;
		if (m->m_next == 0)
			break;
		m = m->m_next;
	}
	if (i != 0) {
		if (i < 0) {
			ipstat.ips_tooshort++;
			m = m0;
			goto bad;
		}
		if (i <= m->m_len)
			m->m_len -= i;
		else
			m_adj(m0, -i);
	}
	m = m0;

	/*
	 * Process options and, if not destined for us,
	 * ship it on.  ip_dooptions returns 1 when an
	 * error was detected (causing an icmp message
	 * to be sent and the original packet to be freed).
	 */
	ip_nhops = 0;		/* for source routed packets */
	if (hlen > sizeof (struct ip) && ip_dooptions(ip, ifp))
		goto next;

	/*
	 * Check our list of addresses, to see if the packet is for us.
	 */
	
	/* IOdebug( "ipintr: checking address" ); */
	
	for (ia = in_ifaddr; ia; ia = ia->ia_next) {
#define	satosin(sa)	((struct sockaddr_in *)(sa))

		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
			goto ours;
		if (
#ifdef	DIRECTED_BROADCAST
		    ia->ia_ifp == ifp &&
#endif
		    (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
			u_long t;

			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
			    ip->ip_dst.s_addr)
				goto ours;
			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
				goto ours;
			/*
			 * Look for all-0's host part (old broadcast addr),
			 * either for subnet or net.
			 */
			t = ntohl(ip->ip_dst.s_addr);
			if (t == ia->ia_subnet)
				goto ours;
			if (t == ia->ia_net)
				goto ours;
		}
	}
	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
		goto ours;
	if (ip->ip_dst.s_addr == INADDR_ANY)
		goto ours;

	/*
	 * Not for us; forward if possible and desirable.
	 */
	ip_forward(ip, ifp);
	
	/* IOdebug( "ipintr: not for us" ); */
	
	goto next;

ours:
	/* IOdebug( "ipintr: ours" ); */
	
	/*
	 * If offset or IP_MF are set, must reassemble.
	 * Otherwise, nothing need be done.
	 * (We could look in the reassembly queue to see
	 * if the packet was previously fragmented,
	 * but it's not worth the time; just let them time out.)
	 */
	if (ip->ip_off &~ IP_DF) {
		/*
		 * Look for queue of fragments
		 * of this datagram.
		 */
	    
		for (fp = ipq.next; fp != &ipq; fp = fp->next)
			if (ip->ip_id == fp->ipq_id &&
			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
			    ip->ip_p == fp->ipq_p)
				goto found;
		fp = 0;
found:

		/*
		 * Adjust ip_len to not reflect header,
		 * set ip_mff if more fragments are expected,
		 * convert offset of this to bytes.
		 */
		
		ip->ip_len -= hlen;
		
		((struct ipasfrag *)ip)->ipf_mff = 0;
		
		if (ip->ip_off & IP_MF)
			((struct ipasfrag *)ip)->ipf_mff = 1;
		
		ip->ip_off <<= 3;

		/*
		 * If datagram marked as having more fragments
		 * or if this is not the first fragment,
		 * attempt reassembly; if it succeeds, proceed.
		 */
		
		if (((struct ipasfrag *)ip)->ipf_mff || ip->ip_off)
		  {
		    /* IOdebug( "ipintr: attempting reassembly" ); */
		    
			ipstat.ips_fragments++;
			
			ip = ip_reass((struct ipasfrag *)ip, fp);
			
			if (ip == NULL)
			  {
			    /* IOdebug( "ipintr: attempt failed" ); */
			    
			    goto next;
			  }			
			
			m = dtom(ip);
		  }
		else
			if (fp)
				ip_freef(fp);
	} else
		ip->ip_len -= hlen;
	/*
	 * Switch out to protocol's input routine.
	 */
	
	/* IOdebug( "ipintr: handling packet of len %d", ip->ip_len ); */
	
	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, ifp);

	/* IOdebug( "ipintr: handled" ); */
	
	goto next;
bad:
	/* IOdebug( "ipintr: bad input" ); */
	
	m_freem(m);
	goto next;
}