static typename edge_capacity_value<Graph, P, T, R>::type apply (Graph& g, typename graph_traits<Graph>::vertex_descriptor src, typename graph_traits<Graph>::vertex_descriptor sink, PredMap pred, const bgl_named_params<P, T, R>& params, detail::error_property_not_found) { typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor; typedef typename graph_traits<Graph>::vertices_size_type size_type; size_type n = is_default_param(get_param(params, vertex_color)) ? num_vertices(g) : 1; std::vector<default_color_type> color_vec(n); return edmonds_karp_max_flow (g, src, sink, choose_const_pmap(get_param(params, edge_capacity), g, edge_capacity), choose_pmap(get_param(params, edge_residual_capacity), g, edge_residual_capacity), choose_const_pmap(get_param(params, edge_reverse), g, edge_reverse), make_iterator_property_map(color_vec.begin(), choose_const_pmap (get_param(params, vertex_index), g, vertex_index), color_vec[0]), pred); }
Flow min_st_cut(const Graph &g, const size_t source, const size_t target, const std::vector<size_t> &rev_edge, const std::vector<Flow> &capacity, std::vector<bool> &source_side) { std::vector<Flow> residual; const auto max_flow = edmonds_karp_max_flow(g, source, target, rev_edge, capacity, residual); source_side.assign(g.num_vertices(), false); std::stack<size_t> stack; source_side[source] = true; stack.push(source); while (!stack.empty()) { const size_t current = stack.top(); stack.pop(); for (const auto edge : g.out_edges(current)) { const size_t neighbor = g.target(edge); if (source_side[neighbor]) continue; // Already discovered. if (!residual[edge]) continue; // Can't navigate through saturated edges. source_side[neighbor] = true; stack.push(neighbor); } } return max_flow; }
typename property_traits< typename property_map<Graph, edge_capacity_t>::const_type >::value_type edmonds_karp_max_flow (Graph& g, typename graph_traits<Graph>::vertex_descriptor src, typename graph_traits<Graph>::vertex_descriptor sink) { bgl_named_params<int, buffer_param_t> params(0); return edmonds_karp_max_flow(g, src, sink, params); }
static typename edge_capacity_value<Graph, P, T, R>::type apply (Graph& g, typename graph_traits<Graph>::vertex_descriptor src, typename graph_traits<Graph>::vertex_descriptor sink, PredMap pred, const bgl_named_params<P, T, R>& params, ColorMap color) { return edmonds_karp_max_flow (g, src, sink, choose_const_pmap(get_param(params, edge_capacity), g, edge_capacity), choose_pmap(get_param(params, edge_residual_capacity), g, edge_residual_capacity), choose_const_pmap(get_param(params, edge_reverse), g, edge_reverse), color, pred); }
typename graph_traits<VertexListGraph>::degree_size_type edge_connectivity(VertexListGraph& g, OutputIterator disconnecting_set) { //------------------------------------------------------------------------- // Type Definitions typedef graph_traits<VertexListGraph> Traits; typedef typename Traits::vertex_iterator vertex_iterator; typedef typename Traits::edge_iterator edge_iterator; typedef typename Traits::out_edge_iterator out_edge_iterator; typedef typename Traits::vertex_descriptor vertex_descriptor; typedef typename Traits::degree_size_type degree_size_type; typedef color_traits<default_color_type> Color; typedef adjacency_list_traits<vecS, vecS, directedS> Tr; typedef typename Tr::edge_descriptor Tr_edge_desc; typedef adjacency_list<vecS, vecS, directedS, no_property, property<edge_capacity_t, degree_size_type, property<edge_residual_capacity_t, degree_size_type, property<edge_reverse_t, Tr_edge_desc> > > > FlowGraph; typedef typename graph_traits<FlowGraph>::edge_descriptor edge_descriptor; //------------------------------------------------------------------------- // Variable Declarations vertex_descriptor u, v, p, k; edge_descriptor e1, e2; bool inserted; vertex_iterator vi, vi_end; edge_iterator ei, ei_end; degree_size_type delta, alpha_star, alpha_S_k; std::set<vertex_descriptor> S, neighbor_S; std::vector<vertex_descriptor> S_star, non_neighbor_S; std::vector<default_color_type> color(num_vertices(g)); std::vector<edge_descriptor> pred(num_vertices(g)); //------------------------------------------------------------------------- // Create a network flow graph out of the undirected graph FlowGraph flow_g(num_vertices(g)); typename property_map<FlowGraph, edge_capacity_t>::type cap = get(edge_capacity, flow_g); typename property_map<FlowGraph, edge_residual_capacity_t>::type res_cap = get(edge_residual_capacity, flow_g); typename property_map<FlowGraph, edge_reverse_t>::type rev_edge = get(edge_reverse, flow_g); for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) { u = source(*ei, g), v = target(*ei, g); tie(e1, inserted) = add_edge(u, v, flow_g); cap[e1] = 1; tie(e2, inserted) = add_edge(v, u, flow_g); cap[e2] = 1; // not sure about this rev_edge[e1] = e2; rev_edge[e2] = e1; } //------------------------------------------------------------------------- // The Algorithm tie(p, delta) = detail::min_degree_vertex(g); S_star.push_back(p); alpha_star = delta; S.insert(p); neighbor_S.insert(p); detail::neighbors(g, S.begin(), S.end(), std::inserter(neighbor_S, neighbor_S.begin())); std::set_difference(vertices(g).first, vertices(g).second, neighbor_S.begin(), neighbor_S.end(), std::back_inserter(non_neighbor_S)); while (!non_neighbor_S.empty()) { // at most n - 1 times k = non_neighbor_S.front(); alpha_S_k = edmonds_karp_max_flow (flow_g, p, k, cap, res_cap, rev_edge, &color[0], &pred[0]); if (alpha_S_k < alpha_star) { alpha_star = alpha_S_k; S_star.clear(); for (tie(vi, vi_end) = vertices(flow_g); vi != vi_end; ++vi) if (color[*vi] != Color::white()) S_star.push_back(*vi); } S.insert(k); neighbor_S.insert(k); detail::neighbors(g, k, std::inserter(neighbor_S, neighbor_S.begin())); non_neighbor_S.clear(); std::set_difference(vertices(g).first, vertices(g).second, neighbor_S.begin(), neighbor_S.end(), std::back_inserter(non_neighbor_S)); } //------------------------------------------------------------------------- // Compute edges of the cut [S*, ~S*] std::vector<bool> in_S_star(num_vertices(g), false); typename std::vector<vertex_descriptor>::iterator si; for (si = S_star.begin(); si != S_star.end(); ++si) in_S_star[*si] = true; degree_size_type c = 0; for (si = S_star.begin(); si != S_star.end(); ++si) { out_edge_iterator ei, ei_end; for (tie(ei, ei_end) = out_edges(*si, g); ei != ei_end; ++ei) if (!in_S_star[target(*ei, g)]) { *disconnecting_set++ = *ei; ++c; } } return c; }
/* * The mex function runs a max-flow min-cut problem. */ void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { mbglIndex i,j,k; mbglIndex mrows, ncols; mbglIndex n,nz; /* sparse matrix */ mwIndex *A_row, *A_col; double *A_val; /* source/sink */ mbglIndex u, v; /* algorithm name */ char *algname; /* flow matrix connectivity */ mbglIndex *pi_flow, *j_flow; /* capacity and residual structures */ int *cap, *res; /* reverse edge map */ mbglIndex *rev_edge_map; /* result */ int flow; /* output */ double *pflowval; double *pmincut; double *pri; double *prj; double *prv; /* * The current calling pattern is * matching_mex(A,verify,initial_match_name,augmenting_path_name) */ const mxArray* arg_matrix; const mxArray* arg_source; const mxArray* arg_sink; const mxArray* arg_algname; int required_arguments = 4; if (nrhs != required_arguments) { mexErrMsgIdAndTxt("matlab_bgl:invalidMexArgument", "the function requires %i arguments, not %i\n", required_arguments, nrhs); } arg_matrix = prhs[0]; arg_source = prhs[1]; arg_sink = prhs[2]; arg_algname = prhs[3]; u = (mbglIndex)load_scalar_arg(arg_source,1); v = (mbglIndex)load_scalar_arg(arg_sink,2); algname = load_string_arg(arg_algname,3); /* The first input must be a sparse matrix. */ mrows = mxGetM(prhs[0]); ncols = mxGetN(prhs[0]); if (mrows != ncols || !mxIsSparse(prhs[0]) || !mxIsDouble(prhs[0]) || mxIsComplex(prhs[0])) { mexErrMsgIdAndTxt("matlab_bgl:invalidMexArgument", "the matrix must be sparse, square, and double valued"); } n = mrows; /* Get the sparse matrix */ A_val = mxGetPr(prhs[0]); A_row = mxGetIr(prhs[0]); A_col = mxGetJc(prhs[0]); nz = A_col[n]; /* Quick input check */ if (u > n || u < 1) { mexErrMsgIdAndTxt("matlab_bgl:invalidMexArgument", "invalid source vertex: %i\n", u); } if (v > n || v < 1) { mexErrMsgIdAndTxt("matlab_bgl:invalidMexArgument", "invalid sink vertex: %i\n", v); } u = u-1; v = v-1; /* build flow connectivity structure */ build_matrix(n,A_row,A_col,A_val, &pi_flow, &j_flow, &cap, &rev_edge_map); /* allocate the residual map */ res = mxCalloc(sizeof(int),pi_flow[n]); /*i = 0; for (k=0; k < pi_flow[n]; k++) { // get the correct row while (k >= pi_flow[i+1]) { ++i; } mexPrintf("(%i,%i) (%i,%i)\n", i,j_flow[k],cap[k],res[k]); }*/ /* mexPrintf("Calling flow (%i,%i)...\n", u, v); */ #ifdef _DEBUG mexPrintf("max_flow(%s)...", algname); #endif if (strcmp(algname,"push_relabel") == 0) { push_relabel_max_flow(n,j_flow,pi_flow, u,v,cap,res,rev_edge_map,&flow); } else if (strcmp(algname, "edmunds_karp") == 0) { edmonds_karp_max_flow(n,j_flow,pi_flow, u,v,cap,res,rev_edge_map,&flow); } else if (strcmp(algname, "kolmogorov") == 0) { boykov_kolmogorov_max_flow(n,j_flow,pi_flow, u,v,cap,res,rev_edge_map,&flow); } else { mexErrMsgIdAndTxt("matlab_bgl:invalidMexArgument", "algname option %s is invalid\n", algname); } #ifdef _DEBUG mexPrintf("done!\n"); #endif /*i = 0; for (k=0; k < pi_flow[n]; k++) { // get the correct row while (k >= pi_flow[i+1]) { ++i; } mexPrintf("(%i,%i) (%i,%i)\n", i,j_flow[k],cap[k],res[k]); }*/ if (nlhs >= 1) { plhs[0] = mxCreateDoubleMatrix(1,1, mxREAL); pflowval = mxGetPr(plhs[0]); pflowval[0] = (double)flow; } if (nlhs >= 2) { int *pimincut; plhs[1] = mxCreateDoubleMatrix(n,1,mxREAL); pmincut = mxGetPr(plhs[1]); pimincut = (int*)pmincut; build_cut(u, n, pi_flow, j_flow, cap, res, pimincut); test_cut(flow,pimincut,n,A_row,A_col,A_val); /* now expand mincut to the full dataset, we need to * do this operation backwards because pimincut has integer * entries specified and we are expanding them to double. */ expand_int_to_double(pimincut,pmincut,n,0.0); } if (nlhs >= 3) { plhs[2] = mxCreateDoubleMatrix(nz,1,mxREAL); plhs[3] = mxCreateDoubleMatrix(nz,1,mxREAL); plhs[4] = mxCreateDoubleMatrix(nz,1,mxREAL); pri = mxGetPr(plhs[2]); prj = mxGetPr(plhs[3]); prv = mxGetPr(plhs[4]); /* j will be our index into the new matrix. */ j = 0; for (i=0;i<n;i++) { for (k=pi_flow[i];k<pi_flow[i+1];k++) { if (cap[k] != 0) { /* since cap[k] != 0, this is a real edge */ pri[j] = i+1; prj[j] = j_flow[k]+1; prv[j] = res[k]; j++; } } } if (j != nz) { mexPrintf("error... j != nz...\n"); } } #ifdef _DEBUG mexPrintf("return\n"); #endif }
typename graph_traits < VertexListGraph >::degree_size_type edge_connectivity(VertexListGraph & g, OutputIterator disconnecting_set) { typedef typename graph_traits < VertexListGraph >::vertex_descriptor vertex_descriptor; typedef typename graph_traits < VertexListGraph >::degree_size_type degree_size_type; typedef color_traits < default_color_type > Color; typedef typename adjacency_list_traits < vecS, vecS, directedS >::edge_descriptor edge_descriptor; typedef adjacency_list < vecS, vecS, directedS, no_property, property < edge_capacity_t, degree_size_type, property < edge_residual_capacity_t, degree_size_type, property < edge_reverse_t, edge_descriptor > > > > FlowGraph; vertex_descriptor u, v, p, k; edge_descriptor e1, e2; bool inserted; typename graph_traits < VertexListGraph >::vertex_iterator vi, vi_end; degree_size_type delta, alpha_star, alpha_S_k; std::set < vertex_descriptor > S, neighbor_S; std::vector < vertex_descriptor > S_star, nonneighbor_S; std::vector < default_color_type > color(num_vertices(g)); std::vector < edge_descriptor > pred(num_vertices(g)); FlowGraph flow_g(num_vertices(g)); typename property_map < FlowGraph, edge_capacity_t >::type cap = get(edge_capacity, flow_g); typename property_map < FlowGraph, edge_residual_capacity_t >::type res_cap = get(edge_residual_capacity, flow_g); typename property_map < FlowGraph, edge_reverse_t >::type rev_edge = get(edge_reverse, flow_g); typename graph_traits < VertexListGraph >::edge_iterator ei, ei_end; for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) { u = source(*ei, g), v = target(*ei, g); boost::tie(e1, inserted) = add_edge(u, v, flow_g); cap[e1] = 1; boost::tie(e2, inserted) = add_edge(v, u, flow_g); cap[e2] = 1; rev_edge[e1] = e2; rev_edge[e2] = e1; } boost::tie(p, delta) = min_degree_vertex(g); S_star.push_back(p); alpha_star = delta; S.insert(p); neighbor_S.insert(p); neighbors(g, S.begin(), S.end(), std::inserter(neighbor_S, neighbor_S.begin())); std::set_difference(vertices(g).first, vertices(g).second, neighbor_S.begin(), neighbor_S.end(), std::back_inserter(nonneighbor_S)); while (!nonneighbor_S.empty()) { k = nonneighbor_S.front(); alpha_S_k = edmonds_karp_max_flow (flow_g, p, k, cap, res_cap, rev_edge, &color[0], &pred[0]); if (alpha_S_k < alpha_star) { alpha_star = alpha_S_k; S_star.clear(); for (boost::tie(vi, vi_end) = vertices(flow_g); vi != vi_end; ++vi) if (color[*vi] != Color::white()) S_star.push_back(*vi); } S.insert(k); neighbor_S.insert(k); neighbors(g, k, std::inserter(neighbor_S, neighbor_S.begin())); nonneighbor_S.clear(); std::set_difference(vertices(g).first, vertices(g).second, neighbor_S.begin(), neighbor_S.end(), std::back_inserter(nonneighbor_S)); } std::vector < bool > in_S_star(num_vertices(g), false); typename std::vector < vertex_descriptor >::iterator si; for (si = S_star.begin(); si != S_star.end(); ++si) in_S_star[*si] = true; degree_size_type c = 0; for (si = S_star.begin(); si != S_star.end(); ++si) { typename graph_traits < VertexListGraph >::out_edge_iterator ei, ei_end; for (boost::tie(ei, ei_end) = out_edges(*si, g); ei != ei_end; ++ei) if (!in_S_star[target(*ei, g)]) { *disconnecting_set++ = *ei; ++c; } } return c; }