Esempio n. 1
0
File: BVH.cpp Progetto: B-Rich/sim3d
  void testMinimize2()
  {
    BallTypeList b;
    VectorTypeList v;

    for(int i = 0; i < 50; ++i) {
        b.push_back(BallType(VectorType::Random(), 1e-7 + 1e-6 * ei_random(0., 1.)));
        for(int j = 0; j < 3; ++j)
            v.push_back(VectorType::Random());
    }

    KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
    KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end());

    BallPointStuff<Dim> i1, i2;

    double m1 = std::numeric_limits<double>::max(), m2 = m1;

    for(int i = 0; i < (int)b.size(); ++i)
        for(int j = 0; j < (int)v.size(); ++j)
            m1 = std::min(m1, i1.minimumOnObjectObject(b[i], v[j]));

    m2 = BVMinimize(tree, vTree, i2);

    VERIFY_IS_APPROX(m1, m2);
  }
Esempio n. 2
0
File: BVH.cpp Progetto: B-Rich/sim3d
  void testIntersect1()
  {
    BallTypeList b;
    for(int i = 0; i < 500; ++i) {
        b.push_back(BallType(VectorType::Random(), 0.5 * ei_random(0., 1.)));
    }
    KdBVH<double, Dim, BallType> tree(b.begin(), b.end());

    VectorType pt = VectorType::Random();
    BallPointStuff<Dim> i1(pt), i2(pt);

    for(int i = 0; i < (int)b.size(); ++i)
      i1.intersectObject(b[i]);

    BVIntersect(tree, i2);

    VERIFY(i1.count == i2.count);
  }
Esempio n. 3
0
File: BVH.cpp Progetto: B-Rich/sim3d
  void testMinimize1()
  {
    BallTypeList b;
    for(int i = 0; i < 500; ++i) {
        b.push_back(BallType(VectorType::Random(), 0.01 * ei_random(0., 1.)));
    }
    KdBVH<double, Dim, BallType> tree(b.begin(), b.end());

    VectorType pt = VectorType::Random();
    BallPointStuff<Dim> i1(pt), i2(pt);

    double m1 = std::numeric_limits<double>::max(), m2 = m1;

    for(int i = 0; i < (int)b.size(); ++i)
      m1 = std::min(m1, i1.minimumOnObject(b[i]));

    m2 = BVMinimize(tree, i2);

    VERIFY_IS_APPROX(m1, m2);
  }
Esempio n. 4
0
File: BVH.cpp Progetto: B-Rich/sim3d
  void testIntersect2()
  {
    BallTypeList b;
    VectorTypeList v;

    for(int i = 0; i < 50; ++i) {
        b.push_back(BallType(VectorType::Random(), 0.5 * ei_random(0., 1.)));
        for(int j = 0; j < 3; ++j)
            v.push_back(VectorType::Random());
    }

    KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
    KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end());

    BallPointStuff<Dim> i1, i2;

    for(int i = 0; i < (int)b.size(); ++i)
        for(int j = 0; j < (int)v.size(); ++j)
            i1.intersectObjectObject(b[i], v[j]);

    BVIntersect(tree, vTree, i2);

    VERIFY(i1.count == i2.count);
  }
template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
{
  const int rows = ref.rows();
  const int cols = ref.cols();
  typedef typename SparseMatrixType::Scalar Scalar;
  enum { Flags = SparseMatrixType::Flags };

  double density = std::max(8./(rows*cols), 0.01);
  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
  typedef Matrix<Scalar,Dynamic,1> DenseVector;
  Scalar eps = 1e-6;

  SparseMatrixType m(rows, cols);
  DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
  DenseVector vec1 = DenseVector::Random(rows);
  Scalar s1 = ei_random<Scalar>();

  std::vector<Vector2i> zeroCoords;
  std::vector<Vector2i> nonzeroCoords;
  initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);

  if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
    return;

  // test coeff and coeffRef
  for (int i=0; i<(int)zeroCoords.size(); ++i)
  {
    VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
    if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret)
      VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
  }
  VERIFY_IS_APPROX(m, refMat);

  m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
  refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);

  VERIFY_IS_APPROX(m, refMat);
  /*
  // test InnerIterators and Block expressions
  for (int t=0; t<10; ++t)
  {
    int j = ei_random<int>(0,cols-1);
    int i = ei_random<int>(0,rows-1);
    int w = ei_random<int>(1,cols-j-1);
    int h = ei_random<int>(1,rows-i-1);

//     VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
    for(int c=0; c<w; c++)
    {
      VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
      for(int r=0; r<h; r++)
      {
//         VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
      }
    }
//     for(int r=0; r<h; r++)
//     {
//       VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
//       for(int c=0; c<w; c++)
//       {
//         VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
//       }
//     }
  }

  for(int c=0; c<cols; c++)
  {
    VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
    VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
  }

  for(int r=0; r<rows; r++)
  {
    VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
    VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
  }
  */

  // test SparseSetters
  // coherent setter
  // TODO extend the MatrixSetter
//   {
//     m.setZero();
//     VERIFY_IS_NOT_APPROX(m, refMat);
//     SparseSetter<SparseMatrixType, FullyCoherentAccessPattern> w(m);
//     for (int i=0; i<nonzeroCoords.size(); ++i)
//     {
//       w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y());
//     }
//   }
//   VERIFY_IS_APPROX(m, refMat);

  // random setter
//   {
//     m.setZero();
//     VERIFY_IS_NOT_APPROX(m, refMat);
//     SparseSetter<SparseMatrixType, RandomAccessPattern> w(m);
//     std::vector<Vector2i> remaining = nonzeroCoords;
//     while(!remaining.empty())
//     {
//       int i = ei_random<int>(0,remaining.size()-1);
//       w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y());
//       remaining[i] = remaining.back();
//       remaining.pop_back();
//     }
//   }
//   VERIFY_IS_APPROX(m, refMat);

    VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) ));
    #ifdef EIGEN_UNORDERED_MAP_SUPPORT
    VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) ));
    #endif
    #ifdef _DENSE_HASH_MAP_H_
    VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) ));
    #endif
    #ifdef _SPARSE_HASH_MAP_H_
    VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) ));
    #endif

    // test fillrand
    {
      DenseMatrix m1(rows,cols);
      m1.setZero();
      SparseMatrixType m2(rows,cols);
      m2.startFill();
      for (int j=0; j<cols; ++j)
      {
        for (int k=0; k<rows/2; ++k)
        {
          int i = ei_random<int>(0,rows-1);
          if (m1.coeff(i,j)==Scalar(0))
            m2.fillrand(i,j) = m1(i,j) = ei_random<Scalar>();
        }
      }
      m2.endFill();
      VERIFY_IS_APPROX(m2,m1);
    }

  // test RandomSetter
  /*{
    SparseMatrixType m1(rows,cols), m2(rows,cols);
    DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
    initSparse<Scalar>(density, refM1, m1);
    {
      Eigen::RandomSetter<SparseMatrixType > setter(m2);
      for (int j=0; j<m1.outerSize(); ++j)
        for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i)
          setter(i.index(), j) = i.value();
    }
    VERIFY_IS_APPROX(m1, m2);
  }*/
//   std::cerr << m.transpose() << "\n\n"  << refMat.transpose() << "\n\n";
//   VERIFY_IS_APPROX(m, refMat);

  // test basic computations
  {
    DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
    DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
    DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
    DenseMatrix refM4 = DenseMatrix::Zero(rows, rows);
    SparseMatrixType m1(rows, rows);
    SparseMatrixType m2(rows, rows);
    SparseMatrixType m3(rows, rows);
    SparseMatrixType m4(rows, rows);
    initSparse<Scalar>(density, refM1, m1);
    initSparse<Scalar>(density, refM2, m2);
    initSparse<Scalar>(density, refM3, m3);
    initSparse<Scalar>(density, refM4, m4);

    VERIFY_IS_APPROX(m1+m2, refM1+refM2);
    VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
    VERIFY_IS_APPROX(m3.cwise()*(m1+m2), refM3.cwise()*(refM1+refM2));
    VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);

    VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
    VERIFY_IS_APPROX(m1/=s1, refM1/=s1);

    VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
    VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);

    VERIFY_IS_APPROX(m1.col(0).eigen2_dot(refM2.row(0)), refM1.col(0).eigen2_dot(refM2.row(0)));

    refM4.setRandom();
    // sparse cwise* dense
    VERIFY_IS_APPROX(m3.cwise()*refM4, refM3.cwise()*refM4);
//     VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
  }

  // test innerVector()
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
    SparseMatrixType m2(rows, rows);
    initSparse<Scalar>(density, refMat2, m2);
    int j0 = ei_random(0,rows-1);
    int j1 = ei_random(0,rows-1);
    VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
    VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
    //m2.innerVector(j0) = 2*m2.innerVector(j1);
    //refMat2.col(j0) = 2*refMat2.col(j1);
    //VERIFY_IS_APPROX(m2, refMat2);
  }

  // test innerVectors()
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
    SparseMatrixType m2(rows, rows);
    initSparse<Scalar>(density, refMat2, m2);
    int j0 = ei_random(0,rows-2);
    int j1 = ei_random(0,rows-2);
    int n0 = ei_random<int>(1,rows-std::max(j0,j1));
    VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
    VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
                     refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
    //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
    //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0);
  }

  // test transpose
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
    SparseMatrixType m2(rows, rows);
    initSparse<Scalar>(density, refMat2, m2);
    VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
    VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
  }

  // test prune
  {
    SparseMatrixType m2(rows, rows);
    DenseMatrix refM2(rows, rows);
    refM2.setZero();
    int countFalseNonZero = 0;
    int countTrueNonZero = 0;
    m2.startFill();
    for (int j=0; j<m2.outerSize(); ++j)
      for (int i=0; i<m2.innerSize(); ++i)
      {
        float x = ei_random<float>(0,1);
        if (x<0.1)
        {
          // do nothing
        }
        else if (x<0.5)
        {
          countFalseNonZero++;
          m2.fill(i,j) = Scalar(0);
        }
        else
        {
          countTrueNonZero++;
          m2.fill(i,j) = refM2(i,j) = Scalar(1);
        }
      }
    m2.endFill();
    VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
    VERIFY_IS_APPROX(m2, refM2);
    m2.prune(1);
    VERIFY(countTrueNonZero==m2.nonZeros());
    VERIFY_IS_APPROX(m2, refM2);
  }
}
Esempio n. 6
0
template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
{
  typedef typename SparseMatrixType::Index Index;

  const Index rows = ref.rows();
  const Index cols = ref.cols();
  typedef typename SparseMatrixType::Scalar Scalar;
  enum { Flags = SparseMatrixType::Flags };

  double density = std::max(8./(rows*cols), 0.01);
  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
  typedef Matrix<Scalar,Dynamic,1> DenseVector;
  Scalar eps = 1e-6;

  SparseMatrixType m(rows, cols);
  DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
  DenseVector vec1 = DenseVector::Random(rows);
  Scalar s1 = ei_random<Scalar>();

  std::vector<Vector2i> zeroCoords;
  std::vector<Vector2i> nonzeroCoords;
  initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);

  if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
    return;

  // test coeff and coeffRef
  for (int i=0; i<(int)zeroCoords.size(); ++i)
  {
    VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
    if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret)
      VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
  }
  VERIFY_IS_APPROX(m, refMat);

  m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
  refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);

  VERIFY_IS_APPROX(m, refMat);
  /*
  // test InnerIterators and Block expressions
  for (int t=0; t<10; ++t)
  {
    int j = ei_random<int>(0,cols-1);
    int i = ei_random<int>(0,rows-1);
    int w = ei_random<int>(1,cols-j-1);
    int h = ei_random<int>(1,rows-i-1);

//     VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
    for(int c=0; c<w; c++)
    {
      VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
      for(int r=0; r<h; r++)
      {
//         VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
      }
    }
//     for(int r=0; r<h; r++)
//     {
//       VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
//       for(int c=0; c<w; c++)
//       {
//         VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
//       }
//     }
  }

  for(int c=0; c<cols; c++)
  {
    VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
    VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
  }

  for(int r=0; r<rows; r++)
  {
    VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
    VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
  }
  */

    // test insert (inner random)
    {
      DenseMatrix m1(rows,cols);
      m1.setZero();
      SparseMatrixType m2(rows,cols);
      m2.reserve(10);
      for (int j=0; j<cols; ++j)
      {
        for (int k=0; k<rows/2; ++k)
        {
          int i = ei_random<int>(0,rows-1);
          if (m1.coeff(i,j)==Scalar(0))
            m2.insert(i,j) = m1(i,j) = ei_random<Scalar>();
        }
      }
      m2.finalize();
      VERIFY_IS_APPROX(m2,m1);
    }

    // test insert (fully random)
    {
      DenseMatrix m1(rows,cols);
      m1.setZero();
      SparseMatrixType m2(rows,cols);
      m2.reserve(10);
      for (int k=0; k<rows*cols; ++k)
      {
        int i = ei_random<int>(0,rows-1);
        int j = ei_random<int>(0,cols-1);
        if (m1.coeff(i,j)==Scalar(0))
          m2.insert(i,j) = m1(i,j) = ei_random<Scalar>();
      }
      m2.finalize();
      VERIFY_IS_APPROX(m2,m1);
    }

  // test basic computations
  {
    DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
    DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
    DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
    DenseMatrix refM4 = DenseMatrix::Zero(rows, rows);
    SparseMatrixType m1(rows, rows);
    SparseMatrixType m2(rows, rows);
    SparseMatrixType m3(rows, rows);
    SparseMatrixType m4(rows, rows);
    initSparse<Scalar>(density, refM1, m1);
    initSparse<Scalar>(density, refM2, m2);
    initSparse<Scalar>(density, refM3, m3);
    initSparse<Scalar>(density, refM4, m4);

    VERIFY_IS_APPROX(m1+m2, refM1+refM2);
    VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
    VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
    VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);

    VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
    VERIFY_IS_APPROX(m1/=s1, refM1/=s1);

    VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
    VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);

    VERIFY_IS_APPROX(m1.col(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0)));

    refM4.setRandom();
    // sparse cwise* dense
    VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
//     VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
  }

  // test transpose
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
    SparseMatrixType m2(rows, rows);
    initSparse<Scalar>(density, refMat2, m2);
    VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
    VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());

    VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
  }

  // test innerVector()
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
    SparseMatrixType m2(rows, rows);
    initSparse<Scalar>(density, refMat2, m2);
    int j0 = ei_random(0,rows-1);
    int j1 = ei_random(0,rows-1);
    VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
    VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
    //m2.innerVector(j0) = 2*m2.innerVector(j1);
    //refMat2.col(j0) = 2*refMat2.col(j1);
    //VERIFY_IS_APPROX(m2, refMat2);
  }

  // test innerVectors()
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
    SparseMatrixType m2(rows, rows);
    initSparse<Scalar>(density, refMat2, m2);
    int j0 = ei_random(0,rows-2);
    int j1 = ei_random(0,rows-2);
    int n0 = ei_random<int>(1,rows-std::max(j0,j1));
    VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
    VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
                     refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
    //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
    //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0);
  }

  // test prune
  {
    SparseMatrixType m2(rows, rows);
    DenseMatrix refM2(rows, rows);
    refM2.setZero();
    int countFalseNonZero = 0;
    int countTrueNonZero = 0;
    for (int j=0; j<m2.outerSize(); ++j)
    {
      m2.startVec(j);
      for (int i=0; i<m2.innerSize(); ++i)
      {
        float x = ei_random<float>(0,1);
        if (x<0.1)
        {
          // do nothing
        }
        else if (x<0.5)
        {
          countFalseNonZero++;
          m2.insertBackByOuterInner(j,i) = Scalar(0);
        }
        else
        {
          countTrueNonZero++;
          m2.insertBackByOuterInner(j,i) = refM2(i,j) = Scalar(1);
        }
      }
    }
    m2.finalize();
    VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
    VERIFY_IS_APPROX(m2, refM2);
    m2.prune(1);
    VERIFY(countTrueNonZero==m2.nonZeros());
    VERIFY_IS_APPROX(m2, refM2);
  }
  
  // test sparseView
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
    SparseMatrixType m2(rows, rows);
    VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
  }
}