Esempio n. 1
0
void CipherText::langrange(element_t* ys, int index, int k, int num){
  element_t delta;
  element_t numerator;
  element_t denominator;
  element_t temp;
  element_init_Zr(delta, *(this->p));
  element_init_Zr(numerator, *(this->p));
  element_init_Zr(denominator, *(this->p));
  element_init_Zr(temp, *(this->p));
  element_init_Zr(ys[index], *(this->p));
  element_set0(ys[index]);
  int i, j;
  for(i = 0; i < k; i++){
    //compute the langrange coefficent l
    element_set1(delta);
    for(j = 0; j < k; j++){
      if( j != i){
        element_set_si(numerator, index - j);
        element_set_si(denominator, i - j);
        element_div(numerator, numerator, denominator);
        element_mul(delta, delta, numerator);
      }
    }

    element_mul(temp, ys[i], delta);
    element_add(ys[index], ys[index], temp);
  }
}
Esempio n. 2
0
static void fi_sqrt(element_ptr n, element_ptr e) {
  eptr p = e->data;
  eptr r = n->data;
  element_t e0, e1, e2;

  // If (a+bi)^2 = x+yi then 2a^2 = x +- sqrt(x^2 + y^2)
  // where we choose the sign so that a exists, and 2ab = y.
  // Thus 2b^2 = - (x -+ sqrt(x^2 + y^2)).
  element_init(e0, p->x->field);
  element_init(e1, e0->field);
  element_init(e2, e0->field);
  element_square(e0, p->x);
  element_square(e1, p->y);
  element_add(e0, e0, e1);
  element_sqrt(e0, e0);
  // e0 = sqrt(x^2 + y^2)
  element_add(e1, p->x, e0);
  element_set_si(e2, 2);
  element_invert(e2, e2);
  element_mul(e1, e1, e2);
  // e1 = (x + sqrt(x^2 + y^2))/2
  if (!element_is_sqr(e1)) {
    element_sub(e1, e1, e0);
    // e1 should be a square.
  }
  element_sqrt(e0, e1);
  element_add(e1, e0, e0);
  element_invert(e1, e1);
  element_mul(r->y, p->y, e1);
  element_set(r->x, e0);
  element_clear(e0);
  element_clear(e1);
  element_clear(e2);
}
Esempio n. 3
0
static val_ptr fun_cmp(val_ptr v[], int(*fun)(int)) {
	int i = element_cmp(v[0]->elem, v[1]->elem);
	element_ptr e = (element_ptr)pbc_malloc(sizeof(*e));
	element_init(e, M);
	element_set_si(e, fun(i));
	v[0]->elem = e;
	return v[0];
}
Esempio n. 4
0
static inline void sn_double_no_check(point_ptr r, point_ptr p) {
  element_t lambda, e0, e1;

  element_init(lambda, p->x->field);
  element_init(e0, p->x->field);
  element_init(e1, p->x->field);
  //same point: double them

  //lambda = (3x^2 + 2x) / 2y
  element_mul_si(lambda, p->x, 3);
  element_set_si(e0, 2);
  element_add(lambda, lambda, e0);
  element_mul(lambda, lambda, p->x);
  element_add(e0, p->y, p->y);
  element_invert(e0, e0);
  element_mul(lambda, lambda, e0);
  //x1 = lambda^2 - 2x - 1
  element_add(e1, p->x, p->x);
  element_square(e0, lambda);
  element_sub(e0, e0, e1);
  element_set_si(e1, 1);
  element_sub(e0, e0, e1);
  //y1 = (x - x1)lambda - y
  element_sub(e1, p->x, e0);
  element_mul(e1, e1, lambda);
  element_sub(e1, e1, p->y);

  element_set(r->x, e0);
  element_set(r->y, e1);
  r->inf_flag = 0;

  element_clear(lambda);
  element_clear(e0);
  element_clear(e1);
  return;
}
Esempio n. 5
0
void consumerShares(signed long int *codeword){
    pairing_t pairing;
    element_t g, r, a, e_g_g, share;
    char *argv = "./param/a.param";
    char s[16384];
    signed long int temp_share;
    FILE *fp = stdin;

    fp = fopen(argv, "r");
    if (!fp) 
        pbc_die("error opening %s\n", argv);
    size_t count = fread(s, 1, 16384, fp);
    if(!count) 
        pbc_die("read parameter failure\n");
    fclose(fp);
    if(pairing_init_set_buf(pairing, s, count)) 
        pbc_die("pairing init failed\n");
    if(!pairing_is_symmetric(pairing)) pbc_die("pairing is not symmetric\n");
    
    element_init_G1(g, pairing);
    element_init_Zr(r, pairing);
    element_init_Zr(a, pairing);
    element_init_Zr(share, pairing);
    element_init_GT(e_g_g, pairing);
    
    //find the generator of the group
    element_set(g, ((curve_data_ptr)((a_pairing_data_ptr)
    pairing->data)->Eq->data)->gen);
    element_random(r);
    element_random(a);
    //compute e(g, g)
    element_pairing(e_g_g, g, g);
    //compute e(g, g)^r
    element_pow_zn(e_g_g, e_g_g, r);
    //compute e(g,g)^ra
    element_pow_zn(e_g_g, e_g_g, a);
    temp_share = codeword[0];
    //transfer signed long int type ecret shares to an element_t type before we do the power of
    //e_g_g
    element_set_si(share, temp_share);
    element_pow_zn(e_g_g, e_g_g, share);
    
}
Esempio n. 6
0
// Requires j != 0, 1728.
void field_init_curve_j(field_ptr f, element_ptr j, mpz_t order, mpz_t cofac) {
  element_t a, b;
  element_init(a, j->field);
  element_init(b, j->field);

  element_set_si(a, 1728);
  element_sub(a, a, j);
  element_invert(a, a);
  element_mul(a, a, j);

  //b = 2 j / (1728 - j)
  element_add(b, a, a);
  //a = 3 j / (1728 - j)
  element_add(a, a, b);
  field_init_curve_ab(f, a, b, order, cofac);

  element_clear(a);
  element_clear(b);
}
Esempio n. 7
0
static void fq_sqrt(element_ptr n, element_ptr e) {
  eptr p = e->data;
  eptr r = n->data;
  element_ptr nqr = fq_nqr(n->field);
  element_t e0, e1, e2;

  //if (a+b sqrt(nqr))^2 = x+y sqrt(nqr) then
  //2a^2 = x +- sqrt(x^2 - nqr y^2)
  //(take the sign which allows a to exist)
  //and 2ab = y
  element_init(e0, p->x->field);
  element_init(e1, e0->field);
  element_init(e2, e0->field);
  element_square(e0, p->x);
  element_square(e1, p->y);
  element_mul(e1, e1, nqr);
  element_sub(e0, e0, e1);
  element_sqrt(e0, e0);
  //e0 = sqrt(x^2 - nqr y^2)
  element_add(e1, p->x, e0);
  element_set_si(e2, 2);
  element_invert(e2, e2);
  element_mul(e1, e1, e2);
  //e1 = (x + sqrt(x^2 - nqr y^2))/2
  if (!element_is_sqr(e1)) {
    element_sub(e1, e1, e0);
    //e1 should be a square
  }
  element_sqrt(e0, e1);
  element_add(e1, e0, e0);
  element_invert(e1, e1);
  element_mul(r->y, p->y, e1);
  element_set(r->x, e0);
  element_clear(e0);
  element_clear(e1);
  element_clear(e2);
}
Esempio n. 8
0
File: 19.c Progetto: blynn/pbc
int main(void) {
  field_t c;
  field_t Z19;
  element_t P, Q, R;
  mpz_t q, z;
  element_t a, b;
  int i;

  field_t Z19_2;
  field_t c2;
  element_t P2, Q2, R2;
  element_t a2;

  mpz_init(q);
  mpz_init(z);

  mpz_set_ui(q, 19);

  field_init_fp(Z19, q);
  element_init(a, Z19);
  element_init(b, Z19);

  element_set_si(a, 1);
  element_set_si(b, 6);

  mpz_set_ui(q, 18);
  field_init_curve_ab(c, a, b, q, NULL);
  element_init(P, c);
  element_init(Q, c);
  element_init(R, c);

  printf("Y^2 = X^3 + X + 6 over F_19\n");
  //(0,+/-5) is a generator
  element_set0(a);
  curve_from_x(R, a);

  for (i=1; i<19; i++) {
    mpz_set_si(z, i);
    element_mul_mpz(Q, R, z);
    element_printf("%dR = %B\n", i, Q);
  }

  mpz_set_ui(z, 6);
  element_mul_mpz(P, R, z);
  //P has order 3
  element_printf("P = %B\n", P);

  for (i=1; i<=3; i++) {
    mpz_set_si(z, i);
    element_mul_mpz(Q, R, z);
    tate_3(a, P, Q, R);
    element_printf("e_3(P,%dR) = %B\n", i, a);
  }

  element_double(P, R);
  //P has order 9
  element_printf("P = %B\n", P);
  for (i=1; i<=9; i++) {
    mpz_set_si(z, i);
    //we're supposed to use multiples of R
    //but 2R works just as well and it allows us
    //to use R as the offset every time
    element_mul_mpz(Q, P, z);
    tate_9(a, P, Q, R);
    element_printf("e_9(P,%dP) = %B\n", i, a);
  }

  //to do the pairing on all of E(F_19) we need to move to F_19^2
  //or compute the rational function explicitly
  printf("moving to F_19^2\n");
  field_init_fi(Z19_2, Z19);

  //don't need to tell it the real order
  field_init_curve_ab_map(c2, c, element_field_to_fi, Z19_2, q, NULL);
  element_init(P2, c2);
  element_init(Q2, c2);
  element_init(R2, c2);

  element_init(a2, Z19_2);
  element_set0(a2);
  curve_from_x(P2, a2);

  element_random(R2);

  element_printf("P = %B\n", P2);

  for (i=1; i<=18; i++) {
    mpz_set_si(z, i);
    element_mul_mpz(Q2, P2, z);
    tate_18(a2, P2, Q2, R2, P2);
    element_printf("e_18(P,%dP) = %B\n", i, a2);
  }

  element_clear(P2);
  element_clear(Q2);
  element_clear(R2);
  element_clear(a2);
  field_clear(c2);
  field_clear(Z19_2);

  field_clear(c);
  element_clear(a);
  element_clear(b);
  element_clear(P);
  element_clear(Q);
  element_clear(R);
  field_clear(Z19);

  mpz_clear(q);
  mpz_clear(z);
  return 0;
}
Esempio n. 9
0
static void fq_set_si(element_ptr e, signed long int i) {
  eptr p = e->data;
  element_set_si(p->x, i);
  element_set0(p->y);
}
Esempio n. 10
0
void pbc_param_init_e_gen(pbc_param_t par, int rbits, int qbits) {
  e_init(par);
  e_param_ptr p = par->data;
  //3 takes 2 bits to represent
  int hbits = (qbits - 2) / 2 - rbits;
  mpz_ptr q = p->q;
  mpz_ptr r = p->r;
  mpz_ptr h = p->h;
  mpz_t n;
  field_t Fq;
  field_t cc;
  element_t j;
  int found = 0;

  //won't find any curves is hbits is too low
  if (hbits < 3) hbits = 3;

  mpz_init(n);

  do {
    int i;
    mpz_set_ui(r, 0);

    if (rand() % 2) {
      p->exp2 = rbits - 1;
      p->sign1 = 1;
    } else {
      p->exp2 = rbits;
      p->sign1 = -1;
    }
    mpz_setbit(r, p->exp2);

    p->exp1 = (rand() % (p->exp2 - 1)) + 1;
    //use q as a temp variable
    mpz_set_ui(q, 0);
    mpz_setbit(q, p->exp1);

    if (p->sign1 > 0) {
      mpz_add(r, r, q);
    } else {
      mpz_sub(r, r, q);
    }

    if (rand() % 2) {
      p->sign0 = 1;
      mpz_add_ui(r, r, 1);
    } else {
      p->sign0 = -1;
      mpz_sub_ui(r, r, 1);
    }
    if (!mpz_probab_prime_p(r, 10)) continue;
    for (i=0; i<10; i++) {
      //use q as a temp variable
      mpz_set_ui(q, 0);
      mpz_setbit(q, hbits + 1);
      pbc_mpz_random(h, q);
      mpz_mul(h, h, h);
      mpz_mul_ui(h, h, 3);
      //finally q takes the value it should
      mpz_mul(n, r, r);
      mpz_mul(n, n, h);
      mpz_add_ui(q, n, 1);
      if (mpz_probab_prime_p(q, 10)) {
        found = 1;
        break;
      }
    }
  } while (!found);
  /*
  do {
    mpz_set_ui(r, 0);
    mpz_setbit(r, rbits);
    pbc_mpz_random(r, r);
    mpz_nextprime(r, r);
    mpz_mul(n, r, r);
    mpz_mul_ui(n, n, 3);
    mpz_add_ui(q, n, 1);
  } while (!mpz_probab_prime_p(q, 10));
  */

  field_init_fp(Fq, q);
  element_init(j, Fq);
  element_set_si(j, 1);
  field_init_curve_b(cc, j, n, NULL);
  element_clear(j);
  // We may need to twist it.
  {
    // Pick a random point P and twist the curve if P has the wrong order.
    element_t P;
    element_init(P, cc);
    element_random(P);
    element_mul_mpz(P, P, n);
    if (!element_is0(P)) field_reinit_curve_twist(cc);
    element_clear(P);
  }
  element_to_mpz(p->a, curve_field_a_coeff(cc));
  element_to_mpz(p->b, curve_field_b_coeff(cc));

  mpz_clear(n);
}
Esempio n. 11
0
int main(void) {
  field_t fp, fx;
  mpz_t prime;
  darray_t list;
  int p = 7;

  // Exercise poly_is_irred() with a sieve of Erastosthenes for polynomials.
  darray_init(list);
  mpz_init(prime);
  mpz_set_ui(prime, p);
  field_init_fp(fp, prime);
  field_init_poly(fx, fp);
  element_t e;
  element_init(e, fp);
  // Enumerate polynomials in F_p[x] up to degree 2.
  int a[3], d;
  a[0] = a[1] = a[2] = 0;
  for(;;) {
    element_ptr f = pbc_malloc(sizeof(*f));
    element_init(f, fx);
    int j;
    for(j = 0; j < 3; j++) {
      element_set_si(e, a[j]);
      poly_set_coeff(f, e, j);
    }

    // Test poly_degree().
    for(j = 2; !a[j] && j >= 0; j--);
    EXPECT(poly_degree(f) == j);

    // Add monic polynomials to the list.
    if (j >= 0 && a[j] == 1) darray_append(list, f);
    else {
      element_clear(f);
      free(f);
    }

    // Next!
    d = 0;
    for(;;) {
      a[d]++;
      if (a[d] >= p) {
        a[d] = 0;
        d++;
        if (d > 2) goto break2;
      } else break;
    }
  }
break2: ;

  // Find all composite monic polynomials of degree 3 or less.
  darray_t prodlist;
  darray_init(prodlist);

  void outer(void *data) {
    element_ptr f = data;
    void inner(void *data2) {
      element_ptr g = data2;
      if (!poly_degree(f) || !poly_degree(g)) return;
      if (poly_degree(f) + poly_degree(g) > 3) return;
      element_ptr h = pbc_malloc(sizeof(*h));
      element_init(h, fx);
      element_mul(h, f, g);
      darray_append(prodlist, h);
      EXPECT(!poly_is_irred(h));
    }
Esempio n. 12
0
void curve_set_si(element_t R, long int x, long int y) {
	point_ptr p = (point_ptr)R->data;
  element_set_si(p->x, x);
  element_set_si(p->y, y);
  p->inf_flag = 0;
}
Esempio n. 13
0
File: d_param.c Progetto: blynn/pbc
// Requires cofactor is even. TODO: This seems to contradict a comment below.
// Requires in != out.
// Mangles in.
static void lucas_even(element_ptr out, element_ptr in, mpz_t cofactor) {
  if (element_is1(in)) {
    element_set(out, in);
    return;
  }
  element_t temp;
  element_init_same_as(temp, out);
  element_ptr in0 = element_x(in);
  element_ptr in1 = element_y(in);
  element_ptr v0 = element_x(out);
  element_ptr v1 = element_y(out);
  element_ptr t0 = element_x(temp);
  element_ptr t1 = element_y(temp);
  size_t j;

  element_set_si(t0, 2);
  element_double(t1, in0);

  element_set(v0, t0);
  element_set(v1, t1);

  j = mpz_sizeinbase(cofactor, 2) - 1;
  for (;;) {
    if (!j) {
      element_mul(v1, v0, v1);
      element_sub(v1, v1, t1);
      element_square(v0, v0);
      element_sub(v0, v0, t0);
      break;
    }
    if (mpz_tstbit(cofactor, j)) {
      element_mul(v0, v0, v1);
      element_sub(v0, v0, t1);
      element_square(v1, v1);
      element_sub(v1, v1, t0);
    } else {
      element_mul(v1, v0, v1);
      element_sub(v1, v1, t1);
      element_square(v0, v0);
      element_sub(v0, v0, t0);
    }
    j--;
  }

  // Assume cofactor = (q^2 - q + 1) / r is odd
  // thus v1 = V_k, v0 = V_{k-1}
  //   U = (P v1 - 2 v0) / (P^2 - 4)

  element_double(v0, v0);
  element_mul(in0, t1, v1);
  element_sub(in0, in0, v0);

  element_square(t1, t1);
  element_sub(t1, t1, t0);
  element_sub(t1, t1, t0);

  element_halve(v0, v1);
  element_div(v1, in0, t1);
  element_mul(v1, v1, in1);

  element_clear(temp);
}