Esempio n. 1
0
bool ethash_compute_full_data(
	void* mem,
	uint64_t full_size,
	ethash_light_t const light,
	ethash_callback_t callback
)
{
	if (full_size % (sizeof(uint32_t) * MIX_WORDS) != 0 ||
		(full_size % sizeof(node)) != 0) {
		return false;
	}
	uint32_t const max_n = (uint32_t)(full_size / sizeof(node));
	node* full_nodes = mem;
	double const progress_change = 1.0f / max_n;
	double progress = 0.0f;
	// now compute full nodes
	for (uint32_t n = 0; n != max_n; ++n) {
		if (callback &&
			n % (max_n / 100) == 0 &&
			callback((unsigned int)(ceil(progress * 100.0f))) != 0) {

			return false;
		}
		progress += progress_change;
		ethash_calculate_dag_item(&(full_nodes[n]), n, light);
	}
	return true;
}
Esempio n. 2
0
bool ethash_compute_full_data(void *mem,
                              ethash_params const *params,
                              ethash_cache const *cache)
{
    if (params->full_size % (sizeof(uint32_t) * MIX_WORDS) != 0 ||
        (params->full_size % sizeof(node)) != 0) {
        return false;
    }
    node *full_nodes = mem;

    // now compute full nodes
    for (unsigned n = 0; n != (params->full_size / sizeof(node)); ++n) {
        ethash_calculate_dag_item(&(full_nodes[n]), n, params, cache);
    }
    return true;
}
Esempio n. 3
0
static bool ethash_hash(
	ethash_return_value_t* ret,
	node const* full_nodes,
	ethash_light_t const light,
	uint64_t full_size,
	ethash_h256_t const header_hash,
	uint64_t const nonce
)
{
	if (full_size % MIX_WORDS != 0) {
		return false;
	}

	// pack hash and nonce together into first 40 bytes of s_mix
	assert(sizeof(node) * 8 == 512);
	node s_mix[MIX_NODES + 1];
	memcpy(s_mix[0].bytes, &header_hash, 32);
	fix_endian64(s_mix[0].double_words[4], nonce);

	// compute sha3-512 hash and replicate across mix
	SHA3_512(s_mix->bytes, s_mix->bytes, 40);
	fix_endian_arr32(s_mix[0].words, 16);

	node* const mix = s_mix + 1;
	for (uint32_t w = 0; w != MIX_WORDS; ++w) {
		mix->words[w] = s_mix[0].words[w % NODE_WORDS];
	}

	unsigned const page_size = sizeof(uint32_t) * MIX_WORDS;
	unsigned const num_full_pages = (unsigned) (full_size / page_size);

	for (unsigned i = 0; i != ETHASH_ACCESSES; ++i) {
		uint32_t const index = fnv_hash(s_mix->words[0] ^ i, mix->words[i % MIX_WORDS]) % num_full_pages;

		for (unsigned n = 0; n != MIX_NODES; ++n) {
			node const* dag_node;
			if (full_nodes) {
				dag_node = &full_nodes[MIX_NODES * index + n];
			} else {
				node tmp_node;
				ethash_calculate_dag_item(&tmp_node, index * MIX_NODES + n, light);
				dag_node = &tmp_node;
			}

#if defined(_M_X64) && ENABLE_SSE
			{
				__m128i fnv_prime = _mm_set1_epi32(FNV_PRIME);
				__m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]);
				__m128i xmm1 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[1]);
				__m128i xmm2 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[2]);
				__m128i xmm3 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[3]);
				mix[n].xmm[0] = _mm_xor_si128(xmm0, dag_node->xmm[0]);
				mix[n].xmm[1] = _mm_xor_si128(xmm1, dag_node->xmm[1]);
				mix[n].xmm[2] = _mm_xor_si128(xmm2, dag_node->xmm[2]);
				mix[n].xmm[3] = _mm_xor_si128(xmm3, dag_node->xmm[3]);
			}
			#else
			{
				for (unsigned w = 0; w != NODE_WORDS; ++w) {
					mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]);
				}
			}
#endif
		}

	}

	// compress mix
	for (uint32_t w = 0; w != MIX_WORDS; w += 4) {
		uint32_t reduction = mix->words[w + 0];
		reduction = reduction * FNV_PRIME ^ mix->words[w + 1];
		reduction = reduction * FNV_PRIME ^ mix->words[w + 2];
		reduction = reduction * FNV_PRIME ^ mix->words[w + 3];
		mix->words[w / 4] = reduction;
	}

	fix_endian_arr32(mix->words, MIX_WORDS / 4);
	memcpy(&ret->mix_hash, mix->bytes, 32);
	// final Keccak hash
	SHA3_256(&ret->result, s_mix->bytes, 64 + 32); // Keccak-256(s + compressed_mix)
	return true;
}