Esempio n. 1
0
/**
 *  evalDistribution function evaluate a model function with input vector
 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
 *
 */ 
static PyObject * evalDistribution(CLorentzian *self, PyObject *args){
	PyObject *qx, *qy;
	PyArrayObject * pars;
	int npars ,mpars;
	
	// Get parameters
	
	    // Reader parameter dictionary
    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
    self->model->center = PyFloat_AsDouble( PyDict_GetItemString(self->params, "center") );
    self->model->gamma = PyFloat_AsDouble( PyDict_GetItemString(self->params, "gamma") );

	
	// Get input and determine whether we have to supply a 1D or 2D return value.
	if ( !PyArg_ParseTuple(args,"O",&pars) ) {
	    PyErr_SetString(CLorentzianError, 
	    	"CLorentzian.evalDistribution expects a q value.");
		return NULL;
	}
    // Check params
	
    if(PyArray_Check(pars)==1) {
		
	    // Length of list should 1 or 2
	    npars = pars->nd; 
	    if(npars==1) {
	        // input is a numpy array
	        if (PyArray_Check(pars)) {
		        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
		    }
		}else{
		    PyErr_SetString(CLorentzianError, 
                   "CLorentzian.evalDistribution expect numpy array of one dimension.");
	        return NULL;
		}
    }else if( PyList_Check(pars)==1) {
    	// Length of list should be 2 for I(qx,qy)
	    mpars = PyList_GET_SIZE(pars); 
	    if(mpars!=2) {
	    	PyErr_SetString(CLorentzianError, 
	    		"CLorentzian.evalDistribution expects a list of dimension 2.");
	    	return NULL;
	    }
	     qx = PyList_GET_ITEM(pars,0);
	     qy = PyList_GET_ITEM(pars,1);
	     if (PyArray_Check(qx) && PyArray_Check(qy)) {
	         return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
		           (PyArrayObject*)qy);
		 }else{
		    PyErr_SetString(CLorentzianError, 
                   "CLorentzian.evalDistribution expect 2 numpy arrays in list.");
	        return NULL;
	     }
	}
	PyErr_SetString(CLorentzianError, 
                   "CLorentzian.evalDistribution couln't be run.");
	return NULL;
	
}
Esempio n. 2
0
/**
 *  evalDistribution function evaluate a model function with input vector
 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
 *
 */ 
static PyObject * evalDistribution(CEllipsoidModel *self, PyObject *args){
	PyObject *qx, *qy;
	PyArrayObject * pars;
	int npars ,mpars;
	
	// Get parameters
	
	    // Reader parameter dictionary
    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
    // Read in dispersion parameters
    PyObject* disp_dict;
    DispersionVisitor* visitor = new DispersionVisitor();
    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);

	
	// Get input and determine whether we have to supply a 1D or 2D return value.
	if ( !PyArg_ParseTuple(args,"O",&pars) ) {
	    PyErr_SetString(CEllipsoidModelError, 
	    	"CEllipsoidModel.evalDistribution expects a q value.");
		return NULL;
	}
    // Check params
	
    if(PyArray_Check(pars)==1) {
		
	    // Length of list should 1 or 2
	    npars = pars->nd; 
	    if(npars==1) {
	        // input is a numpy array
	        if (PyArray_Check(pars)) {
		        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
		    }
		}else{
		    PyErr_SetString(CEllipsoidModelError, 
                   "CEllipsoidModel.evalDistribution expect numpy array of one dimension.");
	        return NULL;
		}
    }else if( PyList_Check(pars)==1) {
    	// Length of list should be 2 for I(qx,qy)
	    mpars = PyList_GET_SIZE(pars); 
	    if(mpars!=2) {
	    	PyErr_SetString(CEllipsoidModelError, 
	    		"CEllipsoidModel.evalDistribution expects a list of dimension 2.");
	    	return NULL;
	    }
	     qx = PyList_GET_ITEM(pars,0);
	     qy = PyList_GET_ITEM(pars,1);
	     if (PyArray_Check(qx) && PyArray_Check(qy)) {
	         return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
		           (PyArrayObject*)qy);
		 }else{
		    PyErr_SetString(CEllipsoidModelError, 
                   "CEllipsoidModel.evalDistribution expect 2 numpy arrays in list.");
	        return NULL;
	     }
	}
	PyErr_SetString(CEllipsoidModelError, 
                   "CEllipsoidModel.evalDistribution couln't be run.");
	return NULL;
	
}