io_buffer_t *io_buffer_t::create(bool is_input) { bool success = true; io_buffer_t *buffer_redirect = new io_buffer_t(is_input ? 0 : 1, is_input); if (exec_pipe(buffer_redirect->pipe_fd) == -1) { debug(1, PIPE_ERROR); wperror(L"pipe"); success = false; } else if (fcntl(buffer_redirect->pipe_fd[0], F_SETFL, O_NONBLOCK)) { debug(1, PIPE_ERROR); wperror(L"fcntl"); success = false; } if (! success) { delete buffer_redirect; buffer_redirect = NULL; } return buffer_redirect; }
static char * encrypt_by_prog (const unsigned char *str, size_t *len, Crypt *key) { char *ret = NULL, *input; char * args[3]; int iplen; args[0] = malloc_strdup(key->prog); args[1] = malloc_strdup("encrypt"); args[2] = NULL; input = malloc_strdup2(key->key, "\n"); iplen = strlen(input); new_realloc((void**)&input, *len + iplen); memmove(input + iplen, str, *len); *len += iplen; ret = exec_pipe(key->prog, input, len, args); new_free(&args[0]); new_free(&args[1]); new_free((char**)&input); new_realloc((void**)&ret, 1+*len); ret[*len] = 0; return ret; }
io_buffer_t *io_buffer_t::create(int fd) { bool success = true; assert(fd >= 0); io_buffer_t *buffer_redirect = new io_buffer_t(fd); if (exec_pipe(buffer_redirect->pipe_fd) == -1) { debug(1, PIPE_ERROR); wperror(L"pipe"); success = false; } else if (make_fd_nonblocking(buffer_redirect->pipe_fd[0]) != 0) { debug(1, PIPE_ERROR); wperror(L"fcntl"); success = false; } if (! success) { delete buffer_redirect; buffer_redirect = NULL; } else { //fprintf(stderr, "Created pipes {%d, %d} for %p\n", buffer_redirect->pipe_fd[0], buffer_redirect->pipe_fd[1], buffer_redirect); } return buffer_redirect; }
io_data_t *io_buffer_create(bool is_input) { bool success = true; io_data_t *buffer_redirect = new io_data_t; buffer_redirect->out_buffer_create(); buffer_redirect->io_mode = IO_BUFFER; buffer_redirect->is_input = is_input ? true : false; buffer_redirect->fd=is_input?0:1; if (exec_pipe(buffer_redirect->param1.pipe_fd) == -1) { debug(1, PIPE_ERROR); wperror(L"pipe"); success = false; } else if (fcntl(buffer_redirect->param1.pipe_fd[0], F_SETFL, O_NONBLOCK)) { debug(1, PIPE_ERROR); wperror(L"fcntl"); success = false; } if (! success) { delete buffer_redirect; buffer_redirect = NULL; } return buffer_redirect; }
int my_pipe(char **cmd, char **env) { int pid; int ret; ret = 0; if ((pid = fork()) < 0) return (1); if (pid == 0) { exec_pipe(cmd, env); exit(0); } else wait(&ret); return (ret); }
int pipe_parsing(char *str) { char **tab_pipe; int ret; int tab_len; if (!valid_str(str) || !last_verif(str)) return (0); if (in_str(str, token_val("|")) && (tab_pipe = str_to_wordtab(str, token_val("|")))) { tab_len = count_tab(tab_pipe); ret = exec_pipe(tab_pipe, tab_len); free(tab_pipe); } else ret = parse_command_redir(str); return (ret); }
int execute_and_create_process(struct subprocess* process, struct inotify_event* event, char *command) { //Execute command using wrapper function. process->start_time=(char*)malloc(sizeof(char)*9); strcpy(process->start_time,get_time_string()); int pid=exec_pipe(command,0); if (pid==-1) { return -1; } process->pid=pid; process->retries=0; process->command=(char *)malloc(sizeof(char)*strlen(command)); process->event=event; process->prev=NULL; process->next=NULL; strcpy(process->command,command); process->path=(char *)malloc(sizeof(char)*(strlen(global_wd_list[event->wd]->path)+strlen(event->name)+2)); sprintf(process->path,"%s/%s",global_wd_list[event->wd]->path,event->name); add_list_element(process); return pid; }
int exec_course_branch_select(t_node *root, t_global *global) { int status; if (root->id == PIPE) { if ((status = exec_pipe(root, global)) >= EXIT_FAILURE) return (status); } else if (root->id == CMD) { if ((status = exec_command(root, global->env)) >= EXIT_FAILURE) return (status); } else { if ((status = exec_redirection(root, global, root->id)) >= EXIT_FAILURE) return (status); } return (EXIT_SUCCESS); }
void ft_launch_exec(char *command, char ***env, int *execve_flag) { char **path; char **cmd_arg; if (ft_strsrch(command, '|') != -1) exec_pipe(env, command, execve_flag); else { cmd_arg = get_clean_arg(command, *env); if (((path = ft_path(env, cmd_arg[0])) == NULL) && ft_strcmp(command, "exit") != 0) ft_putendl("Set a good path or you will take expensive."); if ((ft_rd(command, env, execve_flag) == 1) && (builtin(env, cmd_arg) == 0)) { ft_execute_cmd(path, cmd_arg, *env, execve_flag); if (path) ft_tabfree(path); } } }
io_buffer_t *io_buffer_t::create(int fd, const io_chain_t &conflicts) { bool success = true; assert(fd >= 0); io_buffer_t *buffer_redirect = new io_buffer_t(fd); if (exec_pipe(buffer_redirect->pipe_fd) == -1) { debug(1, PIPE_ERROR); wperror(L"pipe"); success = false; } else if (!buffer_redirect->avoid_conflicts_with_io_chain(conflicts)) { // The above call closes the fds on error. success = false; } else if (make_fd_nonblocking(buffer_redirect->pipe_fd[0]) != 0) { debug(1, PIPE_ERROR); wperror(L"fcntl"); success = false; } if (!success) { delete buffer_redirect; buffer_redirect = NULL; } return buffer_redirect; }
io_buffer_t *io_buffer_t::create(bool is_input, int fd) { bool success = true; if (fd == -1) { fd = is_input ? 0 : 1; } io_buffer_t *buffer_redirect = new io_buffer_t(fd, is_input); if (exec_pipe(buffer_redirect->pipe_fd) == -1) { debug(1, PIPE_ERROR); wperror(L"pipe"); success = false; } else if (fcntl(buffer_redirect->pipe_fd[0], F_SETFL, O_NONBLOCK)) { debug(1, PIPE_ERROR); wperror(L"fcntl"); success = false; } if (! success) { delete buffer_redirect; buffer_redirect = NULL; } else { //fprintf(stderr, "Created pipes {%d, %d} for %p\n", buffer_redirect->pipe_fd[0], buffer_redirect->pipe_fd[1], buffer_redirect); } return buffer_redirect; }
shared_ptr<io_buffer_t> io_buffer_t::create(int fd, const io_chain_t &conflicts, size_t buffer_limit) { bool success = true; assert(fd >= 0); shared_ptr<io_buffer_t> buffer_redirect(new io_buffer_t(fd, buffer_limit)); if (exec_pipe(buffer_redirect->pipe_fd) == -1) { debug(1, PIPE_ERROR); wperror(L"pipe"); success = false; } else if (!buffer_redirect->avoid_conflicts_with_io_chain(conflicts)) { // The above call closes the fds on error. success = false; } else if (make_fd_nonblocking(buffer_redirect->pipe_fd[0]) != 0) { debug(1, PIPE_ERROR); wperror(L"fcntl"); success = false; } if (!success) { buffer_redirect.reset(); } return buffer_redirect; }
int main(int argc,char *argv[]) { fd_count=0; lgfile=fopen("logfile.txt","w"); /* Locking File Config */ file_lock.l_type = F_WRLCK; /* F_RDLCK, F_WRLCK, F_UNLCK */ file_lock.l_whence = SEEK_SET; /* SEEK_SET, SEEK_CUR, SEEK_END */ file_lock.l_start = 0; /* Offset from l_whence */ file_lock.l_len = 0; /* length, 0 = to EOF */ file_lock.l_pid = getpid(); /* our PID */ /*Locking File Config */ strcpy(home_folder,argv[2]); strcpy(address,argv[3]); strcpy(dest_folder,argv[4]); int fd=fd_update(home_folder,-1); /* Initalizing linked-list head */ pid_list.starting=NULL; pid_list.last=NULL; /*Initializing linked list head */ /* Setting signal. */ signal(SIGINT,sigint_handler); signal(SIGALRM,timeout); /* Setting signal. */ struct reading_info input; input.fd=fd; alarm(atoi(argv[1])); event_occurred_count=0; subprocess_count=0; /*Creating thread for inotify. */ int retvalue; if ((retvalue=pthread_create(&inotify_thread,NULL,&wait_for_events,&input))) { printf("Thread creation failure. Code: %d\n",retvalue); } /*Initializing thread-lock variable*/ if ((pthread_mutex_init(&inotify_event_lock,NULL))) { printf("Lock initialization error. Fatal.\n:"); exit(EXIT_FAILURE); } /*Initializing thread-lock variable*/ int status1,i; char com[80]; if (test_if_dir_exists(home_folder)!=0) { printf("Making dir...\n"); sprintf(com,"mkdir %s",home_folder); exec_pipe(com,0); waitpid(-1,&status1,0); } /* An initial rsync to sync the two folders */ sprintf(com,"rsync -azsre ssh --delete \"%s/\" \"%s:%s\"",home_folder,address,dest_folder); int sleeptime_initial=5; char *temp=(char *)malloc(sizeof(char)*(strlen(com)+3)); strcpy(temp,com); int exit_status=exec_pipe(com,0); waitpid(exit_status,&status1,0); while (WEXITSTATUS(status1)!=0) { strcpy(com,temp); exit_status=exec_pipe(com,sleeptime_initial); waitpid(exit_status,&status1,0); if (sleeptime_initial<1280) {sleeptime_initial*=2;} } /* An initial rsync to sync the two folders */ while(1) { if (event_occurred_count!=0 && subprocess_count<MAX_EVENT_STACK_SIZE) { pthread_mutex_lock(&inotify_event_lock); int i=0; while (i<event_occurred_count) { read_event_shell(event_stack[i],fd); event_stack[i]=NULL; i+=1; } event_occurred_count=0; pthread_mutex_unlock(&inotify_event_lock); } for (i=0;i<2;i++) { poll_pids(); sleep(1); } } destroy_all(); fclose(lgfile); return 0; }
bool interface(char *line) { // Bad practices ftw char infile[CSTRSIZE]; char outfile[CSTRSIZE]; bool continueExecute = false; char *cmd1[CMDSIZE]; char *cmd2[CMDSIZE]; int i; int k; cmd1[0] = NULL; cmd2[0] = NULL; infile[0] = '\0'; outfile[0] = '\0'; i = parse_command(line, cmd1, cmd2, infile, outfile); if(i == 0) { continueExecute = true; } switch(i) { case 1: exec_cmd(cmd1); break; case 2: exec_cmd_in(cmd1, infile); break; case 3: exec_cmd_opt_in_append(cmd1, infile, outfile); break; case 4: exec_cmd_opt_in_write(cmd1, infile, outfile); break; case 5: exec_pipe(cmd1, cmd2); break; case 6: exec_pipe_in(cmd1, cmd2,infile); break; case 7: exec_pipe_opt_in_append(cmd1, cmd2,infile,outfile); break; case 8: exec_pipe_opt_in_write(cmd1, cmd2,infile,outfile); break; default: break; } if (i > 9) { k = 0; while (cmd1[k] != NULL) { printf("cmd1[%d] = %s\n", k, cmd1[k]); k++; }; k = 0; while (cmd2[k] != NULL) { printf("cmd2[%d] = %s\n", k, cmd2[k]); k++; }; if (strlen(infile)) { printf("input redirection file name: %s\n", infile); } if (strlen(outfile)) { printf("output redirection file name: %s\n", outfile); } } printf("return code is %d\n", i); return continueExecute; }
void exec( job_t *j ) { process_t *p; pid_t pid; int mypipe[2]; sigset_t chldset; int skip_fork; io_data_t pipe_read, pipe_write; io_data_t *tmp; io_data_t *io_buffer =0; /* Set to 1 if something goes wrong while exec:ing the job, in which case the cleanup code will kick in. */ int exec_error=0; int needs_keepalive = 0; process_t keepalive; CHECK( j, ); CHECK_BLOCK(); if( no_exec ) return; sigemptyset( &chldset ); sigaddset( &chldset, SIGCHLD ); debug( 4, L"Exec job '%ls' with id %d", j->command, j->job_id ); if( block_io ) { if( j->io ) { j->io = io_add( io_duplicate( j, block_io), j->io ); } else { j->io=io_duplicate( j, block_io); } } io_data_t *input_redirect; for( input_redirect = j->io; input_redirect; input_redirect = input_redirect->next ) { if( (input_redirect->io_mode == IO_BUFFER) && input_redirect->is_input ) { /* Input redirection - create a new gobetween process to take care of buffering */ process_t *fake = halloc( j, sizeof(process_t) ); fake->type = INTERNAL_BUFFER; fake->pipe_write_fd = 1; j->first_process->pipe_read_fd = input_redirect->fd; fake->next = j->first_process; j->first_process = fake; break; } } if( j->first_process->type==INTERNAL_EXEC ) { /* Do a regular launch - but without forking first... */ signal_block(); /* setup_child_process makes sure signals are properly set up. It will also call signal_unblock */ if( !setup_child_process( j, 0 ) ) { /* launch_process _never_ returns */ launch_process( j->first_process ); } else { job_set_flag( j, JOB_CONSTRUCTED, 1 ); j->first_process->completed=1; return; } } pipe_read.fd=0; pipe_write.fd=1; pipe_read.io_mode=IO_PIPE; pipe_read.param1.pipe_fd[0] = -1; pipe_read.param1.pipe_fd[1] = -1; pipe_read.is_input = 1; pipe_write.io_mode=IO_PIPE; pipe_write.is_input = 0; pipe_read.next=0; pipe_write.next=0; pipe_write.param1.pipe_fd[0]=pipe_write.param1.pipe_fd[1]=-1; j->io = io_add( j->io, &pipe_write ); signal_block(); /* See if we need to create a group keepalive process. This is a process that we create to make sure that the process group doesn't die accidentally, and is often needed when a builtin/block/function is inside a pipeline, since that usually means we have to wait for one program to exit before continuing in the pipeline, causing the group leader to exit. */ if( job_get_flag( j, JOB_CONTROL ) ) { for( p=j->first_process; p; p = p->next ) { if( p->type != EXTERNAL ) { if( p->next ) { needs_keepalive = 1; break; } if( p != j->first_process ) { needs_keepalive = 1; break; } } } } if( needs_keepalive ) { keepalive.pid = exec_fork(); if( keepalive.pid == 0 ) { keepalive.pid = getpid(); set_child_group( j, &keepalive, 1 ); pause(); exit(0); } else { set_child_group( j, &keepalive, 0 ); } } /* This loop loops over every process_t in the job, starting it as appropriate. This turns out to be rather complex, since a process_t can be one of many rather different things. The loop also has to handle pipelining between the jobs. */ for( p=j->first_process; p; p = p->next ) { mypipe[1]=-1; skip_fork=0; pipe_write.fd = p->pipe_write_fd; pipe_read.fd = p->pipe_read_fd; // debug( 0, L"Pipe created from fd %d to fd %d", pipe_write.fd, pipe_read.fd ); /* This call is used so the global environment variable array is regenerated, if needed, before the fork. That way, we avoid a lot of duplicate work where EVERY child would need to generate it, since that result would not get written back to the parent. This call could be safely removed, but it would result in slightly lower performance - at least on uniprocessor systems. */ if( p->type == EXTERNAL ) env_export_arr( 1 ); /* Set up fd:s that will be used in the pipe */ if( p == j->first_process->next ) { j->io = io_add( j->io, &pipe_read ); } if( p->next ) { // debug( 1, L"%ls|%ls" , p->argv[0], p->next->argv[0]); if( exec_pipe( mypipe ) == -1 ) { debug( 1, PIPE_ERROR ); wperror (L"pipe"); exec_error=1; break; } memcpy( pipe_write.param1.pipe_fd, mypipe, sizeof(int)*2); } else { /* This is the last element of the pipeline. Remove the io redirection for pipe output. */ j->io = io_remove( j->io, &pipe_write ); } switch( p->type ) { case INTERNAL_FUNCTION: { const wchar_t * orig_def; wchar_t * def=0; array_list_t *named_arguments; int shadows; /* Calls to function_get_definition might need to source a file as a part of autoloading, hence there must be no blocks. */ signal_unblock(); orig_def = function_get_definition( p->argv[0] ); named_arguments = function_get_named_arguments( p->argv[0] ); shadows = function_get_shadows( p->argv[0] ); signal_block(); if( orig_def ) { def = halloc_register( j, wcsdup(orig_def) ); } if( def == 0 ) { debug( 0, _( L"Unknown function '%ls'" ), p->argv[0] ); break; } parser_push_block( shadows?FUNCTION_CALL:FUNCTION_CALL_NO_SHADOW ); current_block->param2.function_call_process = p; current_block->param1.function_call_name = halloc_register( current_block, wcsdup( p->argv[0] ) ); /* set_argv might trigger an event handler, hence we need to unblock signals. */ signal_unblock(); parse_util_set_argv( p->argv+1, named_arguments ); signal_block(); parser_forbid_function( p->argv[0] ); if( p->next ) { io_buffer = io_buffer_create( 0 ); j->io = io_add( j->io, io_buffer ); } internal_exec_helper( def, TOP, j->io ); parser_allow_function(); parser_pop_block(); break; } case INTERNAL_BLOCK: { if( p->next ) { io_buffer = io_buffer_create( 0 ); j->io = io_add( j->io, io_buffer ); } internal_exec_helper( p->argv[0], TOP, j->io ); break; } case INTERNAL_BUILTIN: { int builtin_stdin=0; int fg; int close_stdin=0; /* If this is the first process, check the io redirections and see where we should be reading from. */ if( p == j->first_process ) { io_data_t *in = io_get( j->io, 0 ); if( in ) { switch( in->io_mode ) { case IO_FD: { builtin_stdin = in->param1.old_fd; break; } case IO_PIPE: { builtin_stdin = in->param1.pipe_fd[0]; break; } case IO_FILE: { builtin_stdin=wopen( in->param1.filename, in->param2.flags, OPEN_MASK ); if( builtin_stdin == -1 ) { debug( 1, FILE_ERROR, in->param1.filename ); wperror( L"open" ); } else { close_stdin = 1; } break; } case IO_CLOSE: { /* FIXME: When requesting that stdin be closed, we really don't do anything. How should this be handled? */ builtin_stdin = -1; break; } default: { builtin_stdin=-1; debug( 1, _( L"Unknown input redirection type %d" ), in->io_mode); break; } } } } else { builtin_stdin = pipe_read.param1.pipe_fd[0]; } if( builtin_stdin == -1 ) { exec_error=1; break; } else { int old_out = builtin_out_redirect; int old_err = builtin_err_redirect; /* Since this may be the foreground job, and since a builtin may execute another foreground job, we need to pretend to suspend this job while running the builtin, in order to avoid a situation where two jobs are running at once. The reason this is done here, and not by the relevant builtins, is that this way, the builtin does not need to know what job it is part of. It could probably figure that out by walking the job list, but it seems more robust to make exec handle things. */ builtin_push_io( builtin_stdin ); builtin_out_redirect = has_fd( j->io, 1 ); builtin_err_redirect = has_fd( j->io, 2 ); fg = job_get_flag( j, JOB_FOREGROUND ); job_set_flag( j, JOB_FOREGROUND, 0 ); signal_unblock(); p->status = builtin_run( p->argv, j->io ); builtin_out_redirect=old_out; builtin_err_redirect=old_err; signal_block(); /* Restore the fg flag, which is temporarily set to false during builtin execution so as not to confuse some job-handling builtins. */ job_set_flag( j, JOB_FOREGROUND, fg ); } /* If stdin has been redirected, close the redirection stream. */ if( close_stdin ) { exec_close( builtin_stdin ); } break; } } if( exec_error ) { break; } switch( p->type ) { case INTERNAL_BLOCK: case INTERNAL_FUNCTION: { int status = proc_get_last_status(); /* Handle output from a block or function. This usually means do nothing, but in the case of pipes, we have to buffer such io, since otherwise the internal pipe buffer might overflow. */ if( !io_buffer ) { /* No buffer, so we exit directly. This means we have to manually set the exit status. */ if( p->next == 0 ) { proc_set_last_status( job_get_flag( j, JOB_NEGATE )?(!status):status); } p->completed = 1; break; } j->io = io_remove( j->io, io_buffer ); io_buffer_read( io_buffer ); if( io_buffer->param2.out_buffer->used != 0 ) { pid = exec_fork(); if( pid == 0 ) { /* This is the child process. Write out the contents of the pipeline. */ p->pid = getpid(); setup_child_process( j, p ); exec_write_and_exit(io_buffer->fd, io_buffer->param2.out_buffer->buff, io_buffer->param2.out_buffer->used, status); } else { /* This is the parent process. Store away information on the child, and possibly give it control over the terminal. */ p->pid = pid; set_child_group( j, p, 0 ); } } else { if( p->next == 0 ) { proc_set_last_status( job_get_flag( j, JOB_NEGATE )?(!status):status); } p->completed = 1; } io_buffer_destroy( io_buffer ); io_buffer=0; break; } case INTERNAL_BUFFER: { pid = exec_fork(); if( pid == 0 ) { /* This is the child process. Write out the contents of the pipeline. */ p->pid = getpid(); setup_child_process( j, p ); exec_write_and_exit( 1, input_redirect->param2.out_buffer->buff, input_redirect->param2.out_buffer->used, 0); } else { /* This is the parent process. Store away information on the child, and possibly give it control over the terminal. */ p->pid = pid; set_child_group( j, p, 0 ); } break; } case INTERNAL_BUILTIN: { int skip_fork; /* Handle output from builtin commands. In the general case, this means forking of a worker process, that will write out the contents of the stdout and stderr buffers to the correct file descriptor. Since forking is expensive, fish tries to avoid it wehn possible. */ /* If a builtin didn't produce any output, and it is not inside a pipeline, there is no need to fork */ skip_fork = ( !sb_out->used ) && ( !sb_err->used ) && ( !p->next ); /* If the output of a builtin is to be sent to an internal buffer, there is no need to fork. This helps out the performance quite a bit in complex completion code. */ io_data_t *io = io_get( j->io, 1 ); int buffer_stdout = io && io->io_mode == IO_BUFFER; if( ( !sb_err->used ) && ( !p->next ) && ( sb_out->used ) && ( buffer_stdout ) ) { char *res = wcs2str( (wchar_t *)sb_out->buff ); b_append( io->param2.out_buffer, res, strlen( res ) ); skip_fork = 1; free( res ); } for( io = j->io; io; io=io->next ) { if( io->io_mode == IO_FILE && wcscmp(io->param1.filename, L"/dev/null" )) { skip_fork = 0; } } if( skip_fork ) { p->completed=1; if( p->next == 0 ) { debug( 3, L"Set status of %ls to %d using short circut", j->command, p->status ); int status = proc_format_status(p->status); proc_set_last_status( job_get_flag( j, JOB_NEGATE )?(!status):status ); } break; } /* Ok, unfortunatly, we have to do a real fork. Bummer. */ pid = exec_fork(); if( pid == 0 ) { /* This is the child process. Setup redirections, print correct output to stdout and stderr, and then exit. */ p->pid = getpid(); setup_child_process( j, p ); do_builtin_io( sb_out->used ? (wchar_t *)sb_out->buff : 0, sb_err->used ? (wchar_t *)sb_err->buff : 0 ); exit( p->status ); } else { /* This is the parent process. Store away information on the child, and possibly give it control over the terminal. */ p->pid = pid; set_child_group( j, p, 0 ); } break; } case EXTERNAL: { pid = exec_fork(); if( pid == 0 ) { /* This is the child process. */ p->pid = getpid(); setup_child_process( j, p ); launch_process( p ); /* launch_process _never_ returns... */ } else { /* This is the parent process. Store away information on the child, and possibly fice it control over the terminal. */ p->pid = pid; set_child_group( j, p, 0 ); } break; } } if( p->type == INTERNAL_BUILTIN ) builtin_pop_io(); /* Close the pipe the current process uses to read from the previous process_t */ if( pipe_read.param1.pipe_fd[0] >= 0 ) exec_close( pipe_read.param1.pipe_fd[0] ); /* Set up the pipe the next process uses to read from the current process_t */ if( p->next ) pipe_read.param1.pipe_fd[0] = mypipe[0]; /* If there is a next process in the pipeline, close the output end of the current pipe (the surrent child subprocess already has a copy of the pipe - this makes sure we don't leak file descriptors either in the shell or in the children). */ if( p->next ) { exec_close(mypipe[1]); } } /* The keepalive process is no longer needed, so we terminate it with extreme prejudice */ if( needs_keepalive ) { kill( keepalive.pid, SIGKILL ); } signal_unblock(); debug( 3, L"Job is constructed" ); j->io = io_remove( j->io, &pipe_read ); for( tmp = block_io; tmp; tmp=tmp->next ) j->io = io_remove( j->io, tmp ); job_set_flag( j, JOB_CONSTRUCTED, 1 ); if( !job_get_flag( j, JOB_FOREGROUND ) ) { proc_last_bg_pid = j->pgid; } if( !exec_error ) { job_continue (j, 0); } }
int main(int argc, char *argv[]) { pid_t pid; char *line, *arg_list[255], name[BUFSIZ]; char *tok; int status, i; int bgfg; line = malloc(sizeof(char) * 255); printf("\n\n\t***************************\n"); printf("\t* Welcome to our Shell! *\n"); printf("\t* 'exit' or 'quit' to *\n"); printf("\t* exit! Enjoy! *\n"); printf("\t***************************\n\n"); while (1) { printf("LainShell: "); fflush(stdout); fgets(line, 255, stdin); // If the last character is a newline we set it to a null-terminator if (line[strlen(line) - 1] == '\n') line[strlen(line) - 1] = '\0'; if (strlen(line) == 0) continue; // Check for a pipe, if there is we'll go straight into the exec_pipe // function. For consistency we can't really reuse the below parent / child // code but we can reuse the process_args function. if (strstr(line, "|")) { exec_pipe(line); // Execute the pipe'd command and go to the next iteration of the while // loop. continue; } // Tokenize based on ; tok = strtok(line, ";"); while (tok != NULL) { // Save our position in the line so when we retokenize we're at the next // token. We can't use NULL because strtok in process_args overwrites it. line += strlen(tok) + 1; process_args(tok, arg_list, &bgfg); tok = strtok(line, ";"); // If they typed exit or quit..we exit if (strcmp(arg_list[0], "exit") == 0 || strcmp(arg_list[0], "quit") == 0) exit(0); pid = my_fork(); if (pid == -1) { perror("Fork failed!\n"); exit(1); } else if (pid > 0) { // If this flag was set by process args we run in the background if (bgfg == 1) { waitpid(pid, &status, WNOHANG); } else { // Otherwise the foreground wait(&status); } } else { if (execvp(arg_list[0], arg_list) == -1) { #ifdef MY_DEBUG DEBUG(arg_list[0]); #endif int i = 0; while (arg_list[i] != NULL) printf("%d:\t%s\n", i, arg_list[i++]); perror("Child process could not exec"); exit(22); } } } } return 0; }
int my_pipe(int i, char **command) { exec_pipe(i, command); return (1); }
/// Executes a process \p in job \j, using the read pipe \p pipe_current_read. /// If the process pipes to a command, the read end of the created pipe is returned in /// out_pipe_next_read. \returns true on success, false on exec error. static bool exec_process_in_job(parser_t &parser, process_t *p, job_t *j, autoclose_fd_t pipe_current_read, autoclose_fd_t *out_pipe_next_read, const io_chain_t &all_ios, size_t stdout_read_limit) { // The IO chain for this process. It starts with the block IO, then pipes, and then gets any // from the process. io_chain_t process_net_io_chain = j->block_io_chain(); // See if we need a pipe. const bool pipes_to_next_command = !p->is_last_in_job; // The write end of any pipe we create. autoclose_fd_t pipe_current_write{}; // The pipes the current process write to and read from. Unfortunately these can't be just // allocated on the stack, since j->io wants shared_ptr. // // The write pipe (destined for stdout) needs to occur before redirections. For example, // with a redirection like this: // // `foo 2>&1 | bar` // // what we want to happen is this: // // dup2(pipe, stdout) // dup2(stdout, stderr) // // so that stdout and stderr both wind up referencing the pipe. // // The read pipe (destined for stdin) is more ambiguous. Imagine a pipeline like this: // // echo alpha | cat < beta.txt // // Should cat output alpha or beta? bash and ksh output 'beta', tcsh gets it right and // complains about ambiguity, and zsh outputs both (!). No shells appear to output 'alpha', // so we match bash here. That would mean putting the pipe first, so that it gets trumped by // the file redirection. // // However, eval does this: // // echo "begin; $argv "\n" ;end <&3 3<&-" | source 3<&0 // // which depends on the redirection being evaluated before the pipe. So the write end of the // pipe comes first, the read pipe of the pipe comes last. See issue #966. shared_ptr<io_pipe_t> pipe_write; shared_ptr<io_pipe_t> pipe_read; // Write pipe goes first. if (pipes_to_next_command) { pipe_write.reset(new io_pipe_t(p->pipe_write_fd, false)); process_net_io_chain.push_back(pipe_write); } // The explicit IO redirections associated with the process. process_net_io_chain.append(p->io_chain()); // Read pipe goes last. if (!p->is_first_in_job) { pipe_read.reset(new io_pipe_t(p->pipe_read_fd, true)); // Record the current read in pipe_read. pipe_read->pipe_fd[0] = pipe_current_read.fd(); process_net_io_chain.push_back(pipe_read); } // This call is used so the global environment variable array is regenerated, if needed, // before the fork. That way, we avoid a lot of duplicate work where EVERY child would need // to generate it, since that result would not get written back to the parent. This call // could be safely removed, but it would result in slightly lower performance - at least on // uniprocessor systems. if (p->type == EXTERNAL) { // Apply universal barrier so we have the most recent uvar changes if (!get_proc_had_barrier()) { set_proc_had_barrier(true); env_universal_barrier(); } env_export_arr(); } // Set up fds that will be used in the pipe. if (pipes_to_next_command) { // debug( 1, L"%ls|%ls" , p->argv[0], p->next->argv[0]); int local_pipe[2] = {-1, -1}; if (exec_pipe(local_pipe) == -1) { debug(1, PIPE_ERROR); wperror(L"pipe"); job_mark_process_as_failed(j, p); return false; } // Ensure our pipe fds not conflict with any fd redirections. E.g. if the process is // like 'cat <&5' then fd 5 must not be used by the pipe. if (!pipe_avoid_conflicts_with_io_chain(local_pipe, all_ios)) { // We failed. The pipes were closed for us. wperror(L"dup"); job_mark_process_as_failed(j, p); return false; } // This tells the redirection about the fds, but the redirection does not close them. assert(local_pipe[0] >= 0); assert(local_pipe[1] >= 0); memcpy(pipe_write->pipe_fd, local_pipe, sizeof(int) * 2); // Record our pipes. pipe_current_write.reset(local_pipe[1]); out_pipe_next_read->reset(local_pipe[0]); } // Execute the process. switch (p->type) { case INTERNAL_FUNCTION: case INTERNAL_BLOCK_NODE: { if (!exec_block_or_func_process(parser, j, p, all_ios, process_net_io_chain)) { return false; } break; } case INTERNAL_BUILTIN: { io_streams_t builtin_io_streams{stdout_read_limit}; if (!exec_internal_builtin_proc(parser, j, p, pipe_read.get(), process_net_io_chain, builtin_io_streams)) { return false; } if (!handle_builtin_output(j, p, &process_net_io_chain, builtin_io_streams)) { return false; } break; } case EXTERNAL: { if (!exec_external_command(j, p, process_net_io_chain)) { return false; } break; } case INTERNAL_EXEC: { // We should have handled exec up above. DIE("INTERNAL_EXEC process found in pipeline, where it should never be. Aborting."); break; } } return true; }
int poll_pids() { //Poll all the alive/exited pids with WNOHANG - returns immediately without waiting for child process to exit. if (pid_list.starting==NULL) { return 0; } else { configure_status_file_and_mmap(); int sleeptime=5,i; struct subprocess* current=pid_list.starting; int poll_status,status; lock_file(); sprintf((char *)mmap_file_pointer,""); while (current->next!=NULL) { poll_status=waitpid(current->pid,&status,WNOHANG); if (poll_status==current->pid) { int exit_code=WEXITSTATUS(status); if (exit_code==0) { subprocess_count-=1; delete_list_element(current); } else if (exit_code==30 || exit_code==255 || exit_code==12) { if (exit_code==12) {sleeptime=1;} current->retries+=1; sleeptime=5; for (i=0;i<current->retries && sleeptime<320;i++) {sleeptime*=2;} strcpy(current->start_time,get_time_string()); current->pid=exec_pipe(current->command,sleeptime); } else { subprocess_count-=1; delete_list_element(current); } } else if (poll_status==0) { put_info_in_status_file(current); } current=current->next; } poll_status=waitpid(current->pid,&status,WNOHANG); if (poll_status==current->pid) { int exit_code=WEXITSTATUS(status); if (exit_code==0) { subprocess_count-=1; delete_list_element(current); } else if (exit_code==30 || exit_code==255 || exit_code==12) { if (exit_code==12) {sleeptime=1;} current->retries+=1; sleeptime=5; for (i=0;i<current->retries && sleeptime<320;i++) {sleeptime*=2;} strcpy(current->start_time,get_time_string()); printf("%s\n",current->command); current->pid=exec_pipe(current->command,sleeptime); } else { subprocess_count-=1; delete_list_element(current); } } else if (poll_status==0) { put_info_in_status_file(current); } unlock_file(); clear_status_file(); return 0; } }