static int __f2fs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode, struct inode **whiteout) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; int err; err = dquot_initialize(dir); if (err) return err; inode = f2fs_new_inode(dir, mode); if (IS_ERR(inode)) return PTR_ERR(inode); if (whiteout) { init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); inode->i_op = &f2fs_special_inode_operations; } else { inode->i_op = &f2fs_file_inode_operations; inode->i_fop = &f2fs_file_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; } f2fs_lock_op(sbi); err = acquire_orphan_inode(sbi); if (err) goto out; err = f2fs_do_tmpfile(inode, dir); if (err) goto release_out; /* * add this non-linked tmpfile to orphan list, in this way we could * remove all unused data of tmpfile after abnormal power-off. */ add_orphan_inode(inode); alloc_nid_done(sbi, inode->i_ino); if (whiteout) { f2fs_i_links_write(inode, false); *whiteout = inode; } else { d_tmpfile(dentry, inode); } /* link_count was changed by d_tmpfile as well. */ f2fs_unlock_op(sbi); unlock_new_inode(inode); f2fs_balance_fs(sbi, true); return 0; release_out: release_orphan_inode(sbi); out: handle_failed_inode(inode); return err; }
struct dentry *f2fs_get_parent(struct dentry *child) { struct qstr dotdot = {.len = 2, .name = ".."}; struct page *page; unsigned long ino = f2fs_inode_by_name(d_inode(child), &dotdot, &page); if (!ino) { if (IS_ERR(page)) return ERR_CAST(page); return ERR_PTR(-ENOENT); } return d_obtain_alias(f2fs_iget(child->d_sb, ino)); } static int __recover_dot_dentries(struct inode *dir, nid_t pino) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct qstr dot = QSTR_INIT(".", 1); struct qstr dotdot = QSTR_INIT("..", 2); struct f2fs_dir_entry *de; struct page *page; int err = 0; if (f2fs_readonly(sbi->sb)) { f2fs_msg(sbi->sb, KERN_INFO, "skip recovering inline_dots inode (ino:%lu, pino:%u) " "in readonly mountpoint", dir->i_ino, pino); return 0; } f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); de = f2fs_find_entry(dir, &dot, &page); if (de) { f2fs_dentry_kunmap(dir, page); f2fs_put_page(page, 0); } else if (IS_ERR(page)) { err = PTR_ERR(page); goto out; } else { err = __f2fs_add_link(dir, &dot, NULL, dir->i_ino, S_IFDIR); if (err) goto out; } de = f2fs_find_entry(dir, &dotdot, &page); if (de) { f2fs_dentry_kunmap(dir, page); f2fs_put_page(page, 0); } else if (IS_ERR(page)) { err = PTR_ERR(page); } else { err = __f2fs_add_link(dir, &dotdot, NULL, pino, S_IFDIR); } out: if (!err) clear_inode_flag(dir, FI_INLINE_DOTS); f2fs_unlock_op(sbi); return err; } static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) { struct inode *inode = NULL; struct f2fs_dir_entry *de; struct page *page; nid_t ino; int err = 0; unsigned int root_ino = F2FS_ROOT_INO(F2FS_I_SB(dir)); if (f2fs_encrypted_inode(dir)) { int res = fscrypt_get_encryption_info(dir); /* * DCACHE_ENCRYPTED_WITH_KEY is set if the dentry is * created while the directory was encrypted and we * don't have access to the key. */ if (fscrypt_has_encryption_key(dir)) fscrypt_set_encrypted_dentry(dentry); fscrypt_set_d_op(dentry); if (res && res != -ENOKEY) return ERR_PTR(res); } if (dentry->d_name.len > F2FS_NAME_LEN) return ERR_PTR(-ENAMETOOLONG); de = f2fs_find_entry(dir, &dentry->d_name, &page); if (!de) { if (IS_ERR(page)) return (struct dentry *)page; return d_splice_alias(inode, dentry); } ino = le32_to_cpu(de->ino); f2fs_dentry_kunmap(dir, page); f2fs_put_page(page, 0); inode = f2fs_iget(dir->i_sb, ino); if (IS_ERR(inode)) return ERR_CAST(inode); if ((dir->i_ino == root_ino) && f2fs_has_inline_dots(dir)) { err = __recover_dot_dentries(dir, root_ino); if (err) goto err_out; } if (f2fs_has_inline_dots(inode)) { err = __recover_dot_dentries(inode, dir->i_ino); if (err) goto err_out; } if (!IS_ERR(inode) && f2fs_encrypted_inode(dir) && (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) && !fscrypt_has_permitted_context(dir, inode)) { bool nokey = f2fs_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode); err = nokey ? -ENOKEY : -EPERM; goto err_out; } return d_splice_alias(inode, dentry); err_out: iput(inode); return ERR_PTR(err); } static int f2fs_unlink(struct inode *dir, struct dentry *dentry) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode = d_inode(dentry); struct f2fs_dir_entry *de; struct page *page; int err = -ENOENT; trace_f2fs_unlink_enter(dir, dentry); de = f2fs_find_entry(dir, &dentry->d_name, &page); if (!de) { if (IS_ERR(page)) err = PTR_ERR(page); goto fail; } f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); err = acquire_orphan_inode(sbi); if (err) { f2fs_unlock_op(sbi); f2fs_dentry_kunmap(dir, page); f2fs_put_page(page, 0); goto fail; } f2fs_delete_entry(de, page, dir, inode); f2fs_unlock_op(sbi); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); fail: trace_f2fs_unlink_exit(inode, err); return err; } static void *f2fs_follow_link(struct dentry *dentry, struct nameidata *nd) { struct page *page; char *link; page = page_follow_link_light(dentry, nd); if (IS_ERR(page)) return page; link = nd_get_link(nd); if (IS_ERR(link)) return link; /* this is broken symlink case */ if (*link == 0) { kunmap(page); page_cache_release(page); return ERR_PTR(-ENOENT); } return page; } static int f2fs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; size_t len = strlen(symname); struct fscrypt_str disk_link = FSTR_INIT((char *)symname, len + 1); struct fscrypt_symlink_data *sd = NULL; int err; if (f2fs_encrypted_inode(dir)) { err = fscrypt_get_encryption_info(dir); if (err) return err; if (!fscrypt_has_encryption_key(dir)) return -EPERM; disk_link.len = (fscrypt_fname_encrypted_size(dir, len) + sizeof(struct fscrypt_symlink_data)); } if (disk_link.len > dir->i_sb->s_blocksize) return -ENAMETOOLONG; inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO); if (IS_ERR(inode)) return PTR_ERR(inode); if (f2fs_encrypted_inode(inode)) inode->i_op = &f2fs_encrypted_symlink_inode_operations; else inode->i_op = &f2fs_symlink_inode_operations; inode_nohighmem(inode); inode->i_mapping->a_ops = &f2fs_dblock_aops; f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); if (err) goto out; f2fs_unlock_op(sbi); alloc_nid_done(sbi, inode->i_ino); if (f2fs_encrypted_inode(inode)) { struct qstr istr = QSTR_INIT(symname, len); struct fscrypt_str ostr; sd = kzalloc(disk_link.len, GFP_NOFS); if (!sd) { err = -ENOMEM; goto err_out; } err = fscrypt_get_encryption_info(inode); if (err) goto err_out; if (!fscrypt_has_encryption_key(inode)) { err = -EPERM; goto err_out; } ostr.name = sd->encrypted_path; ostr.len = disk_link.len; err = fscrypt_fname_usr_to_disk(inode, &istr, &ostr); if (err < 0) goto err_out; sd->len = cpu_to_le16(ostr.len); disk_link.name = (char *)sd; } err = page_symlink(inode, disk_link.name, disk_link.len); err_out: d_instantiate(dentry, inode); unlock_new_inode(inode); /* * Let's flush symlink data in order to avoid broken symlink as much as * possible. Nevertheless, fsyncing is the best way, but there is no * way to get a file descriptor in order to flush that. * * Note that, it needs to do dir->fsync to make this recoverable. * If the symlink path is stored into inline_data, there is no * performance regression. */ if (!err) { filemap_write_and_wait_range(inode->i_mapping, 0, disk_link.len - 1); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); } else { f2fs_unlink(dir, dentry); } kfree(sd); return err; out: handle_failed_inode(inode); return err; } static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; int err; inode = f2fs_new_inode(dir, S_IFDIR | mode); if (IS_ERR(inode)) return PTR_ERR(inode); inode->i_op = &f2fs_dir_inode_operations; inode->i_fop = &f2fs_dir_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO); f2fs_balance_fs(sbi, true); set_inode_flag(inode, FI_INC_LINK); f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); if (err) goto out_fail; f2fs_unlock_op(sbi); alloc_nid_done(sbi, inode->i_ino); d_instantiate(dentry, inode); unlock_new_inode(inode); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); return 0; out_fail: clear_inode_flag(inode, FI_INC_LINK); handle_failed_inode(inode); return err; } static int f2fs_rmdir(struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(dentry); if (f2fs_empty_dir(inode)) return f2fs_unlink(dir, dentry); return -ENOTEMPTY; } static int f2fs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; int err = 0; if (!new_valid_dev(rdev)) return -EINVAL; inode = f2fs_new_inode(dir, mode); if (IS_ERR(inode)) return PTR_ERR(inode); init_special_inode(inode, inode->i_mode, rdev); inode->i_op = &f2fs_special_inode_operations; f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); if (err) goto out; f2fs_unlock_op(sbi); alloc_nid_done(sbi, inode->i_ino); d_instantiate(dentry, inode); unlock_new_inode(inode); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); return 0; out: handle_failed_inode(inode); return err; } static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir); struct inode *old_inode = d_inode(old_dentry); struct inode *new_inode = d_inode(new_dentry); struct page *old_dir_page; struct page *old_page, *new_page; struct f2fs_dir_entry *old_dir_entry = NULL; struct f2fs_dir_entry *old_entry; struct f2fs_dir_entry *new_entry; bool is_old_inline = f2fs_has_inline_dentry(old_dir); int err = -ENOENT; if ((old_dir != new_dir) && f2fs_encrypted_inode(new_dir) && !fscrypt_has_permitted_context(new_dir, old_inode)) { err = -EPERM; goto out; } old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page); if (!old_entry) { if (IS_ERR(old_page)) err = PTR_ERR(old_page); goto out; } if (S_ISDIR(old_inode->i_mode)) { old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page); if (!old_dir_entry) { if (IS_ERR(old_dir_page)) err = PTR_ERR(old_dir_page); goto out_old; } } if (new_inode) { err = -ENOTEMPTY; if (old_dir_entry && !f2fs_empty_dir(new_inode)) goto out_dir; err = -ENOENT; new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name, &new_page); if (!new_entry) { if (IS_ERR(new_page)) err = PTR_ERR(new_page); goto out_dir; } f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); err = acquire_orphan_inode(sbi); if (err) goto put_out_dir; err = update_dent_inode(old_inode, new_inode, &new_dentry->d_name); if (err) { release_orphan_inode(sbi); goto put_out_dir; } f2fs_set_link(new_dir, new_entry, new_page, old_inode); new_inode->i_ctime = CURRENT_TIME; down_write(&F2FS_I(new_inode)->i_sem); if (old_dir_entry) f2fs_i_links_write(new_inode, false); f2fs_i_links_write(new_inode, false); up_write(&F2FS_I(new_inode)->i_sem); if (!new_inode->i_nlink) add_orphan_inode(new_inode); else release_orphan_inode(sbi); } else { f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); err = f2fs_add_link(new_dentry, old_inode); if (err) { f2fs_unlock_op(sbi); goto out_dir; } if (old_dir_entry) f2fs_i_links_write(new_dir, true); /* * old entry and new entry can locate in the same inline * dentry in inode, when attaching new entry in inline dentry, * it could force inline dentry conversion, after that, * old_entry and old_page will point to wrong address, in * order to avoid this, let's do the check and update here. */ if (is_old_inline && !f2fs_has_inline_dentry(old_dir)) { f2fs_put_page(old_page, 0); old_page = NULL; old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page); if (!old_entry) { err = -ENOENT; if (IS_ERR(old_page)) err = PTR_ERR(old_page); f2fs_unlock_op(sbi); goto out_dir; } } } down_write(&F2FS_I(old_inode)->i_sem); file_lost_pino(old_inode); if (new_inode && file_enc_name(new_inode)) file_set_enc_name(old_inode); up_write(&F2FS_I(old_inode)->i_sem); old_inode->i_ctime = CURRENT_TIME; f2fs_mark_inode_dirty_sync(old_inode); f2fs_delete_entry(old_entry, old_page, old_dir, NULL); if (old_dir_entry) { if (old_dir != new_dir) { f2fs_set_link(old_inode, old_dir_entry, old_dir_page, new_dir); } else { f2fs_dentry_kunmap(old_inode, old_dir_page); f2fs_put_page(old_dir_page, 0); } f2fs_i_links_write(old_dir, false); } f2fs_unlock_op(sbi); if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir)) f2fs_sync_fs(sbi->sb, 1); return 0; put_out_dir: f2fs_unlock_op(sbi); f2fs_dentry_kunmap(new_dir, new_page); f2fs_put_page(new_page, 0); out_dir: if (old_dir_entry) { f2fs_dentry_kunmap(old_inode, old_dir_page); f2fs_put_page(old_dir_page, 0); } out_old: f2fs_dentry_kunmap(old_dir, old_page); f2fs_put_page(old_page, 0); out: return err; } static void *f2fs_encrypted_follow_link(struct dentry *dentry, struct nameidata *nd) { struct page *cpage = NULL; char *caddr, *paddr = NULL; struct fscrypt_str cstr = FSTR_INIT(NULL, 0); struct fscrypt_str pstr = FSTR_INIT(NULL, 0); struct fscrypt_symlink_data *sd; struct inode *inode = d_inode(dentry); loff_t size = min_t(loff_t, i_size_read(inode), PAGE_SIZE - 1); u32 max_size = inode->i_sb->s_blocksize; int res; res = fscrypt_get_encryption_info(inode); if (res) return ERR_PTR(res); cpage = read_mapping_page(inode->i_mapping, 0, NULL); if (IS_ERR(cpage)) return cpage; caddr = kmap(cpage); caddr[size] = 0; /* Symlink is encrypted */ sd = (struct fscrypt_symlink_data *)caddr; cstr.name = sd->encrypted_path; cstr.len = le16_to_cpu(sd->len); /* this is broken symlink case */ if (unlikely(cstr.len == 0)) { res = -ENOENT; goto errout; } if ((cstr.len + sizeof(struct fscrypt_symlink_data) - 1) > max_size) { /* Symlink data on the disk is corrupted */ res = -EIO; goto errout; } res = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr); if (res) goto errout; res = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr); if (res < 0) goto errout; /* this is broken symlink case */ if (unlikely(pstr.name[0] == 0)) { res = -ENOENT; goto errout; } paddr = pstr.name; /* Null-terminate the name */ paddr[res] = '\0'; nd_set_link(nd, paddr); kunmap(cpage); page_cache_release(cpage); return NULL; errout: fscrypt_fname_free_buffer(&pstr); kunmap(cpage); page_cache_release(cpage); return ERR_PTR(res); } void kfree_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) { char *s = nd_get_link(nd); if (!IS_ERR(s)) kfree(s); }
static int f2fs_cross_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir); struct inode *old_inode = d_inode(old_dentry); struct inode *new_inode = d_inode(new_dentry); struct page *old_dir_page, *new_dir_page; struct page *old_page, *new_page; struct f2fs_dir_entry *old_dir_entry = NULL, *new_dir_entry = NULL; struct f2fs_dir_entry *old_entry, *new_entry; int old_nlink = 0, new_nlink = 0; int err = -ENOENT; if ((f2fs_encrypted_inode(old_dir) && !fscrypt_has_encryption_key(old_dir)) || (f2fs_encrypted_inode(new_dir) && !fscrypt_has_encryption_key(new_dir))) return -ENOKEY; if ((f2fs_encrypted_inode(old_dir) || f2fs_encrypted_inode(new_dir)) && (old_dir != new_dir) && (!fscrypt_has_permitted_context(new_dir, old_inode) || !fscrypt_has_permitted_context(old_dir, new_inode))) return -EPERM; err = dquot_initialize(old_dir); if (err) goto out; err = dquot_initialize(new_dir); if (err) goto out; old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page); if (!old_entry) { if (IS_ERR(old_page)) err = PTR_ERR(old_page); goto out; } new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name, &new_page); if (!new_entry) { if (IS_ERR(new_page)) err = PTR_ERR(new_page); goto out_old; } /* prepare for updating ".." directory entry info later */ if (old_dir != new_dir) { if (S_ISDIR(old_inode->i_mode)) { old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page); if (!old_dir_entry) { if (IS_ERR(old_dir_page)) err = PTR_ERR(old_dir_page); goto out_new; } } if (S_ISDIR(new_inode->i_mode)) { new_dir_entry = f2fs_parent_dir(new_inode, &new_dir_page); if (!new_dir_entry) { if (IS_ERR(new_dir_page)) err = PTR_ERR(new_dir_page); goto out_old_dir; } } } /* * If cross rename between file and directory those are not * in the same directory, we will inc nlink of file's parent * later, so we should check upper boundary of its nlink. */ if ((!old_dir_entry || !new_dir_entry) && old_dir_entry != new_dir_entry) { old_nlink = old_dir_entry ? -1 : 1; new_nlink = -old_nlink; err = -EMLINK; if ((old_nlink > 0 && old_dir->i_nlink >= F2FS_LINK_MAX) || (new_nlink > 0 && new_dir->i_nlink >= F2FS_LINK_MAX)) goto out_new_dir; } f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); /* update ".." directory entry info of old dentry */ if (old_dir_entry) f2fs_set_link(old_inode, old_dir_entry, old_dir_page, new_dir); /* update ".." directory entry info of new dentry */ if (new_dir_entry) f2fs_set_link(new_inode, new_dir_entry, new_dir_page, old_dir); /* update directory entry info of old dir inode */ f2fs_set_link(old_dir, old_entry, old_page, new_inode); down_write(&F2FS_I(old_inode)->i_sem); file_lost_pino(old_inode); up_write(&F2FS_I(old_inode)->i_sem); old_dir->i_ctime = current_time(old_dir); if (old_nlink) { down_write(&F2FS_I(old_dir)->i_sem); f2fs_i_links_write(old_dir, old_nlink > 0); up_write(&F2FS_I(old_dir)->i_sem); } f2fs_mark_inode_dirty_sync(old_dir, false); /* update directory entry info of new dir inode */ f2fs_set_link(new_dir, new_entry, new_page, old_inode); down_write(&F2FS_I(new_inode)->i_sem); file_lost_pino(new_inode); up_write(&F2FS_I(new_inode)->i_sem); new_dir->i_ctime = current_time(new_dir); if (new_nlink) { down_write(&F2FS_I(new_dir)->i_sem); f2fs_i_links_write(new_dir, new_nlink > 0); up_write(&F2FS_I(new_dir)->i_sem); } f2fs_mark_inode_dirty_sync(new_dir, false); f2fs_unlock_op(sbi); if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir)) f2fs_sync_fs(sbi->sb, 1); return 0; out_new_dir: if (new_dir_entry) { f2fs_dentry_kunmap(new_inode, new_dir_page); f2fs_put_page(new_dir_page, 0); } out_old_dir: if (old_dir_entry) { f2fs_dentry_kunmap(old_inode, old_dir_page); f2fs_put_page(old_dir_page, 0); } out_new: f2fs_dentry_kunmap(new_dir, new_page); f2fs_put_page(new_page, 0); out_old: f2fs_dentry_kunmap(old_dir, old_page); f2fs_put_page(old_page, 0); out: return err; }
static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir); struct inode *old_inode = d_inode(old_dentry); struct inode *new_inode = d_inode(new_dentry); struct inode *whiteout = NULL; struct page *old_dir_page; struct page *old_page, *new_page = NULL; struct f2fs_dir_entry *old_dir_entry = NULL; struct f2fs_dir_entry *old_entry; struct f2fs_dir_entry *new_entry; bool is_old_inline = f2fs_has_inline_dentry(old_dir); int err = -ENOENT; if ((f2fs_encrypted_inode(old_dir) && !fscrypt_has_encryption_key(old_dir)) || (f2fs_encrypted_inode(new_dir) && !fscrypt_has_encryption_key(new_dir))) return -ENOKEY; if ((old_dir != new_dir) && f2fs_encrypted_inode(new_dir) && !fscrypt_has_permitted_context(new_dir, old_inode)) { err = -EPERM; goto out; } err = dquot_initialize(old_dir); if (err) goto out; err = dquot_initialize(new_dir); if (err) goto out; old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page); if (!old_entry) { if (IS_ERR(old_page)) err = PTR_ERR(old_page); goto out; } if (S_ISDIR(old_inode->i_mode)) { old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page); if (!old_dir_entry) { if (IS_ERR(old_dir_page)) err = PTR_ERR(old_dir_page); goto out_old; } } if (flags & RENAME_WHITEOUT) { err = f2fs_create_whiteout(old_dir, &whiteout); if (err) goto out_dir; } if (new_inode) { err = -ENOTEMPTY; if (old_dir_entry && !f2fs_empty_dir(new_inode)) goto out_whiteout; err = -ENOENT; new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name, &new_page); if (!new_entry) { if (IS_ERR(new_page)) err = PTR_ERR(new_page); goto out_whiteout; } f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); err = acquire_orphan_inode(sbi); if (err) goto put_out_dir; f2fs_set_link(new_dir, new_entry, new_page, old_inode); new_inode->i_ctime = current_time(new_inode); down_write(&F2FS_I(new_inode)->i_sem); if (old_dir_entry) f2fs_i_links_write(new_inode, false); f2fs_i_links_write(new_inode, false); up_write(&F2FS_I(new_inode)->i_sem); if (!new_inode->i_nlink) add_orphan_inode(new_inode); else release_orphan_inode(sbi); } else { f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); err = f2fs_add_link(new_dentry, old_inode); if (err) { f2fs_unlock_op(sbi); goto out_whiteout; } if (old_dir_entry) f2fs_i_links_write(new_dir, true); /* * old entry and new entry can locate in the same inline * dentry in inode, when attaching new entry in inline dentry, * it could force inline dentry conversion, after that, * old_entry and old_page will point to wrong address, in * order to avoid this, let's do the check and update here. */ if (is_old_inline && !f2fs_has_inline_dentry(old_dir)) { f2fs_put_page(old_page, 0); old_page = NULL; old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page); if (!old_entry) { err = -ENOENT; if (IS_ERR(old_page)) err = PTR_ERR(old_page); f2fs_unlock_op(sbi); goto out_whiteout; } } } down_write(&F2FS_I(old_inode)->i_sem); if (!old_dir_entry || whiteout) file_lost_pino(old_inode); else F2FS_I(old_inode)->i_pino = new_dir->i_ino; up_write(&F2FS_I(old_inode)->i_sem); old_inode->i_ctime = current_time(old_inode); f2fs_mark_inode_dirty_sync(old_inode, false); f2fs_delete_entry(old_entry, old_page, old_dir, NULL); if (whiteout) { whiteout->i_state |= I_LINKABLE; set_inode_flag(whiteout, FI_INC_LINK); err = f2fs_add_link(old_dentry, whiteout); if (err) goto put_out_dir; whiteout->i_state &= ~I_LINKABLE; iput(whiteout); } if (old_dir_entry) { if (old_dir != new_dir && !whiteout) { f2fs_set_link(old_inode, old_dir_entry, old_dir_page, new_dir); } else { f2fs_dentry_kunmap(old_inode, old_dir_page); f2fs_put_page(old_dir_page, 0); } f2fs_i_links_write(old_dir, false); } f2fs_unlock_op(sbi); if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir)) f2fs_sync_fs(sbi->sb, 1); return 0; put_out_dir: f2fs_unlock_op(sbi); if (new_page) { f2fs_dentry_kunmap(new_dir, new_page); f2fs_put_page(new_page, 0); } out_whiteout: if (whiteout) iput(whiteout); out_dir: if (old_dir_entry) { f2fs_dentry_kunmap(old_inode, old_dir_page); f2fs_put_page(old_dir_page, 0); } out_old: f2fs_dentry_kunmap(old_dir, old_page); f2fs_put_page(old_page, 0); out: return err; }