Esempio n. 1
0
    /***
     *    Convertions between cv::Keypoint and KAZE::Ipoint
     */
    static inline void convertPoint(const cv::KeyPoint& kp, Ipoint& aux)
    {
        aux.xf = kp.pt.x;
        aux.yf = kp.pt.y;
        aux.x = fRound(aux.xf);
        aux.y = fRound(aux.yf);

        //cout << "SURF size: " << kpts_surf1_[i].size*.5 << endl;
        aux.octave = kp.octave;

        // Get the radius for visualization
        aux.scale = kp.size*.2;    // Updated by Yuhua Zou
        aux.angle = DEGREE_TO_RADIAN(kp.angle);

        //aux.descriptor_size = 64;
    }
Esempio n. 2
0
//! Get the upright descriptor vector of the provided Ipoint
void Surf::getUprightDescriptor()
{
    int y, x, count=0;
    float scale, *desc, dx, dy, mdx, mdy;
    float gauss, rx, ry, len = 0.f;

    Ipoint *ipt = &ipts.at(index);
    scale = ipt->scale;
    y = fRound(ipt->y);
    x = fRound(ipt->x);
    desc = ipt->descriptor;

    // Calculate descriptor for this interest point
    for (int i = -10; i < 10; i+=5)
    {
        for (int j = -10; j < 10; j+=5)
        {
            dx=dy=mdx=mdy=0;
            for (int k = i; k < i + 5; ++k)
            {
                for (int l = j; l < j + 5; ++l)
                {
                    // get Gaussian weighted x and y responses
                    gauss = static_cast<float>(gauss33[abs(k)][abs(l)]);
                    rx = gauss * haarX(fRound(k*scale+y), fRound(l*scale+x), 2*fRound(scale));
                    ry = gauss * haarY(fRound(k*scale+y), fRound(l*scale+x), 2*fRound(scale));

                    dx += rx;
                    dy += ry;
                    mdx += fabs(rx);
                    mdy += fabs(ry);
                }
            }

            // add the values to the descriptor vector
            desc[count++] = dx;
            desc[count++] = dy;
            desc[count++] = mdx;
            desc[count++] = mdy;

            // store the current length^2 of the vector
            len += dx*dx + dy*dy + mdx*mdx + mdy*mdy;
        }
    }

    // convert to unit vector
    len = sqrt(len);
    for (int i = 0; i < 64; i++)
        desc[i] /= len;

}
Esempio n. 3
0
void ofxOpenSurf :: drawPoints ( int x, int y, float scale, vector<Ipoint> &ipts, int tailSize )
{
    glPushMatrix();
    glTranslatef( x, y, 0 );
    glScalef( scale, scale, 1 );
    Ipoint* ipt;
    float s,o;
    int r1,c1,r2,c2,lap;
    for( int i=0; i<ipts.size(); i++ )
    {
        ipt = &ipts.at( i );
        s   = ( ( 9.0f / 1.2f ) * ipt->scale ) / 3.0f;
        o   = ipt->orientation;
        lap = ipt->laplacian;
        r1  = fRound( ipt->y );
        c1  = fRound( ipt->x );
        c2  = fRound( s * cos( o ) ) + c1;
        r2  = fRound( s * sin( o ) ) + r1;
        
        if( o ) //green line = orientation
        {
            ofSetColor( ofColor :: green );
            ofLine( c1, r1, c2, r2 );
        }
        else    //green dot = upright conversion
        { 
            ofSetColor( ofColor :: green );
            ofCircle( c1, r1, 1 );
        }
        
        if( lap >= 0 )  //blue circle = dark blob on light
        { 
            ofNoFill();
            ofSetColor( ofColor :: blue );
            ofCircle( c1, r1, fRound( s ) );
        }
        else    // red circle = light blob on dark
        { 
            ofNoFill();
            ofSetColor( ofColor :: red );
            ofCircle( c1, r1, fRound( s ) );
        }
        
        if( tailSize ) //draw motion ipoint dx dy
        { 
            ofSetColor( ofColor :: white );
            ofLine( c1, r1, (int)( c1 + ipt->dx * tailSize ), (int)( r1 + ipt->dy * tailSize ) );
        }
    }
    glPopMatrix();
}
UINT64 CWaveformTransmitter::u64GetCurrAmplitude(int CurrItr,
        sWaveformInfo& ouCurrSig)
{
    float Result = 0.0;

    switch (ouCurrSig.m_eSignalWaveType)
    {
        case eWave_SINE:
        {
            Result = ouCurrSig.m_fAmplitude * sin(CurrItr * ouCurrSig.m_fGranularity);
        }
        break;

        case eWave_COS:
        {
            Result = ouCurrSig.m_fAmplitude * cos(CurrItr * ouCurrSig.m_fGranularity);
        }
        break;

        case eWave_TRIANGLE:
        {
            float Val = CurrItr * ouCurrSig.m_fGranularity;
            Result = (sin(Val) - sin(3 * Val) / 9 + sin(5 * Val) / 25
                      - sin(7 * Val) / 49 + sin(9 * Val) / 81) * SINE_COEFF;
            Result *= ouCurrSig.m_fAmplitude;
        }
        break;

        default:
            ASSERT(FALSE);
    }

    //ArunKumar K: Currently using the Peak to Peak Amplitude as 0 to 2*Amplitude
    //instead of -Amplitude to +Amplitude
    Result += ouCurrSig.m_fAmplitude;

    if(Result!=0)
    {
        Result = fRound(Result, 0);
    }

    return (UINT64) Result;
}
void ofxDrawIpoints(int x, int y, float sz, std::vector<Ipoint> &ipts, int tailSize) {
    glPushMatrix();
    glTranslatef(x,y,0);
    glScalef(sz,sz,1);
    Ipoint * ipt;
    float s,o;
    int r1,c1,r2,c2,lap;
    for(unsigned int i=0; i<ipts.size(); i++) {
        ipt = &ipts.at(i);
        s = ((9.0f/1.2f) * ipt->scale) / 3.0f;
        o = ipt->orientation;
        lap = ipt->laplacian;
        r1 = fRound(ipt->y);
        c1 = fRound(ipt->x);
        c2 = fRound(s * cos(o)) + c1;
        r2 = fRound(s * sin(o)) + r1;

        if(o) { //green line = orientation
            ofSetColor(0x00ff00);
            ofLine(c1,r1,c2,r2);
        } else { //green dot = upright conversion
            ofSetColor(0x00ff00);
            ofCircle(c1,r1,1);
        }

        if(lap>=0) { //blue circle = dark blob on light
            ofSetColor(0x0000ff);
            ofNoFill();
            ofCircle(c1,r1,fRound(s));
        } else { // red circle = light blob on dark
            ofSetColor(0xff0000);
            ofNoFill();
            ofCircle(c1,r1,fRound(s));
        }

        if(tailSize) { //draw motion ipoint dx dy
            ofSetColor(0xffffff);
            ofLine(c1,r1,int(c1+ipt->dx*tailSize),int(r1+ipt->dy*tailSize));
        }
    }
    glPopMatrix();
}
Esempio n. 6
0
/*
  This is the main workhorse of the QGridLayout. It portions out
  available space to the chain's children.

  The calculation is done in fixed point: "fixed" variables are
  scaled by a factor of 256.

  If the layout runs "backwards" (i.e. RightToLeft or Up) the layout
  is computed mirror-reversed, and it's the caller's responsibility
  do reverse the values before use.

  chain contains input and output parameters describing the geometry.
  count is the count of items in the chain; pos and space give the
  interval (relative to parentWidget topLeft).
*/
Q_EXPORT void qGeomCalc( QMemArray<QLayoutStruct> &chain, int start, int count,
			 int pos, int space, int spacer )
{
    typedef int fixed;
    int cHint = 0;
    int cMin = 0;
    int cMax = 0;
    int sumStretch = 0;
    int spacerCount = 0;

    bool wannaGrow = FALSE; // anyone who really wants to grow?
    //    bool canShrink = FALSE; // anyone who could be persuaded to shrink?

    int i;
    for ( i = start; i < start + count; i++ ) {
	chain[i].done = FALSE;
	cHint += chain[i].smartSizeHint();
	cMin += chain[i].minimumSize;
	cMax += chain[i].maximumSize;
	sumStretch += chain[i].stretch;
	if ( !chain[i].empty )
	    spacerCount++;
	wannaGrow = wannaGrow || chain[i].expansive || chain[i].stretch > 0;
    }

    int extraspace = 0;
    if ( spacerCount )
	spacerCount--; // only spacers between things
    if ( space < cMin + spacerCount * spacer ) {
	for ( i = start; i < start+count; i++ ) {
	    chain[i].size = chain[i].minimumSize;
	    chain[i].done = TRUE;
	}
    } else if ( space < cHint + spacerCount*spacer ) {
	/*
	  Less space than smartSizeHint(), but more than minimumSize.
	  Currently take space equally from each, as in Qt 2.x.
	  Commented-out lines will give more space to stretchier
	  items.
	*/
	int n = count;
	int space_left = space - spacerCount*spacer;
	int overdraft = cHint - space_left;

	// first give to the fixed ones:
	for ( i = start; i < start + count; i++ ) {
	    if ( !chain[i].done
		 && chain[i].minimumSize >= chain[i].smartSizeHint() ) {
		chain[i].size = chain[i].smartSizeHint();
		chain[i].done = TRUE;
		space_left -= chain[i].smartSizeHint();
		// sumStretch -= chain[i].stretch;
		n--;
	    }
	}
	bool finished = n == 0;
	while ( !finished ) {
	    finished = TRUE;
	    fixed fp_over = toFixed( overdraft );
	    fixed fp_w = 0;

	    for ( i = start; i < start+count; i++ ) {
		if ( chain[i].done )
		    continue;
		// if ( sumStretch <= 0 )
		fp_w += fp_over / n;
		// else
		//    fp_w += (fp_over * chain[i].stretch) / sumStretch;
		int w = fRound( fp_w );
		chain[i].size = chain[i].smartSizeHint() - w;
		fp_w -= toFixed( w ); // give the difference to the next
		if ( chain[i].size < chain[i].minimumSize ) {
		    chain[i].done = TRUE;
		    chain[i].size = chain[i].minimumSize;
		    finished = FALSE;
		    overdraft -= ( chain[i].smartSizeHint()
				   - chain[i].minimumSize );
		    // sumStretch -= chain[i].stretch;
		    n--;
		    break;
		}
	    }
	}
    } else { // extra space
	int n = count;
	int space_left = space - spacerCount*spacer;
	// first give to the fixed ones, and handle non-expansiveness
	for ( i = start; i < start + count; i++ ) {
	    if ( !chain[i].done
		 && (chain[i].maximumSize <= chain[i].smartSizeHint()
		     || (wannaGrow && !chain[i].expansive && chain[i].stretch == 0)) ) {
		chain[i].size = chain[i].smartSizeHint();
		chain[i].done = TRUE;
		space_left -= chain[i].smartSizeHint();
		sumStretch -= chain[i].stretch;
		n--;
	    }
	}
	extraspace = space_left;

	/*
	  Do a trial distribution and calculate how much it is off.
	  If there are more deficit pixels than surplus pixels, give
	  the minimum size items what they need, and repeat.
	  Otherwise give to the maximum size items, and repeat.

	  Paul Olav Tvete has a wonderful mathematical proof of the
	  correctness of this principle, but unfortunately this
	  comment is too small to contain it.
	*/
	int surplus, deficit;
	do {
	    surplus = deficit = 0;
	    fixed fp_space = toFixed( space_left );
	    fixed fp_w = 0;
	    for ( i = start; i < start+count; i++ ) {
		if ( chain[i].done )
		    continue;
		extraspace = 0;
		if ( sumStretch <= 0 )
		    fp_w += fp_space / n;
		else
		    fp_w += (fp_space * chain[i].stretch) / sumStretch;
		int w = fRound( fp_w );
		chain[i].size = w;
		fp_w -= toFixed( w ); // give the difference to the next
		if ( w < chain[i].smartSizeHint() ) {
		    deficit +=  chain[i].smartSizeHint() - w;
		} else if ( w > chain[i].maximumSize ) {
		    surplus += w - chain[i].maximumSize;
		}
	    }
	    if ( deficit > 0 && surplus <= deficit ) {
		// give to the ones that have too little
		for ( i = start; i < start+count; i++ ) {
		    if ( !chain[i].done &&
			 chain[i].size < chain[i].smartSizeHint() ) {
			chain[i].size = chain[i].smartSizeHint();
			chain[i].done = TRUE;
			space_left -= chain[i].smartSizeHint();
			sumStretch -= chain[i].stretch;
			n--;
		    }
		}
	    }
	    if ( surplus > 0 && surplus >= deficit ) {
		// take from the ones that have too much
		for ( i = start; i < start+count; i++ ) {
		    if ( !chain[i].done &&
			 chain[i].size > chain[i].maximumSize ) {
			chain[i].size = chain[i].maximumSize;
			chain[i].done = TRUE;
			space_left -= chain[i].maximumSize;
			sumStretch -= chain[i].stretch;
			n--;
		    }
		}
	    }
	} while ( n > 0 && surplus != deficit );
	if ( n == 0 )
	    extraspace = space_left;
    }

    /*
      As a last resort, we distribute the unwanted space equally
      among the spacers (counting the start and end of the chain). We
      could, but don't, attempt a sub-pixel allocation of the extra
      space.
    */
    int extra = extraspace / ( spacerCount + 2 );
    int p = pos + extra;
    for ( i = start; i < start+count; i++ ) {
	chain[i].pos = p;
	p = p + chain[i].size;
	if ( !chain[i].empty )
	    p += spacer+extra;
    }
}
Esempio n. 7
0
/*
  This is the main workhorse of the QGridLayout. It portions out
  available space to the chain's children.

  The calculation is done in fixed point: "fixed" variables are
  scaled by a factor of 256.

  If the layout runs "backwards" (i.e. RightToLeft or Up) the layout
  is computed mirror-reversed, and it's the caller's responsibility
  do reverse the values before use.

  chain contains input and output parameters describing the geometry.
  count is the count of items in the chain; pos and space give the
  interval (relative to parentWidget topLeft).
*/
void qGeomCalc(QVector<QLayoutStruct> &chain, int start, int count,
               int pos, int space, int spacer)
{
    int cHint = 0;
    int cMin = 0;
    int cMax = 0;
    int sumStretch = 0;
    int sumSpacing = 0;

    bool wannaGrow = false; // anyone who really wants to grow?
    //    bool canShrink = false; // anyone who could be persuaded to shrink?

    bool allEmptyNonstretch = true;
    int pendingSpacing = -1;
    int spacerCount = 0;
    int i;

    for (i = start; i < start + count; i++) {
        QLayoutStruct *data = &chain[i];

        data->done = false;
        cHint += data->smartSizeHint();
        cMin += data->minimumSize;
        cMax += data->maximumSize;
        sumStretch += data->stretch;
        if (!data->empty) {
            /*
                Using pendingSpacing, we ensure that the spacing for the last
                (non-empty) item is ignored.
            */
            if (pendingSpacing >= 0) {
                sumSpacing += pendingSpacing;
                ++spacerCount;
            }
            pendingSpacing = data->effectiveSpacer(spacer);
        }
        wannaGrow = wannaGrow || data->expansive || data->stretch > 0;
        allEmptyNonstretch = allEmptyNonstretch && !wannaGrow && data->empty;
    }

    int extraspace = 0;

    if (space < cMin + sumSpacing) {
        /*
          Less space than minimumSize; take from the biggest first
        */

        int minSize = cMin + sumSpacing;

        // shrink the spacers proportionally
        if (spacer >= 0) {
            spacer = minSize > 0 ? spacer * space / minSize : 0;
            sumSpacing = spacer * spacerCount;
        }

        QList<int> list;

        for (i = start; i < start + count; i++)
            list << chain.at(i).minimumSize;

        qSort(list);

        int space_left = space - sumSpacing;

        int sum = 0;
        int idx = 0;
        int space_used=0;
        int current = 0;
        while (idx < count && space_used < space_left) {
            current = list.at(idx);
            space_used = sum + current * (count - idx);
            sum += current;
            ++idx;
        }
        --idx;
        int deficit = space_used - space_left;

        int items = count - idx;
        /*
         * If we truncate all items to "current", we would get "deficit" too many pixels. Therefore, we have to remove
         * deficit/items from each item bigger than maxval. The actual value to remove is deficitPerItem + remainder/items
         * "rest" is the accumulated error from using integer arithmetic.
        */
        int deficitPerItem = deficit/items;
        int remainder = deficit % items;
        int maxval = current - deficitPerItem;

        int rest = 0;
        for (i = start; i < start + count; i++) {
            int maxv = maxval;
            rest += remainder;
            if (rest >= items) {
                maxv--;
                rest-=items;
            }
            QLayoutStruct *data = &chain[i];
            data->size = qMin(data->minimumSize, maxv);
            data->done = true;
        }
    } else if (space < cHint + sumSpacing) {
        /*
          Less space than smartSizeHint(), but more than minimumSize.
          Currently take space equally from each, as in Qt 2.x.
          Commented-out lines will give more space to stretchier
          items.
        */
        int n = count;
        int space_left = space - sumSpacing;
        int overdraft = cHint - space_left;

        // first give to the fixed ones:
        for (i = start; i < start + count; i++) {
            QLayoutStruct *data = &chain[i];
            if (!data->done
                 && data->minimumSize >= data->smartSizeHint()) {
                data->size = data->smartSizeHint();
                data->done = true;
                space_left -= data->smartSizeHint();
                // sumStretch -= data->stretch;
                n--;
            }
        }
        bool finished = n == 0;
        while (!finished) {
            finished = true;
            Fixed64 fp_over = toFixed(overdraft);
            Fixed64 fp_w = 0;

            for (i = start; i < start+count; i++) {
                QLayoutStruct *data = &chain[i];
                if (data->done)
                    continue;
                // if (sumStretch <= 0)
                fp_w += fp_over / n;
                // else
                //    fp_w += (fp_over * data->stretch) / sumStretch;
                int w = fRound(fp_w);
                data->size = data->smartSizeHint() - w;
                fp_w -= toFixed(w); // give the difference to the next
                if (data->size < data->minimumSize) {
                    data->done = true;
                    data->size = data->minimumSize;
                    finished = false;
                    overdraft -= data->smartSizeHint() - data->minimumSize;
                    // sumStretch -= data->stretch;
                    n--;
                    break;
                }
            }
        }
    } else { // extra space
        int n = count;
        int space_left = space - sumSpacing;
        // first give to the fixed ones, and handle non-expansiveness
        for (i = start; i < start + count; i++) {
            QLayoutStruct *data = &chain[i];
            if (!data->done
                && (data->maximumSize <= data->smartSizeHint()
                    || (wannaGrow && !data->expansive && data->stretch == 0)
                    || (!allEmptyNonstretch && data->empty &&
                        !data->expansive && data->stretch == 0))) {
                data->size = data->smartSizeHint();
                data->done = true;
                space_left -= data->size;
                sumStretch -= data->stretch;
                n--;
            }
        }
        extraspace = space_left;

        /*
          Do a trial distribution and calculate how much it is off.
          If there are more deficit pixels than surplus pixels, give
          the minimum size items what they need, and repeat.
          Otherwise give to the maximum size items, and repeat.

          Paul Olav Tvete has a wonderful mathematical proof of the
          correctness of this principle, but unfortunately this
          comment is too small to contain it.
        */
        int surplus, deficit;
        do {
            surplus = deficit = 0;
            Fixed64 fp_space = toFixed(space_left);
            Fixed64 fp_w = 0;
            for (i = start; i < start + count; i++) {
                QLayoutStruct *data = &chain[i];
                if (data->done)
                    continue;
                extraspace = 0;
                if (sumStretch <= 0)
                    fp_w += fp_space / n;
                else
                    fp_w += (fp_space * data->stretch) / sumStretch;
                int w = fRound(fp_w);
                data->size = w;
                fp_w -= toFixed(w); // give the difference to the next
                if (w < data->smartSizeHint()) {
                    deficit +=  data->smartSizeHint() - w;
                } else if (w > data->maximumSize) {
                    surplus += w - data->maximumSize;
                }
            }
            if (deficit > 0 && surplus <= deficit) {
                // give to the ones that have too little
                for (i = start; i < start+count; i++) {
                    QLayoutStruct *data = &chain[i];
                    if (!data->done && data->size < data->smartSizeHint()) {
                        data->size = data->smartSizeHint();
                        data->done = true;
                        space_left -= data->smartSizeHint();
                        sumStretch -= data->stretch;
                        n--;
                    }
                }
            }
            if (surplus > 0 && surplus >= deficit) {
                // take from the ones that have too much
                for (i = start; i < start + count; i++) {
                    QLayoutStruct *data = &chain[i];
                    if (!data->done && data->size > data->maximumSize) {
                        data->size = data->maximumSize;
                        data->done = true;
                        space_left -= data->maximumSize;
                        sumStretch -= data->stretch;
                        n--;
                    }
                }
            }
        } while (n > 0 && surplus != deficit);
        if (n == 0)
            extraspace = space_left;
    }

    /*
      As a last resort, we distribute the unwanted space equally
      among the spacers (counting the start and end of the chain). We
      could, but don't, attempt a sub-pixel allocation of the extra
      space.
    */
    int extra = extraspace / (spacerCount + 2);
    int p = pos + extra;
    for (i = start; i < start+count; i++) {
        QLayoutStruct *data = &chain[i];
        data->pos = p;
        p += data->size;
        if (!data->empty)
            p += data->effectiveSpacer(spacer) + extra;
    }

#ifdef QLAYOUT_EXTRA_DEBUG
    qDebug() << "qGeomCalc" << "start" << start <<  "count" << count <<  "pos" << pos
             <<  "space" << space <<  "spacer" << spacer;
    for (i = start; i < start + count; ++i) {
        qDebug() << i << ":" << chain[i].minimumSize << chain[i].smartSizeHint()
                 << chain[i].maximumSize << "stretch" << chain[i].stretch
                 << "empty" << chain[i].empty << "expansive" << chain[i].expansive
                 << "spacing" << chain[i].spacing;
        qDebug() << "result pos" << chain[i].pos << "size" << chain[i].size;
    }
#endif
}
Esempio n. 8
0
//! Get the descriptor vector of the provided Ipoint
void Surf::getDescriptor()
{
    int y, x, sample_x, sample_y, count=0;
    float scale, *desc, dx, dy, mdx, mdy, co, si;
    float gauss, rx, ry, rrx, rry, len=0;

    Ipoint *ipt = &ipts.at(index);
    scale = ipt->scale;
    x = fRound(ipt->x);
    y = fRound(ipt->y);
    co = cos(ipt->orientation);
    si = sin(ipt->orientation);
    desc = ipt->descriptor;

    // Calculate descriptor for this interest point
    for (int i = -10; i < 10; i+=5)
    {
        for (int j = -10; j < 10; j+=5)
        {
            dx=dy=mdx=mdy=0;
            for (int k = i; k < i + 5; ++k)
            {
                for (int l = j; l < j + 5; ++l)
                {
                    // Get coords of sample point on the rotated axis
                    sample_x = fRound(x + (-l*scale*si + k*scale*co));
                    sample_y = fRound(y + ( l*scale*co + k*scale*si));

                    // Get the gaussian weighted x and y responses
                    gauss = static_cast<float>(gauss33[abs(k)][abs(l)]);
                    rx = gauss * haarX(sample_y, sample_x, 2*fRound(scale));
                    ry = gauss * haarY(sample_y, sample_x, 2*fRound(scale));

                    // Get the gaussian weighted x and y responses on rotated axis
                    rrx = -rx*si + ry*co;
                    rry = rx*co + ry*si;

                    dx += rrx;
                    dy += rry;
                    mdx += fabs(rrx);
                    mdy += fabs(rry);
                }
            }

            // add the values to the descriptor vector
            desc[count++] = dx;
            desc[count++] = dy;
            desc[count++] = mdx;
            desc[count++] = mdy;

            // store the current length^2 of the vector
            len += dx*dx + dy*dy + mdx*mdx + mdy*mdy;
        }
    }

    // convert to unit vector
    len = sqrt(len);
    for (int i = 0; i < 64; i++)
        desc[i] /= len;

}
Esempio n. 9
0
//! Assign the supplied Ipoint an orientation
void Surf::getOrientation()
{
    Ipoint *ipt = &ipts.at(index);
    float gauss, scale = ipt->scale;
    int s = fRound(scale), r = fRound(ipt->y), c = fRound(ipt->x);
    std::vector<float> resX, resY, Ang;

    // calculate haar responses for points within radius of 6*scale
    for (int i = -6; i <= 6; ++i)
    {
        for (int j = -6; j <= 6; ++j)
        {
            if (i*i + j*j < 36)
            {
                gauss = static_cast<float>(gauss25[abs(i)][abs(j)]);
                resX.push_back( gauss * haarX(r+j*s, c+i*s, 4*s) );
                resY.push_back( gauss * haarY(r+j*s, c+i*s, 4*s) );
                Ang.push_back(getAngle(resX.back(), resY.back()));
            }
        }
    }

    // calculate the dominant direction
    float sumX, sumY;
    float max=0, old_max = 0, orientation = 0, old_orientation = 0;
    float ang1, ang2, ang;

    // loop slides pi/3 window around feature point
    for (ang1 = 0; ang1 < 2*pi;  ang1+=0.15f)
    {
        ang2 = ( ang1+pi/3.0f > 2*pi ? ang1-5.0f*pi/3.0f : ang1+pi/3.0f);
        sumX = sumY = 0;
        for (unsigned int k = 0; k < Ang.size(); k++)
        {
            // get angle from the x-axis of the sample point
            ang = Ang.at(k);

            // determine whether the point is within the window
            if (ang1 < ang2 && ang1 < ang && ang < ang2)
            {
                sumX+=resX.at(k);
                sumY+=resY.at(k);
            }
            else if (ang2 < ang1 &&
                     ((ang > 0 && ang < ang2) || (ang > ang1 && ang < 2*pi) ))
            {
                sumX+=resX.at(k);
                sumY+=resY.at(k);
            }
        }

        // if the vector produced from this window is longer than all
        // previous vectors then this forms the new dominant direction
        if (sumX*sumX + sumY*sumY > max)
        {
            // store largest orientation
            max = sumX*sumX + sumY*sumY;
            orientation = getAngle(sumX, sumY);
        }
    }

    // assign orientation of the dominant response vector
    ipt->orientation = orientation;
}
Esempio n. 10
0
	IT("tries to cast lazy expressions to booleans")
		initializeGlobals();
		expr = newExpressionLaz(newExpressionStr(newString(strDup("-10"))));
		result = castToBoo(expr);
		SHOULD_EQUAL(result->ev.intval, 1)
		freeExpr(result);
		freeExpr(expr);
		freeGlobals();
	END_IT
END_DESCRIBE

DESCRIBE(fRound, "expression* fRound (double result, int digits)")
	expression* expr;
	
	IT("rounds floats to integers")
		expr = fRound(101.3, -1);
		SHOULD_EQUAL(expr->ev.intval, 101)
		freeExpr(expr);
		expr = fRound(34.5, -1);
		SHOULD_EQUAL(expr->ev.intval, 34)
		freeExpr(expr);
		expr = fRound(35.5, -1);
		SHOULD_EQUAL(expr->ev.intval, 36)
		freeExpr(expr);
	END_IT
	
	IT("rounds floats to arbitrary precisions")
		expr = fRound(203.45, 1);
		SHOULD_EQUAL(expr->ev.floval, 203.4)
		freeExpr(expr);
		expr = fRound(-0.5689, 3);
Esempio n. 11
0
//! Assign the supplied Ipoint an orientation
void Surf::getOrientation()
{
  Ipoint *ipt = &ipts[index];
  float gauss = 0.f, scale = ipt->scale;
  const int s = fRound(scale), r = fRound(ipt->y), c = fRound(ipt->x);
  std::vector<float> resX(109), resY(109), Ang(109);
  const int id[] = {6,5,4,3,2,1,0,1,2,3,4,5,6};

  int idx = 0;
  // calculate haar responses for points within radius of 6*scale
  for(int i = -6; i <= 6; ++i) 
  {
    for(int j = -6; j <= 6; ++j) 
    {
      if(i*i + j*j < 36) 
      {
        gauss = static_cast<float>(gauss25[id[i+6]][id[j+6]]);
        resX[idx] = gauss * haarX(r+j*s, c+i*s, 4*s);
        resY[idx] = gauss * haarY(r+j*s, c+i*s, 4*s);
        Ang[idx] = getAngle(resX[idx], resY[idx]);
        ++idx;
      }
    }
  }

  // calculate the dominant direction 
  float sumX=0.f, sumY=0.f;
  float max=0.f, orientation = 0.f;
  float ang1=0.f, ang2=0.f;

  // loop slides pi/3 window around feature point
  for(ang1 = 0; ang1 < 2*pi;  ang1+=0.15f) {
    ang2 = ( ang1+pi/3.0f > 2*pi ? ang1-5.0f*pi/3.0f : ang1+pi/3.0f);
    sumX = sumY = 0.f; 
    for(unsigned int k = 0; k < Ang.size(); ++k) 
    {
      // get angle from the x-axis of the sample point
      const float & ang = Ang[k];

      // determine whether the point is within the window
      if (ang1 < ang2 && ang1 < ang && ang < ang2) 
      {
        sumX+=resX[k];  
        sumY+=resY[k];
      } 
      else if (ang2 < ang1 && 
        ((ang > 0 && ang < ang2) || (ang > ang1 && ang < 2*pi) )) 
      {
        sumX+=resX[k];  
        sumY+=resY[k];
      }
    }

    // if the vector produced from this window is longer than all 
    // previous vectors then this forms the new dominant direction
    if (sumX*sumX + sumY*sumY > max) 
    {
      // store largest orientation
      max = sumX*sumX + sumY*sumY;
      orientation = getAngle(sumX, sumY);
    }
  }

  // assign orientation of the dominant response vector
  ipt->orientation = orientation;
}
Esempio n. 12
0
//! Get the modified descriptor. See Agrawal ECCV 08
//! Modified descriptor contributed by Pablo Fernandez
void Surf::getDescriptor(bool bUpright)
{
  int y, x, sample_x, sample_y, count=0;
  int i = 0, ix = 0, j = 0, jx = 0, xs = 0, ys = 0;
  float scale, *desc, dx, dy, mdx, mdy, co, si;
  float gauss_s1 = 0.f, gauss_s2 = 0.f;
  float rx = 0.f, ry = 0.f, rrx = 0.f, rry = 0.f, len = 0.f;
  float cx = -0.5f, cy = 0.f; //Subregion centers for the 4x4 gaussian weighting

  Ipoint *ipt = &ipts[index];
  scale = ipt->scale;
  x = fRound(ipt->x);
  y = fRound(ipt->y);  
  desc = ipt->descriptor;

  if (bUpright)
  {
    co = 1;
    si = 0;
  }
  else
  {
    co = cos(ipt->orientation);
    si = sin(ipt->orientation);
  }

  i = -8;

  //Calculate descriptor for this interest point
  while(i < 12)
  {
    j = -8;
    i = i-4;

    cx += 1.f;
    cy = -0.5f;

    while(j < 12) 
    {
      dx=dy=mdx=mdy=0.f;
      cy += 1.f;

      j = j - 4;

      ix = i + 5;
      jx = j + 5;

      xs = fRound(x + ( -jx*scale*si + ix*scale*co));
      ys = fRound(y + ( jx*scale*co + ix*scale*si));

      for (int k = i; k < i + 9; ++k) 
      {
        for (int l = j; l < j + 9; ++l) 
        {
          //Get coords of sample point on the rotated axis
          sample_x = fRound(x + (-l*scale*si + k*scale*co));
          sample_y = fRound(y + ( l*scale*co + k*scale*si));

          //Get the gaussian weighted x and y responses
          gauss_s1 = gaussian(xs-sample_x,ys-sample_y,2.5f*scale);
          rx = haarX(sample_y, sample_x, 2*fRound(scale));
          ry = haarY(sample_y, sample_x, 2*fRound(scale));

          //Get the gaussian weighted x and y responses on rotated axis
          rrx = gauss_s1*(-rx*si + ry*co);
          rry = gauss_s1*(rx*co + ry*si);

          dx += rrx;
          dy += rry;
          mdx += fabs(rrx);
          mdy += fabs(rry);

        }
      }

      //Add the values to the descriptor vector
      gauss_s2 = gaussian(cx-2.0f,cy-2.0f,1.5f);

      desc[count++] = dx*gauss_s2;
      desc[count++] = dy*gauss_s2;
      desc[count++] = mdx*gauss_s2;
      desc[count++] = mdy*gauss_s2;

      len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy) * gauss_s2*gauss_s2;

      j += 9;
    }
    i += 9;
  }

  //Convert to Unit Vector
  len = sqrt(len);
  for(int i = 0; i < 64; ++i)
    desc[i] /= len;

}
Esempio n. 13
0
void SURF::eval(unsigned char *in, float *out, int xres, int yres,float scale,float orientation)
{
    img = in;
    float co,si;

    this->xres = xres;
    this->yres = yres;
    co = cos(orientation);
    si = sin(orientation);


    #pragma omp parallel for
    for(int y = 0; y < yres; y ++)
    {
        int sample_x, sample_y, count;
        int i, ix, j, jx, xs, ys;
        #ifdef SURF_128
        float dx1, dx2, dx3, dx4, dy1, dy2, dy3, dy4;
        #else
        float dx, dy, mdx, mdy;
        #endif
        float gauss_s1, gauss_s2;
        float rx, ry, rrx, rry, len;
        float cx,cy; //Subregion centers for the 4x4 gaussian weighting
        for(int x = 0; x < xres; x ++)
        {
            #ifdef SURF_128
            float *desc = out+(x+y*xres)*128;
            #else
            float *desc = out+(x+y*xres)*64;
            #endif
            count = 0;
            len = 0;
            cx = -0.5f;
            i = -8;
            //Calculate descriptor
            while(i < 12)
            {
                j = -8;
                i = i-4;
                cx += 1.f;
                cy = -0.5f;
                while(j < 12)
                {
                    #ifdef SURF_128
                    dx1 = dx2 = dx3 = dx4 = dy1 = dy2 = dy3 = dy4 = 0.f;
                    #else
                    dx=dy=mdx=mdy=0.f;
                    #endif
                    cy += 1.f;
                    j = j - 4;
                    ix = i + 5;
                    jx = j + 5;
                    xs = fRound(x + ( -jx*scale*si + ix*scale*co));
                    ys = fRound(y + ( jx*scale*co + ix*scale*si));

                    for (int k = i; k < i + 9; ++k)
                    {
                        for (int l = j; l < j + 9; ++l)
                        {
                            //Get coords of sample point on the rotated axis
                            sample_x = fRound(x + (-l*scale*si + k*scale*co));
                            sample_y = fRound(y + ( l*scale*co + k*scale*si));

                            //Get the gaussian weighted x and y responses
                            gauss_s1 = gaussian(xs-sample_x,ys-sample_y,2.5f*scale);
                            rx = haarX(sample_y, sample_x, 2*fRound(scale));
                            ry = haarY(sample_y, sample_x, 2*fRound(scale));

                            //Get the gaussian weighted x and y responses on rotated axis
                            rrx = gauss_s1*(-rx*si + ry*co);
                            rry = gauss_s1*(rx*co + ry*si);

                            #ifdef SURF_128
                            if(rry > 0)
                                if(rrx > 0)
                                {
                                    dx1 += rrx;
                                    dy1 += rry;
                                }
                                else
                                {
                                    dx2 -= rrx;
                                    dy2 += rry;
                                }
                            else
                                if(rrx < 0)
                                {
                                    dx3 -= rrx;
                                    dy3 -= rry;
                                }
                                else
                                {
                                    dx4 += rrx;
                                    dy4 -= rry;
                                }
                            #else
                            dx += rrx;
                            dy += rry;
                            mdx += fabs(rrx);
                            mdy += fabs(rry);
                            #endif
                        }
                    }

                    //Add the values to the descriptor vector
                    gauss_s2 = gaussian(cx-2.0f,cy-2.0f,1.5f);

                    #ifdef SURF_128
                    desc[count++] = dx1*gauss_s2;
                    desc[count++] = dy1*gauss_s2;
                    desc[count++] = dx2*gauss_s2;
                    desc[count++] = dy2*gauss_s2;
                    desc[count++] = dx3*gauss_s2;
                    desc[count++] = dy3*gauss_s2;
                    desc[count++] = dx4*gauss_s2;
                    desc[count++] = dy4*gauss_s2;
                    len += (dx1*dx1 +
                            dy1*dy1 +
                            dx2*dx2 +
                            dy2*dy2 +
                            dx3*dx3 +
                            dy3*dy3 +
                            dx4*dx4 +
                            dy4*dy4 ) * gauss_s2*gauss_s2;
                    #else
                    desc[count++] = dx*gauss_s2;
                    desc[count++] = dy*gauss_s2;
                    desc[count++] = mdx*gauss_s2;
                    desc[count++] = mdy*gauss_s2;
                    len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy) * gauss_s2*gauss_s2;
                    #endif

                    j += 9;
                }
                i += 9;
            }
            //Convert to Unit Vector
            len = sqrt(len);
            #ifdef SURF_128
            for(int i = 0; i < 128; ++i)
            #else
            for(int i = 0; i < 64; ++i)
            #endif
                desc[i] /= len;
        }
    }
}