void ff_aac_adjust_common_pred(AACEncContext *s, ChannelElement *cpe) { int start, w, w2, g, i, count = 0; SingleChannelElement *sce0 = &cpe->ch[0]; SingleChannelElement *sce1 = &cpe->ch[1]; const int pmax0 = FFMIN(sce0->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]); const int pmax1 = FFMIN(sce1->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]); const int pmax = FFMIN(pmax0, pmax1); if (!cpe->common_window || sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE || sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) return; for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) { start = 0; for (g = 0; g < sce0->ics.num_swb; g++) { int sfb = w*16+g; int sum = sce0->ics.prediction_used[sfb] + sce1->ics.prediction_used[sfb]; float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f; struct AACISError ph_err1, ph_err2, *erf; if (sfb < PRED_SFB_START || sfb > pmax || sum != 2) { RESTORE_PRED(sce0, sfb); RESTORE_PRED(sce1, sfb); start += sce0->ics.swb_sizes[g]; continue; } for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { float coef0 = sce0->pcoeffs[start+(w+w2)*128+i]; float coef1 = sce1->pcoeffs[start+(w+w2)*128+i]; ener0 += coef0*coef0; ener1 += coef1*coef1; ener01 += (coef0 + coef1)*(coef0 + coef1); } } ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g, ener0, ener1, ener01, 1, -1); ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g, ener0, ener1, ener01, 1, +1); erf = ph_err1.error < ph_err2.error ? &ph_err1 : &ph_err2; if (erf->pass) { sce0->ics.prediction_used[sfb] = 1; sce1->ics.prediction_used[sfb] = 1; count++; } else { RESTORE_PRED(sce0, sfb); RESTORE_PRED(sce1, sfb); } start += sce0->ics.swb_sizes[g]; } } sce1->ics.predictor_present = sce0->ics.predictor_present = !!count; }
void ff_aac_search_for_is(AACEncContext *s, AVCodecContext *avctx, ChannelElement *cpe) { SingleChannelElement *sce0 = &cpe->ch[0]; SingleChannelElement *sce1 = &cpe->ch[1]; int start = 0, count = 0, w, w2, g, i; const float freq_mult = avctx->sample_rate/(1024.0f/sce0->ics.num_windows)/2.0f; if (!cpe->common_window) return; for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) { start = 0; for (g = 0; g < sce0->ics.num_swb; g++) { if (start*freq_mult > INT_STEREO_LOW_LIMIT*(s->lambda/170.0f) && cpe->ch[0].band_type[w*16+g] != NOISE_BT && !cpe->ch[0].zeroes[w*16+g] && cpe->ch[1].band_type[w*16+g] != NOISE_BT && !cpe->ch[1].zeroes[w*16+g]) { float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f; struct AACISError ph_err1, ph_err2, *erf; for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { float coef0 = sce0->pcoeffs[start+(w+w2)*128+i]; float coef1 = sce1->pcoeffs[start+(w+w2)*128+i]; ener0 += coef0*coef0; ener1 += coef1*coef1; ener01 += (coef0 + coef1)*(coef0 + coef1); } } ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g, ener0, ener1, ener01, 0, -1); ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g, ener0, ener1, ener01, 0, +1); erf = ph_err1.error < ph_err2.error ? &ph_err1 : &ph_err2; if (erf->pass) { cpe->is_mask[w*16+g] = 1; cpe->ch[0].is_ener[w*16+g] = sqrt(ener0/ener01); cpe->ch[1].is_ener[w*16+g] = ener0/ener1; cpe->ch[1].band_type[w*16+g] = erf->phase ? INTENSITY_BT : INTENSITY_BT2; count++; } } start += sce0->ics.swb_sizes[g]; } } cpe->is_mode = !!count; }