Esempio n. 1
0
// recursive function to find the displacement vector that minimizes error
//
// A, B: input images
// w: width
// h: heigth
// scale: number of multi-scale recursions
// d: optimal displacement (output)
//
void find_displacement(int d[2], float *A, float *B, int w, int h, int scale)
{
	// find an initial rhough displacement d
	if (scale > 1) // call the function recursively
	{
		int ws = ceil(w/2.0);
		int hs = ceil(h/2.0);
		float *As = malloc(ws * hs * sizeof*As);
		float *Bs = malloc(ws * hs * sizeof*Bs);
		zoom_out_by_factor_two(As, ws, hs, A, w, h);
		zoom_out_by_factor_two(Bs, ws, hs, B, w, h);
		find_displacement(d, As, Bs, ws, hs, scale-1);
		free(As);
		free(Bs);
		d[0] *= 2;
		d[1] *= 2;
	} else {
		d[0] = 0;
		d[1] = 0;
	}

	// refine the rhough displacement by local optimization
	int bestn = -1, neig[9][2] = { {-1,-1},{-1,0},{-1,1},
		{0,-1},{0,0},{0,1}, {1,-1},{1,0},{1,1}, };
	float best = INFINITY;
	float tbest[9];

#ifdef _OPENMP
#pragma omp parallel for
#endif
	for (int n = 0; n < 9; n++)
	{
		int D[2] = {d[0] + neig[n][0], d[1] + neig[n][1]};
		float r = eval_displacement(A, B, w, h, D);
		tbest[n] = r;
////#pragma omp critical
//		if (r < best) {
//			best = r;
//			bestn = n;
//		}
	}
	for (int n = 0; n < 9; n++)
		if (tbest[n] < best)
		{
			best = tbest[n];
			bestn = n;
		}
	d[0] += neig[bestn][0];
	d[1] += neig[bestn][1];
	fprintf(stderr, "%dx%d: %d %d\n", w, h, d[0], d[1]);
}
Esempio n. 2
0
static int
raw_handler(CManager cm, void *vevent, int len, void *client_data, attr_list attrs)
{
    ADIOS_FILE *adiosfile = client_data;
    flexpath_reader_file *fp = (flexpath_reader_file*)adiosfile->fh;

    double data_end = dgettimeofday();
    if(fp->time_in == 0.00)
	fp->time_in = data_end; // used for perf measurements only

    int condition;
    int writer_rank;          
    int flush_id;
    double data_start;
    get_double_attr(attrs, attr_atom_from_string("fp_starttime"), &data_start);
    get_int_attr(attrs, attr_atom_from_string("fp_dst_condition"), &condition);   
    get_int_attr(attrs, attr_atom_from_string(FP_RANK_ATTR_NAME), &writer_rank); 
    get_int_attr(attrs, attr_atom_from_string("fp_flush_id"), &flush_id);


    double format_start = dgettimeofday();

    FMContext context = CMget_FMcontext(cm);
    void *base_data = FMheader_skip(context, vevent);
    FMFormat format = FMformat_from_ID(context, vevent);  
    
    // copy //FMfree_struct_desc_list call
    FMStructDescList struct_list = 
	FMcopy_struct_list(format_list_of_FMFormat(format));
    FMField *f = struct_list[0].field_list;

#if 0
    uint64_t packet_size = calc_ffspacket_size(f, attrs, base_data);
    fp->data_read += packet_size;
#endif
    /* setting up initial vars from the format list that comes along with the
       message. Message contains both an FFS description and the data. */
    if(fp->num_vars == 0){
	int var_count = 0;
	fp->var_list = setup_flexpath_vars(f, &var_count);
		
	adiosfile->var_namelist = malloc(var_count * sizeof(char *));
	int i = 0;
	while(f->field_name != NULL) {
	    adiosfile->var_namelist[i++] = strdup(f->field_name);
	    f++;
	}
	adiosfile->nvars = var_count;
	fp->num_vars = var_count;
    }

    f = struct_list[0].field_list;
    char *curr_offset = NULL;

    while(f->field_name){
        char atom_name[200] = "";
    	flexpath_var *var = find_fp_var(fp->var_list, f->field_name);	

    	if(!var){
    	    adios_error(err_file_open_error,
    			"file not opened correctly.  var does not match format.\n");
    	    return err_file_open_error;
    	}

	int num_dims = get_ndims_attr(f->field_name, attrs);
    	var->num_dims = num_dims;

	flexpath_var_chunk *curr_chunk = &var->chunks[0];

	// has the var been scheduled?
	if(var->sel){
	    if(var->sel->type == ADIOS_SELECTION_WRITEBLOCK){
		if(num_dims == 0){ // writeblock selection for scalar
		    if(var->sel->u.block.index == writer_rank){
			void *tmp_data = get_FMfieldAddr_by_name(f, f->field_name, base_data);
			memcpy(var->chunks[0].user_buf, tmp_data, f->field_size);
		    }
		}
		else { // writeblock selection for arrays
		    /* if(var->num_dims == 0){ */
		    /* 	var->global_dims = malloc(sizeof(uint64_t)*num_dims); */
		    /* } */
		    if(var->sel->u.block.index == writer_rank){
			var->array_size = var->type_size;
			int i;
			for(i=0; i<num_dims; i++){
			    char *dim;
			    atom_name[0] ='\0';
			    strcat(atom_name, FP_DIM_ATTR_NAME);
			    strcat(atom_name, "_");
			    strcat(atom_name, f->field_name);
			    strcat(atom_name, "_");
			    char dim_num[10] = "";
			    sprintf(dim_num, "%d", i+1);
			    strcat(atom_name, dim_num);
			    get_string_attr(attrs, attr_atom_from_string(atom_name), &dim);
	
			    FMField *temp_field = find_field_by_name(dim, f);
			    if(!temp_field){
				adios_error(err_corrupted_variable,
					    "Could not find fieldname: %s\n",
					    dim);
			    }
			    else{    			    
				int *temp_data = get_FMfieldAddr_by_name(temp_field,
									 temp_field->field_name,
									 base_data);			    
				uint64_t dim = (uint64_t)(*temp_data);
				var->array_size = var->array_size * dim;
			    }
			}    	       
			void *arrays_data  = get_FMPtrField_by_name(f, f->field_name, base_data, 1);
			memcpy(var->chunks[0].user_buf, arrays_data, var->array_size);
		    }
		}
	    }
	    else if(var->sel->type == ADIOS_SELECTION_BOUNDINGBOX){
		if(num_dims == 0){ // scalars; throw error
		    adios_error(err_offset_required, 
				"Only scalars can be scheduled with write_block selection.\n");
		}
		else{ // arrays
		    int i;
		    global_var *gv = find_gbl_var(fp->gp->vars,
						  var->varname,
						  fp->gp->num_vars);                
		    array_displacements * disp = find_displacement(var->displ,
								   writer_rank,
								   var->num_displ);
		    if(disp){ // does this writer hold a chunk we've asked for, for this var?
			uint64_t *temp = gv->offsets[0].local_dimensions;
			int offsets_per_rank = gv->offsets[0].offsets_per_rank;
			uint64_t *writer_sizes = &temp[offsets_per_rank * writer_rank];
			uint64_t *sel_start = disp->start;
			uint64_t *sel_count = disp->count;
	
			char *writer_array = (char*)get_FMPtrField_by_name(f, 
									   f->field_name, 
									   base_data, 1);
			char *reader_array = (char*)var->chunks[0].user_buf;
			uint64_t reader_start_pos = disp->pos;

			var->start_position += copyarray(writer_sizes,
							 sel_start,
							 sel_count,
							 disp->ndims,
							 f->field_size,
							 0,
							 writer_array,
							 reader_array+reader_start_pos);		    
		    }
		}
	    }
	}
	else { //var has not been scheduled; 
	    if(num_dims == 0){ // only worry about scalars		
		flexpath_var_chunk *chunk = &var->chunks[0];
		if(!chunk->has_data){
		    void *tmp_data = get_FMfieldAddr_by_name(f, f->field_name, base_data);
		    chunk->data = malloc(f->field_size);
		    memcpy(chunk->data, tmp_data, f->field_size);	
		    chunk->has_data = 1;
		}
	    }
	}
        f++;
    }
 
    if(condition == -1){
	fp->completed_requests++;
	if(fp->completed_requests == fp->pending_requests){
	    pthread_mutex_lock(&fp->data_mutex);
	    pthread_cond_signal(&fp->data_condition);
	    pthread_mutex_unlock(&fp->data_mutex);
	}
    }
    else{
	CMCondition_signal(fp_read_data->fp_cm, condition);
    }

    free_fmstructdesclist(struct_list);
    return 0; 
}
Esempio n. 3
0
// register two images
//
// w: width
// h: height
// left: left image
// right: right image
// out: right image after registration
//
void cregistration(float *out, float *left, float *right, int w, int h, int pd)
{
	int d[2];
	find_displacement(d, left, right, w, h, pd, 10);
	apply_translation(out, d[0], d[1], right, w, h, pd);
}