Esempio n. 1
0
void _SeqDragMetric::SetFrom(	AmTime time, BPoint where,
                                const BMessage* dragMessage,
                                trackmetric_vec& trackMetrics)
{
    Clear();
    for (uint32 k = 0; k < trackMetrics.size(); k++) {
        if (where.y >= trackMetrics[k].mTop
                && where.y <= trackMetrics[k].mBottom) {
            mDestIndex = (int32)k;
            break;
        }
    }
    if (mDestIndex < 0) return;

    mRange.start = mRange.end = time;
    AmTime		s, e;
    if (find_time(*dragMessage, "start", &s) == B_OK
            && find_time(*dragMessage, "end", &e) == B_OK)
        mRange.end = time + (e - s);

    int32		trackIndex;
    for (int32 k = 0; dragMessage->FindInt32("track", k, &trackIndex) == B_OK; k++)
        mSrcIndexes.push_back( (uint32)trackIndex );

    if (dragMessage->FindInt32("source track", &mSrcIndex) != B_OK) mSrcIndex = 0;
}
Esempio n. 2
0
int do_check_replycache(const char *timespec)
{
	u64_t log_count;
	timestring_t timestring;

	if (find_time(timespec, &timestring) != 0) {
		qerrorf("\nFailed to find a timestring: [%s] is not <hours>h<minutes>m.\n",
		       timespec);
		serious_errors = 1;
		return -1;
	}

	if (no_to_all) {
		qprintf("\nCounting RC entries older than [%s]...\n", timestring);
		if (db_count_replycache(timestring, &log_count) < 0) {
			qerrorf("Failed. An error occured. Check the log.\n");
			serious_errors = 1;
			return -1;
		}
		qprintf("Ok. [%llu] RC entries are older than [%s].\n",
		    log_count, timestring);
	}
	if (yes_to_all) {
		qprintf("\nRemoving RC entries older than [%s]...\n", timestring);
		if (! db_cleanup_replycache(timestring)) {
			qerrorf("Failed. Please check the log.\n");
			serious_errors = 1;
			return -1;
		}

		qprintf("Ok. RC entries were older than [%s] cleaned.\n", timestring);
	}
	return 0;
}
Esempio n. 3
0
int do_check_iplog(const char *timespec)
{
	uint64_t log_count;
	TimeString_T timestring;

	if (find_time(timespec, &timestring) != 0) {
		qerrorf("\nFailed to find a timestring: [%s] is not <hours>h<minutes>m.\n",
		       timespec);
		serious_errors = 1;
		return -1;
	}

	if (no_to_all) {
		qprintf("\nCounting IP entries older than [%s]...\n", timestring);
		if (db_count_iplog(timestring, &log_count) < 0) {
			qerrorf("Failed. An error occured. Check the log.\n");
			serious_errors = 1;
			return -1;
		}
		qprintf("Ok. [%" PRIu64 "] IP entries are older than [%s].\n",
		    log_count, timestring);
	}
	if (yes_to_all) {
		qprintf("\nRemoving IP entries older than [%s]...\n", timestring);
		if (! db_cleanup_iplog(timestring)) {
			qerrorf("Failed. Please check the log.\n");
			serious_errors = 1;
			return -1;
		}

		qprintf("Ok. IP entries older than [%s] removed.\n",
		       timestring);
	}
	return 0;
}
Esempio n. 4
0
void SeqPhraseMatrixView::MessageReceived(BMessage* msg)
{
    if (TrackMessageReceived(msg) ) return;

    SeqSongWinPropertiesI*		win = dynamic_cast<SeqSongWinPropertiesI*>( Window() );
    _SeqPhraseToolTarget*	target;
    if (win && (target = new _SeqPhraseToolTarget(win, this, &mMtc)) ) {
        track_id	trackId = CurrentTrackId();
        bool		handled = mTool.HandleMessage(msg, trackId, target);
        delete target;
        if (handled) return;
    }

    switch (msg->what) {
    case AmSong::END_TIME_CHANGE_OBS:
        AmTime		endTime;
        if(find_time(*msg, "end_time", &endTime ) == B_OK) {
            mCachedEndTime = endTime;
            SetupScrollBars(true, false);
        }
        break;
    case AmSong::TRACK_CHANGE_OBS:
        TrackChangeReceived(msg);
        break;
    case AmTrack::MODE_CHANGE_OBS: {
        BRect			invalid = arp_invalid_rect();
        track_id		tid;
        BRect			b(Bounds() );
        for (uint32 k = 0; msg->FindPointer(SZ_TRACK_ID, k, & tid) == B_OK; k++) {
            _SeqTrackMetric*	metric = TrackMetric(tid);
            if (metric) {
                BRect	r(b.left, metric->mTop, b.right, metric->mBottom);
                invalid = arp_merge_rects(invalid, r);
            }
        }
        if (arp_is_valid_rect(invalid) ) Invalidate(invalid);
    }
    break;
    case SHOW_POPUP_MSG:
        if (mDownTime >= 0) {
            StopPopUpTimer();
            ShowPopUp();
            mDownTime = -1;
        }
        break;
    case PROPERTIES_MSG: {
        BPoint		where;
        if (msg->FindPoint(WHERE_STR, &where) == B_OK)
            ShowProperties(where);
    }
    break;
    default:
        inherited::MessageReceived(msg);
        break;
    }
}
Esempio n. 5
0
status_t find_rel_time(const BMessage& msg, const char* name, int32 i, AmTime* timeVal)
{
	double v;
	status_t res = msg.FindDouble(name, i, &v);
	if (res == B_OK) {
		*timeVal = bigtime_t(v*PPQN + .5);
		return res;
	}
	return find_time(msg, name, i, timeVal);
}
Esempio n. 6
0
void *crzpt_cpp_make_plan(int time, short live, char *data)
{
	static unsigned int g_pidx_mark = 0;
	unsigned int pidx = __sync_fetch_and_add(&g_pidx_mark, 1);

	x_printf(D, "pidx %d time %d live %d\n", pidx, time, live);
	
	if ((time >= ONE_DAY_TIMESTAMP) || ((live != 0) && (live != 1)) ){
		x_perror("error plan parameter!");
		goto FAIL_NEW_PLAN;
	}
	/*ok*/
	struct crzpt_time_node *p_time = NULL;
	struct crzpt_plan_node *p_plan = NULL;
	/*new*/
	p_plan = calloc( 1, sizeof(struct crzpt_plan_node) );
	if (p_plan == NULL){
		x_perror("new plan");
		goto FAIL_NEW_PLAN;
	}
	/*set*/
	p_plan->pidx = pidx;
	p_plan->live = live;
	/*add*/
	p_time = find_time( time );
	if (p_time == NULL){
		p_time = new_time( time );
		if (p_time == NULL){
			free(p_plan);
			x_perror("new time");
			goto FAIL_NEW_PLAN;
		}
		add_time(p_time);
	}

	X_LOCK( &g_plan_lock );
	p_time->nubs++;
	p_plan->next = &p_time->pl_head;
	p_plan->prev = p_time->pl_head.prev;
	p_time->pl_head.prev->next = p_plan;
	p_time->pl_head.prev = p_plan;

	char temp[64] = {0};
	sprintf(temp, "%d", pidx);
	g_crzpt_settings.conf->store_insert(temp, strlen(temp), data, strlen(data));//FIXME
	X_UNLOCK( &g_plan_lock );

	return p_plan;
FAIL_NEW_PLAN:
	return NULL;
}
Esempio n. 7
0
// Find the endpoint immediately after the given time.  Returns kind,event,side.
Vector<int,2> search_thread(const vector<Array<const history_t>>& thread, double time) {
  GEODE_ASSERT(thread.size()>=master_idle_kind);
  Vector<int,2> best(-1,-1);
  double distance = inf;
  for (int k : range((int)master_idle_kind)) {
    if (!thread[k].size())
      continue;
    const int e = find_time(thread[k],time);
    if (e < 0)
      continue;
    for (int ee : range(max(0,e-1),min(e+2,thread[k].size()))) {
      const auto& event = thread[k][ee];
      const auto d = Box<double>(event.start.us,event.end.us).signed_distance(time);
      if (distance > d) {
        distance = d;
        best = vec(k,ee);
      }
    }
  }
  return best;
}
void SeqMeasureControl::MessageReceived(BMessage* msg)
{
	switch (msg->what) {
		case AmNotifier::SIGNATURE_OBS:
			Invalidate();
			break;
		case AmSong::END_TIME_CHANGE_OBS:
			AmTime		endTime;
			if( find_time( *msg, "end_time", &endTime ) == B_OK ) {
				mCachedEndTime = endTime;
				Invalidate();
			}
			break;
		case CHANGE_SIGNATURE_MSG:
			HandleSignatureMsg(msg);
			break;
		case CHANGE_MOTION_MSG:
			HandleMotionMsg(msg);
			break;
		default:
			inherited::MessageReceived(msg);
			break;
	}
}
int main(int argc, char *argv []) {
	if(populate_env_variable(REF_ERROR_CODES_FILE, "L2_ERROR_CODES_FILE")) {

		printf("\nUnable to populate [REF_ERROR_CODES_FILE] variable with corresponding environment variable. Routine will proceed without error handling\n");

	}

	if (argc != 2) {

		if(populate_env_variable(SPTS_BLURB_FILE, "L2_SPTS_BLURB_FILE")) {

			RETURN_FLAG = 1;

		} else {

			print_file(SPTS_BLURB_FILE);

		}

		write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATTR", -1, "Status flag for L2 sptrace routine", ERROR_CODES_FILE_WRITE_ACCESS);

		return 1;

	} else {
		// ***********************************************************************
		// Redefine routine input parameters

		int order	                = strtol(argv[1], NULL, 0);	
                
		// ***********************************************************************
		// Open [SPFIND_OUTPUTF_PEAKS_FILE] input file
	
		FILE *inputfile;
	
		if (!check_file_exists(SPFIND_OUTPUTF_PEAKS_FILE)) { 

			inputfile = fopen(SPFIND_OUTPUTF_PEAKS_FILE , "r");

		} else {

			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATTR", -2, "Status flag for L2 sptrace routine", ERROR_CODES_FILE_WRITE_ACCESS);

			return 1;

		}

		// ***********************************************************************
		// Find some [SPFIND_OUTPUTF_PEAKS_FILE] input file details

		char input_string [150];
		
		int row_count = 0;
		while(!feof(inputfile)) {
			memset(input_string, '\0', sizeof(char)*150);
			fgets(input_string, 150, inputfile);
			if (strtol(&input_string[0], NULL, 0) > 0) {		// check the line begins with a positive number (usable)
				row_count++;
			}
		}
		
		rewind(inputfile);
		
		// ***********************************************************************
		// Store [SPFIND_OUTPUTF_PEAKS_FILE] data		
		
		double x_coords[row_count];
		memset(x_coords, 0, sizeof(double)*(row_count));

		double y_coords[row_count];
		memset(y_coords, 0, sizeof(double)*(row_count));

		double coord_x, coord_y;
		int idx = 0;
		while(!feof(inputfile)) {
			memset(input_string, '\0', sizeof(char)*150);
			fgets(input_string, 150, inputfile);	
			if (strtol(&input_string[0], NULL, 0) > 0) {		// check the line begins with a positive number (usable)
				sscanf(input_string, "%lf\t%lf\n", &coord_x, &coord_y);
				x_coords[idx] = coord_x;
				y_coords[idx] = coord_y;
				idx++;
			}
		}
		
		// ***********************************************************************
		// Perform a few checks to ensure the input tracing parameters 
		// are sensible

		if ((order < SPTRACE_VAR_POLYORDER_LO) || (order > SPTRACE_VAR_POLYORDER_HI)) {	// Check [order] is within config limits
			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATTR", -3, "Status flag for L2 sptrace routine", ERROR_CODES_FILE_WRITE_ACCESS);
			fclose(inputfile);
			return 1; 
		}
		
		// ***********************************************************************
		// Create [SPTRACE_OUTPUTF_TRACES_FILE] output file and print a few 
		// parameters

		FILE *outputfile;
		outputfile = fopen(SPTRACE_OUTPUTF_TRACES_FILE, FILE_WRITE_ACCESS);

		if (!outputfile) { 
			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATTR", -4, "Status flag for L2 sptrace routine", ERROR_CODES_FILE_WRITE_ACCESS);
			fclose(inputfile);
			return 1;
		}

		char timestr [80];
		memset(timestr, '\0', sizeof(char)*80);

		find_time(timestr);

		fprintf(outputfile, "#### %s ####\n\n", SPTRACE_OUTPUTF_TRACES_FILE);
		fprintf(outputfile, "# Lists the trace coefficients and corresponding chi-squareds found using the sptrace program.\n\n");
		fprintf(outputfile, "# Run datetime:\t\t%s\n", timestr);
		fprintf(outputfile, "# Polynomial Order:\t%d\n\n", order);
		
		// ***********************************************************************
		// Fit and store results to [SPTRACE_OUTPUTF_TRACES_FILE] file

		double coeffs[order];
		double this_chi_squared;
		if (calc_least_sq_fit(order, row_count, x_coords, y_coords, coeffs, &this_chi_squared)) {	// reversed [coord_y] and [coord_x] as want to find x = f(y) not y = f(x)
			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATTR", -5, "Status flag for L2 frtrace routine", ERROR_CODES_FILE_WRITE_ACCESS);
			fclose(inputfile);
			fclose(outputfile);
			return 1; 
		}	

		int ii;
		for (ii=0; ii<=order; ii++) {
			fprintf(outputfile, SPTRACE_VAR_ACCURACY_COEFFS, coeffs[ii]);
			fprintf(outputfile, "\t");
		}
		fprintf(outputfile, SPTRACE_VAR_ACCURACY_CHISQ, this_chi_squared);
		fprintf(outputfile, "\n");
		fprintf(outputfile, "%d", EOF);

		printf("\nFitting results");
		printf("\n--------------------\n");
		printf("\nχ2:\t\t\t%.2f\n", this_chi_squared);
		
		// ***********************************************************************
		// Perform a few checks to ensure the chi squareds are sensible 

		if ((this_chi_squared < SPTRACE_VAR_CHISQUARED_MIN) || (this_chi_squared > SPTRACE_VAR_CHISQUARED_MAX)) {	// comparing doubles but accuracy isn't a necessity so don't need gsl_fcmp function
			RETURN_FLAG = 2;
		}	

		// ***********************************************************************
		// Close [SPFIND_OUTPUTF_PEAKS_FILE] input file and 
		// [SPTRACE_OUTPUTF_TRACES_FILE] output file

		if (fclose(inputfile)) {
			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATTR", -6, "Status flag for L2 sptrace routine", ERROR_CODES_FILE_WRITE_ACCESS);
			return 1; 
		}
		
		if (fclose(outputfile)) {
			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATTR", -7, "Status flag for L2 sptrace routine", ERROR_CODES_FILE_WRITE_ACCESS);
			return 1; 
		}		
		
		// Write success to [ERROR_CODES_FILE]

		write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATTR", RETURN_FLAG, "Status flag for L2 sptrace routine", ERROR_CODES_FILE_WRITE_ACCESS);

		return 0;

	}

}
Esempio n. 10
0
int main(int argc, char *argv []) {

	if(populate_env_variable(REF_ERROR_CODES_FILE, "L2_ERROR_CODES_FILE")) {

		printf("\nUnable to populate [REF_ERROR_CODES_FILE] variable with corresponding environment variable. Routine will proceed without error handling\n");

	}

	if (argc != 15) {

		if(populate_env_variable(SPF_BLURB_FILE, "L2_SPF_BLURB_FILE")) {

			RETURN_FLAG = 1;

		} else {

			print_file(SPF_BLURB_FILE);

		}

		write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATFI", -1, "Status flag for L2 spfind routine", ERROR_CODES_FILE_WRITE_ACCESS);

		return 1;

	} else {
		// ***********************************************************************
		// Redefine routine input parameters
		
		char *target_f				= strdup(argv[1]);	
		int bin_size_px				= strtol(argv[2], NULL, 0);
		double bg_percentile			= strtod(argv[3], NULL);
		double clip_sigma			= strtod(argv[4], NULL);
		int median_filter_width_px		= strtol(argv[5], NULL, 0);	
		double min_SNR				= strtod(argv[6], NULL);
		int min_spatial_width_px		= strtol(argv[7], NULL, 0);
                int finding_window_lo_px                = strtol(argv[8], NULL, 0);
                int finding_window_hi_px                = strtol(argv[9], NULL, 0);                
		int max_centering_num_px		= strtol(argv[10], NULL, 0);		
		int centroid_half_window_size_px	= strtol(argv[11], NULL, 0);
		int min_used_bins			= strtol(argv[12], NULL, 0);
		int window_x_lo				= strtol(argv[13], NULL, 0);
		int window_x_hi				= strtol(argv[14], NULL, 0);
		
		// ***********************************************************************
		// Open target file (ARG 1), get parameters and perform any data format 
		// checks

		fitsfile *target_f_ptr;

		int target_f_maxdim = 2, target_f_status = 0, target_f_bitpix, target_f_naxis;
		long target_f_naxes [2] = {1,1};

		if(!fits_open_file(&target_f_ptr, target_f, IMG_READ_ACCURACY, &target_f_status)) {

			if(!populate_img_parameters(target_f, target_f_ptr, target_f_maxdim, &target_f_bitpix, &target_f_naxis, target_f_naxes, &target_f_status, "TARGET FRAME")) {

				if (target_f_naxis != 2) {	// any data format checks here

					write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATFI", -2, "Status flag for L2 spfind routine", ERROR_CODES_FILE_WRITE_ACCESS);

					free(target_f);
					if(fits_close_file(target_f_ptr, &target_f_status)) fits_report_error (stdout, target_f_status); 

					return 1;
	
				}

			} else { 

				write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATFI", -3, "Status flag for L2 spfind routine", ERROR_CODES_FILE_WRITE_ACCESS);
				fits_report_error(stdout, target_f_status); 

				free(target_f);
				if(fits_close_file(target_f_ptr, &target_f_status)) fits_report_error (stdout, target_f_status); 

				return 1; 

			}

		} else { 

			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATFI", -4, "Status flag for L2 spfind routine", ERROR_CODES_FILE_WRITE_ACCESS);
			fits_report_error(stdout, target_f_status); 

			free(target_f);

			return 1; 

		}
		
		// ***********************************************************************
		// Set the range limits

		int cut_x [2] = {window_x_lo, window_x_hi};
		int cut_y [2] = {1, target_f_naxes[1]};

		// ***********************************************************************
		// Set parameters used when reading data from target file (ARG 1)

		long fpixel [2] = {cut_x[0], cut_y[0]};
		long nxelements = (cut_x[1] - cut_x[0]) + 1;
		long nyelements = (cut_y[1] - cut_y[0]) + 1;

		// ***********************************************************************
		// Create arrays to store pixel values from target fits file (ARG 1)

		double target_f_pixels [nxelements];
		
		// ***********************************************************************
		// Get target fits file (ARG 1) values and store in 2D array

		int ii;

		double target_frame_values [nyelements][nxelements];
		memset(target_frame_values, 0, sizeof(double)*nxelements*nyelements);
		for (fpixel[1] = cut_y[0]; fpixel[1] <= cut_y[1]; fpixel[1]++) {

			memset(target_f_pixels, 0, sizeof(double)*nxelements);

			if(!fits_read_pix(target_f_ptr, TDOUBLE, fpixel, nxelements, NULL, target_f_pixels, NULL, &target_f_status)) {

				for (ii=0; ii<nxelements; ii++) {

					target_frame_values[fpixel[1]-1][ii] = target_f_pixels[ii];

				}

			} else { 

				write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATFI", -5, "Status flag for L2 spfind routine", ERROR_CODES_FILE_WRITE_ACCESS);
				fits_report_error(stdout, target_f_status); 

				free(target_f);									
				if(fits_close_file(target_f_ptr, &target_f_status)) fits_report_error (stdout, target_f_status); 

				return 1; 

			}

		}
		
		// FIND VALUES OF PEAK CENTROID ALONG DISPERSION AXIS
		// ***********************************************************************		
		// 1.	Bin array according to bin width given by [bin_size_px]
			
		int disp_nelements = nxelements, spat_nelements = nyelements;
		
		int disp_nelements_binned = (int)floor(disp_nelements/bin_size_px);			
		double this_frame_values_binned[spat_nelements][disp_nelements_binned];
		memset(this_frame_values_binned, 0, sizeof(double)*spat_nelements*disp_nelements_binned);
		
		double this_bin_value;
		int bin_number = 0;
		int jj;
		for (jj=0; jj<spat_nelements; jj++) {
			this_bin_value = 0;
			bin_number = 0;
			for (ii=0; ii<disp_nelements; ii++) {
				if (ii % bin_size_px == 0 && ii != 0) {
					this_frame_values_binned[jj][bin_number] = this_bin_value;
					bin_number++;
					this_bin_value = 0;
				}
				this_bin_value += target_frame_values[jj][ii];
			}
		}

		printf("\nFinding peaks");
		printf("\n-------------------------------------\n");	
		double peaks[disp_nelements_binned];
		int num_bins_used = 0;
		for (ii=0; ii<disp_nelements_binned; ii++) {

			// 1a.	Establish if any target flux is in this bin
			// 	First find the mean/sd of the [bg_percentile]th lowest valued pixels as an initial parameters for sigma clip			
			double this_spat_values[spat_nelements];
			double this_spat_values_sorted[spat_nelements];
			for (jj=0; jj<spat_nelements; jj++) {
				this_spat_values[jj] = this_frame_values_binned[jj][ii];
			}			
			memcpy(this_spat_values_sorted, this_spat_values, sizeof(double)*spat_nelements);	
			gsl_sort(this_spat_values_sorted, 1, spat_nelements);
			
			int bg_nelements = (int)floor(spat_nelements*bg_percentile);
			double bg_values [bg_nelements];
			int idx = 0;
			for (jj=0; jj<spat_nelements; jj++) {
				if (this_spat_values_sorted[jj] != 0) {			// avoid 0s set from median filter edges
					bg_values[idx] = this_spat_values_sorted[jj];
					idx++;
					if (idx == bg_nelements)
						break;
				}
			}

			if (idx != bg_nelements) {
				write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATFI", -6, "Status flag for L2 spfind routine", ERROR_CODES_FILE_WRITE_ACCESS);

				free(target_f);
				if(fits_close_file(target_f_ptr, &target_f_status)) fits_report_error (stdout, target_f_status); 

				return 1;
			}
			
			double start_mean = gsl_stats_mean(bg_values, 1, bg_nelements);
			double start_sd	  = gsl_stats_sd(bg_values, 1, bg_nelements);

			// 1b.	Iterative sigma clip around dataset with the initial guess
			int retain_indexes[spat_nelements];
			double final_mean, final_sd;
			int final_num_retained_indexes;
			
			printf("\nBin:\t\t\t\t%d", ii);	
			printf("\nStart mean:\t\t\t%f", start_mean);
			printf("\nStart SD:\t\t\t%f", start_sd);
			iterative_sigma_clip(this_spat_values, spat_nelements, clip_sigma, retain_indexes, start_mean, start_sd, &final_mean, &final_sd, &final_num_retained_indexes, FALSE);
			printf("\nFinal mean:\t\t\t%f", final_mean);
			printf("\nFinal SD:\t\t\t%f", final_sd);
			
			// 2.	Smooth array with median filter
			double this_spat_values_smoothed[spat_nelements];			
			memset(this_spat_values_smoothed, 0, sizeof(double)*spat_nelements);
			median_filter(this_spat_values, this_spat_values_smoothed, spat_nelements, median_filter_width_px);
			
			// 3.	Ascertain if this bin contains target flux
			int num_pixels_contain_target_flux = 0;
			for (jj=0; jj<spat_nelements-1; jj++) {
				if (this_spat_values_smoothed[jj] > final_mean + final_sd*min_SNR) {
					num_pixels_contain_target_flux++;
				}
			}
			printf("\nNum pixels (target):\t\t%d", num_pixels_contain_target_flux);
			
			printf("\nDoes bin contain target flux?\t");
			if (num_pixels_contain_target_flux >= min_spatial_width_px) {
				printf("Yes\n");
			} else {
				printf("No\n");
				peaks[ii] = -1;
				continue;
			}
			
			// 3.	Take derivatives
			double this_spat_values_der[spat_nelements-1];
			memset(this_spat_values_der, 0, sizeof(double)*spat_nelements-1);
			for (jj=1; jj<spat_nelements; jj++) {
				this_spat_values_der[jj-1] = this_frame_values_binned[jj][ii] - this_frame_values_binned[jj-1][ii];
			}
			
			// 4.	Smooth derivatives
			double this_spat_values_der_smoothed[spat_nelements-1];	
			memcpy(this_spat_values_der_smoothed, this_spat_values_der, sizeof(double)*spat_nelements-1);
			median_filter(this_spat_values_der, this_spat_values_der_smoothed, spat_nelements-1, median_filter_width_px);				
			
			// 5.	Pick most positive gradient from window, retaining proper index   
                        double this_spat_values_der_smoothed_windowed[spat_nelements-1]; 
                        memcpy(this_spat_values_der_smoothed_windowed, this_spat_values_der_smoothed, sizeof(double)*spat_nelements-1);
                        for (jj=0; jj<spat_nelements; jj++) {
                            if (jj >= finding_window_lo_px && jj <= finding_window_hi_px) {
                                this_spat_values_der_smoothed_windowed[jj] = this_spat_values_der_smoothed_windowed[jj];
                            } else {
                                this_spat_values_der_smoothed_windowed[jj] = -1;
                            }  
                        }
			size_t this_pk_idx = gsl_stats_max_index(this_spat_values_der_smoothed_windowed, 1, spat_nelements-1);
			printf("Start peak index:\t\t%d\n", this_pk_idx);	
			
			// 6.	Using this index, walk through centering window [max_centering_num_px] and find derivative turnover point
			printf("Found turnover:\t\t\t");			
			bool found_turnover = FALSE;
			for (jj=this_pk_idx; jj<this_pk_idx+max_centering_num_px; jj++) {
				if (this_spat_values_der_smoothed[jj] < 0.) {
					this_pk_idx = jj;
					found_turnover = TRUE;
					break;
				}
			}
			
			if (found_turnover) {
				printf("Yes\n");
				printf("End peak index:\t\t\t%d\n", this_pk_idx);	
			} else {
				printf("No\n");
				peaks[ii] = -1;
				continue;
			}

			// 7.	Get parabolic centroid using the full centroid window [centroid_half_window_size_px]
			double this_pk_window_idxs[1 + (2*centroid_half_window_size_px)];
			double this_pk_window_vals[1 + (2*centroid_half_window_size_px)];
			
			memset(this_pk_window_idxs, 0, sizeof(double)*(1 + (2*centroid_half_window_size_px)));
			memset(this_pk_window_vals, 0, sizeof(double)*(1 + (2*centroid_half_window_size_px)));
			idx = 0;
			for (jj=this_pk_idx-centroid_half_window_size_px; jj<=this_pk_idx+centroid_half_window_size_px; jj++) {
				this_pk_window_idxs[idx] = jj;
				this_pk_window_vals[idx] = this_frame_values_binned[jj][ii];
				idx++;
			}	
			
			int order = 2;
			double coeffs [order+1];  
			memset(coeffs, 0, sizeof(double)*order+1);
			double chi_squared;
			if (calc_least_sq_fit(2, 1 + (2*centroid_half_window_size_px), this_pk_window_idxs, this_pk_window_vals, coeffs, &chi_squared)) {

				write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATFI", -7, "Status flag for L2 spfind routine", ERROR_CODES_FILE_WRITE_ACCESS);

				free(target_f);
				if(fits_close_file(target_f_ptr, &target_f_status)) fits_report_error (stdout, target_f_status); 

				return 1; 		

			}
			
			double fitted_peak_idx = -coeffs[1]/(2*coeffs[2]);
			printf("Fitted peak index:\t\t%f\n", fitted_peak_idx);

			// 8.	Ensure fitted peak location is within finding window
			printf("Is fitted peak within window?\t");
			if (fitted_peak_idx > finding_window_lo_px && fitted_peak_idx < finding_window_hi_px) {
				printf("Yes\n");
                                num_bins_used++;
			} else {
				printf("No\n");
				peaks[ii] = -1;
				continue;
			}

			peaks[ii] = fitted_peak_idx;	
			
			/*for (jj=0; jj<spat_nelements-1; jj++) {
				printf("%d\t%f\t%f\n", jj, this_spat_values_der_smoothed[jj], this_spat_values_der[jj]);
			}*/ // DEBUG	
			
		}	
		
		printf("\nNum bins used:\t%d\n", num_bins_used);		
		
		if (num_bins_used < min_used_bins) {
			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATFI", -8, "Status flag for L2 spfind routine", ERROR_CODES_FILE_WRITE_ACCESS);

			free(target_f);
			if(fits_close_file(target_f_ptr, &target_f_status)) fits_report_error (stdout, target_f_status); 

			return 1;
		}		
		
		// ***********************************************************************
		// Create [FRFIND_OUTPUTF_PEAKS_FILE] output file and print a few 
		// parameters

		FILE *outputfile;
		outputfile = fopen(SPFIND_OUTPUTF_PEAKS_FILE, FILE_WRITE_ACCESS);

		if (!outputfile) { 

			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATFI", -9, "Status flag for L2 spfind routine", ERROR_CODES_FILE_WRITE_ACCESS);

			free(target_f);
			if(fits_close_file(target_f_ptr, &target_f_status)) fits_report_error (stdout, target_f_status); 

			return 1;


		}

		char timestr [80];
		memset(timestr, '\0', sizeof(char)*80);

		find_time(timestr);

		fprintf(outputfile, "#### %s ####\n\n", SPFIND_OUTPUTF_PEAKS_FILE);
		fprintf(outputfile, "# Lists the coordinates of the peaks found using the spfind routine.\n\n");
		fprintf(outputfile, "# Run filename:\t%s\n", target_f);
		fprintf(outputfile, "# Run datetime:\t%s\n\n", timestr);
		
		for (ii=0; ii<disp_nelements_binned; ii++) {
			if (peaks[ii] == -1)
				continue;
			
			fprintf(outputfile, "%f\t%f\n", cut_x[0]+(ii*bin_size_px) + (double)bin_size_px/2., peaks[ii]);	
		}
		
		fprintf(outputfile, "%d", EOF);		
		
		// ***********************************************************************
		// Clean up heap memory

		free(target_f);

		// ***********************************************************************
		// Close [FRFIND_OUTPUTF_PEAKS_FILE] output file and target file (ARG 1)
		
		if (fclose(outputfile)) {

			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATFI", -10, "Status flag for L2 spfind routine", ERROR_CODES_FILE_WRITE_ACCESS);

			if(fits_close_file(target_f_ptr, &target_f_status)) fits_report_error (stdout, target_f_status); 

			return 1; 

		}

		if(fits_close_file(target_f_ptr, &target_f_status)) { 

			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATFI", -11, "Status flag for L2 spfind routine", ERROR_CODES_FILE_WRITE_ACCESS);
			fits_report_error (stdout, target_f_status); 

			return 1; 

	    	}		
		
		// ***********************************************************************
		// Write success to [ERROR_CODES_FILE]

		write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATFI", RETURN_FLAG, "Status flag for L2 spfind routine", ERROR_CODES_FILE_WRITE_ACCESS);

		return 0;

	}

}
Esempio n. 11
0
int main (int argc, char *argv []) {

	if(populate_env_variable(REF_ERROR_CODES_FILE, "L2_ERROR_CODES_FILE")) {

		printf("\nUnable to populate [REF_ERROR_CODES_FILE] variable with corresponding environment variable. Routine will proceed without error handling\n");

	}

	if (argc != 8) {

		if(populate_env_variable(LOR_BLURB_FILE, "L2_LOR_BLURB_FILE")) {

			RETURN_FLAG = 1;

		} else {

			print_file(LOR_BLURB_FILE);

		}

		write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -1, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);

		return 1;

	} else {

		// ***********************************************************************
		// Redefine routine input parameters
	
		char *input_f	                = strdup(argv[1]);
		double start_wav		= strtod(argv[2], NULL);
		double end_wav			= strtod(argv[3], NULL);
		char *interpolation_type	= strdup(argv[4]);
		double dispersion		= strtod(argv[5], NULL);
		int conserve_flux		= strtol(argv[6], NULL, 0);
		char *output_f	                = strdup(argv[7]);

		// ***********************************************************************
		// Open input file (ARG 1), get parameters and perform any data format 
                // checks 

		fitsfile *input_f_ptr;

		int input_f_maxdim = 2;
		int input_f_status = 0, input_f_bitpix, input_f_naxis;
		long input_f_naxes [2] = {1,1};

		if(!fits_open_file(&input_f_ptr, input_f, READONLY, &input_f_status)) {

			if(!populate_img_parameters(input_f, input_f_ptr, input_f_maxdim, &input_f_bitpix, &input_f_naxis, input_f_naxes, &input_f_status, "INPUT FRAME")) {

				if (input_f_naxis != 2) {	// any data format checks here

					write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -2, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);

					free(input_f);
					free(interpolation_type);
					free(output_f);

					if(fits_close_file(input_f_ptr, &input_f_status)) fits_report_error (stdout, input_f_status); 

					return 1;
	
				}

			} else { 

				write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -3, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);
				fits_report_error(stdout, input_f_status); 

				free(input_f);
				free(interpolation_type);
				free(output_f);

				if(fits_close_file(input_f_ptr, &input_f_status)) fits_report_error (stdout, input_f_status); 

				return 1; 

			}

		} else { 

			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -4, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);
			fits_report_error(stdout, input_f_status); 

			free(input_f);
			free(interpolation_type);
			free(output_f);

			return 1; 

		}

		// ***********************************************************************
		// Set the range limits using input fits file (ARG 1)

		int cut_x [2] = {1, input_f_naxes[0]};
		int cut_y [2] = {1, input_f_naxes[1]};

		// ***********************************************************************
		// Set parameters used when reading data from input fits file (ARG 1)

		long fpixel [2] = {cut_x[0], cut_y[0]};
		long nxelements = (cut_x[1] - cut_x[0]) + 1;
		long nyelements = (cut_y[1] - cut_y[0]) + 1;

		// ***********************************************************************
		// Create arrays to store pixel values from input fits file (ARG 1)

		double input_f_pixels [nxelements];

		// ***********************************************************************
		// Open [LOARCFIT_OUTPUTF_WAVFITS_FILE] dispersion solutions file

		FILE *dispersion_solutions_f;
	
		if (!check_file_exists(LOARCFIT_OUTPUTF_WAVFITS_FILE)) { 

			dispersion_solutions_f = fopen(LOARCFIT_OUTPUTF_WAVFITS_FILE , "r");

		} else {

			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -5, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);

			free(input_f);
			free(interpolation_type);
			free(output_f);

			if(fits_close_file(input_f_ptr, &input_f_status)) fits_report_error (stdout, input_f_status); 

			return 1;

		}	

		// ***********************************************************************
		// Find some [LOARCFIT_OUTPUTF_WAVFITS_FILE] file details

		char input_string [500];

		bool find_polynomialorder_comment = FALSE;

		int polynomial_order;	

		char search_string_1 [20] = "# Polynomial Order:\0";	// this is the comment to be found from the [LOARCFIT_OUTPUTF_WAVFITS_FILE] file

		while(!feof(dispersion_solutions_f)) {

			memset(input_string, '\0', sizeof(char)*500);
	
			fgets(input_string, 500, dispersion_solutions_f);	

			if (strncmp(input_string, search_string_1, strlen(search_string_1)) == 0) { 

				sscanf(input_string, "%*[^\t]%d", &polynomial_order);		// read all data up to tab as string ([^\t]), but do not store (*)
				find_polynomialorder_comment = TRUE;
				break;


			} 

		}

		if (find_polynomialorder_comment == FALSE) {	// error check - didn't find the comment in the [LOARCFIT_OUTPUTF_WAVFITS_FILE] file

			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -6, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);

			free(input_f);
			free(interpolation_type);
			free(output_f);

			fclose(dispersion_solutions_f);

			if(fits_close_file(input_f_ptr, &input_f_status)) fits_report_error (stdout, input_f_status); 

			return 1;

		}

		// ***********************************************************************
		// Rewind and extract coefficients from [LOARCFIT_OUTPUTF_WAVFITS_FILE]
		// file 

		rewind(dispersion_solutions_f);

		int token_index;	// this variable will hold which token we're dealing with
		int coeff_index;	// this variable will hold which coefficient we're dealing with
		double this_coeff;
		double this_chisquared;
	
		char *token;

		double coeffs [polynomial_order+1];
		memset(coeffs, 0, sizeof(double)*(polynomial_order+1));

		while(!feof(dispersion_solutions_f)) {

			memset(input_string, '\0', sizeof(char)*500);
	
			fgets(input_string, 500, dispersion_solutions_f);

			token_index = 0;
			coeff_index = 0;

			if (strtol(&input_string[0], NULL, 0) > 0) { 		// check the line begins with a positive number

				// ***********************************************************************
				// String tokenisation loop: 
				//
				// 1. init calls strtok() loading the function with input_string
				// 2. terminate when token is null
				// 3. we keep assigning tokens of input_string to token until termination by calling strtok with a NULL first argument
				// 
				// n.b. searching for tab or newline separators ('\t' and '\n')

				for (token=strtok(input_string, "\t\n"); token !=NULL; token = strtok(NULL, "\t\n")) {
                                  
                                        if (token_index == 0) {    
                                        } else if ((token_index >= 1) && (token_index <= polynomial_order+1)) { 	// coeff token

						this_coeff = strtod(token, NULL);
						// printf("%d\t%e\n", coeff_index, this_coeff);		// DEBUG
						coeffs[coeff_index] = this_coeff;
						coeff_index++;

					} else if (token_index == polynomial_order+2) {					// chisquared token

						this_chisquared = strtod(token, NULL);
                                                //printf("%f\n", this_chisquared);                      // DEBUG

					}

					token_index++;

				}

			}

		}

		// ***********************************************************************
		// Find wavelength extremities from [LOARCFIT_OUTPUTF_WAVFITS_FILE] file
		// and ensure the input constraints [start_wav] (ARG 2) and [end_wav]
		// (ARG 3) don't lie outside these boundaries

		double smallest_wav, largest_wav;

		int ii;

		for (ii=0; ii<=polynomial_order; ii++) {
		    
			smallest_wav += coeffs[ii]*pow(0+INDEXING_CORRECTION, ii);
			largest_wav += coeffs[ii]*pow((cut_x[1]-1)+INDEXING_CORRECTION, ii);

		}

		// ***********************************************************************
	        // Need to find pixel indexes for starting/ending wavelength positions

	        double this_element_wav;
	        int first_element_index, last_element_index;
                int jj;
		for (ii=0; ii<nxelements; ii++) {
                        this_element_wav = 0.0;
                        for (jj=0; jj<=polynomial_order; jj++) {
                                this_element_wav += coeffs[jj]*pow(ii,jj);
                        }
		      	if (this_element_wav >= start_wav) {	// the current index, ii, represents the first pixel with a wavelength >= start_wav. Comparing doubles but accuracy isn't a necessity so don't need gsl_fcmp function
		       		break;
		     	}
		     	
                        first_element_index = ii;		     	
                }

		// printf("%d\t%f\n", ii, this_element_wav);	// DEBUG

		for (ii=nxelements; ii>=0; ii--) {
                        this_element_wav = 0.0;
                        for (jj=0; jj<=polynomial_order; jj++) {
                                this_element_wav += coeffs[jj]*pow(ii,jj);
                        }
                        if (this_element_wav <= end_wav) {    // the current index, ii, represents the first pixel with a wavelength <= end_wav. Comparing doubles but accuracy isn't a necessity so don't need gsl_fcmp function
                                break;
                        }

			last_element_index = ii;

	        }
	        
	        // printf("%d\t%f\n", ii, this_element_wav);     // DEBUG
	
		printf("\nWavelength boundaries");
		printf("\n---------------------\n");

		printf("\nInherent minimum wavelength:\t%.2f Å", smallest_wav);
		printf("\nInherent maximum wavelength:\t%.2f Å\n", largest_wav);

		if (start_wav < smallest_wav) {         // Comparing doubles but accuracy isn't a necessity so don't need gsl_fcmp function
		  
			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -7, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);

			free(input_f);
			free(interpolation_type);
			free(output_f);

			fclose(dispersion_solutions_f);

			if(fits_close_file(input_f_ptr, &input_f_status)) fits_report_error (stdout, input_f_status); 

			return 1; 

		} else if (end_wav > largest_wav) {     // Comparing doubles but accuracy isn't a necessity so don't need gsl_fcmp function

			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -8, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);

			free(input_f);
			free(interpolation_type);
			free(output_f);

			fclose(dispersion_solutions_f);

			if(fits_close_file(input_f_ptr, &input_f_status)) fits_report_error (stdout, input_f_status); 

			return 1; 

		}

		// ***********************************************************************
	        // Set the bin wavelengths 

		int num_bins = 0;

		if (!gsl_fcmp((end_wav-start_wav)/dispersion, rint((end_wav-start_wav)/dispersion), 1e-5)) {	// check to see if nearest integer is within tolerance value	

			num_bins = rint((end_wav-start_wav)/dispersion) + 1;					// if TRUE, round

		} else {

			num_bins = floor((end_wav-start_wav)/dispersion) + 1;					// if FALSE, floor

		}

		// printf("%d\n", num_bins);						// DEBUG

		double bin_wavelengths [num_bins];
		memset(bin_wavelengths, 0, sizeof(double)*num_bins);

		for (ii=0; ii<num_bins; ii++) {

			bin_wavelengths[ii] = start_wav + dispersion*ii;		
			// printf("%f\n", bin_wavelengths[ii]);				// DEBUG
		
		}	

		// printf("%f\t%f\n", bin_wavelengths[0], bin_wavelengths[num_bins-1]);	// DEBUG


		// REBIN INPUT FRAME (ARG 1) AND CONSERVE FLUX IF APPLICABLE
		// ***********************************************************************
		// 1.	Open input frame

		int this_row_index;

		double x_wav [nxelements];

		double output_frame_values [nyelements][num_bins];
		memset(output_frame_values, 0, sizeof(double)*nyelements*num_bins);

		double output_f_pixels [num_bins];
		memset(output_f_pixels, 0, sizeof(double)*(num_bins));

		double this_pre_rebin_row_flux, this_post_rebin_row_flux;

		double conservation_factor;	

		for (fpixel[1] = cut_y[0]; fpixel[1] <= cut_y[1]; fpixel[1]++) {

			this_row_index = fpixel[1] - 1;

			memset(input_f_pixels, 0, sizeof(double)*nxelements);

			if(!fits_read_pix(input_f_ptr, IMG_READ_ACCURACY, fpixel, nxelements, NULL, input_f_pixels, NULL, &input_f_status)) {

				// 2.	Calculate pre-rebin total fluxes

				this_pre_rebin_row_flux = 0.0;

				for (ii=first_element_index; ii<=last_element_index; ii++) {

					this_pre_rebin_row_flux += input_f_pixels[ii];

				}

				// 3.	Create pixel-wavelength translation array and perform interpolation

				memset(x_wav, 0, sizeof(double)*nxelements);

				for (ii=0; ii<nxelements; ii++) {

					for (jj=0; jj<=polynomial_order; jj++) {
					    
						x_wav[ii] += coeffs[jj]*pow(ii+INDEXING_CORRECTION,jj);

					}

					// printf("%d\t%f\n", ii, x_wav[ii]); // DEBUG

				}

				// for (ii=0; ii< nxelements; ii++) printf("\n%f\t%f", x_wav[ii], input_f_pixels[ii]);	// DEBUG

				if (interpolate(interpolation_type, x_wav, input_f_pixels, nxelements, bin_wavelengths[0], bin_wavelengths[num_bins-1], dispersion, output_f_pixels)) {
		
					write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -9, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);

					free(input_f);
					free(interpolation_type);
					free(output_f);

					fclose(dispersion_solutions_f);

					if(fits_close_file(input_f_ptr, &input_f_status)) fits_report_error (stdout, input_f_status); 

					return 1; 

				}

				// 4.	Calculate post-rebin total fluxes

				this_post_rebin_row_flux = 0.0;

				for (ii=0; ii<num_bins; ii++) {

					this_post_rebin_row_flux += output_f_pixels[ii];

				}

				// 5.	Conserve flux if applicable

				conservation_factor = this_pre_rebin_row_flux/this_post_rebin_row_flux;

				// printf("%f\t%f\t%f\n", this_pre_rebin_row_flux, this_post_rebin_row_flux, conservation_factor);	// DEBUG

				for (ii=0; ii<num_bins; ii++) {

					if (conserve_flux == TRUE) {

						output_frame_values[this_row_index][ii] = output_f_pixels[ii]*conservation_factor;

					} else {

						output_frame_values[this_row_index][ii] = output_f_pixels[ii];

					}

				}

			} else { 

				write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -10, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);
				fits_report_error(stdout, input_f_status);

				free(input_f);
				free(interpolation_type);
				free(output_f);

				fclose(dispersion_solutions_f);

				if(fits_close_file(input_f_ptr, &input_f_status)) fits_report_error (stdout, input_f_status); 

				return 1; 

			}

		}

		// 6.	Create [LOREBIN_OUTPUTF_REBIN_WAVFITS_FILE] output file and print
		// 	a few parameters

		FILE *outputfile;
		outputfile = fopen(LOREBIN_OUTPUTF_REBIN_WAVFITS_FILE, FILE_WRITE_ACCESS);

		if (!outputfile) { 

			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -11, "Status flag for L2 frrebin routine", ERROR_CODES_FILE_WRITE_ACCESS);

			free(input_f);
			free(interpolation_type);
			free(output_f);

			fclose(dispersion_solutions_f);

			if(fits_close_file(input_f_ptr, &input_f_status)) fits_report_error (stdout, input_f_status); 

			return 1;

		}

		char timestr [80];
		memset(timestr, '\0', sizeof(char)*80);

		find_time(timestr);

		fprintf(outputfile, "#### %s ####\n\n", LOREBIN_OUTPUTF_REBIN_WAVFITS_FILE);
	        fprintf(outputfile, "# Rebinning wavelength fit parameters.\n\n");
                fprintf(outputfile, "# Run Datetime:\t\t%s\n\n", timestr);
	        fprintf(outputfile, "# Target Filename:\t%s\n\n", input_f);
	        fprintf(outputfile, "# Starting Wavelength:\t%.2f\n", bin_wavelengths[0]);
	        fprintf(outputfile, "# Dispersion:\t\t%.2f\n", dispersion);
		fprintf(outputfile, "%d", EOF);

		// 7.	Write these values to the [ADDITIONAL_KEYS_FILE] file

		write_additional_key_to_file_str(ADDITIONAL_KEYS_FILE, "LSS_CALIBRATION", "CTYPE1", "Wavelength", "Type of co-ordinate on axis 1", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_str(ADDITIONAL_KEYS_FILE, "LSS_CALIBRATION", "CUNIT1", "Angstroms", "Units for axis 1", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_dbl(ADDITIONAL_KEYS_FILE, "LSS_CALIBRATION", "CRVAL1", bin_wavelengths[0], "[pixel] Value at ref. pixel on axis 1", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_dbl(ADDITIONAL_KEYS_FILE, "LSS_CALIBRATION", "CDELT1", dispersion, "[pixel] Pixel scale on axis 1", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_dbl(ADDITIONAL_KEYS_FILE, "LSS_CALIBRATION", "CRPIX1", 1.0, "[pixel] Reference pixel on axis 1", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_str(ADDITIONAL_KEYS_FILE, "LSS_CALIBRATION", "CTYPE2", "a2", "Type of co-ordinate on axis 2", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_str(ADDITIONAL_KEYS_FILE, "LSS_CALIBRATION", "CUNIT2", "Pixels", "Units for axis 2", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_dbl(ADDITIONAL_KEYS_FILE, "LSS_CALIBRATION", "CRVAL2", 1, "[pixel] Value at ref. pixel on axis 2", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_dbl(ADDITIONAL_KEYS_FILE, "LSS_CALIBRATION", "CDELT2", 1, "[pixel] Pixel scale on axis 2", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_dbl(ADDITIONAL_KEYS_FILE, "LSS_CALIBRATION", "CRPIX2", 1, "[pixel] Reference pixel on axis 2", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);

		write_additional_key_to_file_str(ADDITIONAL_KEYS_FILE, "SPEC_CALIBRATION", "CTYPE1", "Wavelength", "Type of co-ordinate on axis 1", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_str(ADDITIONAL_KEYS_FILE, "SPEC_CALIBRATION", "CUNIT1", "Angstroms", "Units for axis 1", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_dbl(ADDITIONAL_KEYS_FILE, "SPEC_CALIBRATION", "CRVAL1", bin_wavelengths[0], "[pixel] Value at ref. pixel on axis 1", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_dbl(ADDITIONAL_KEYS_FILE, "SPEC_CALIBRATION", "CDELT1", dispersion, "[pixel] Pixel scale on axis 1", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_dbl(ADDITIONAL_KEYS_FILE, "SPEC_CALIBRATION", "CRPIX1", 1.0, "[pixel] Reference pixel on axis 1", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_str(ADDITIONAL_KEYS_FILE, "SPEC_CALIBRATION", "CTYPE2", "a2", "Type of co-ordinate on axis 2", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_str(ADDITIONAL_KEYS_FILE, "SPEC_CALIBRATION", "CUNIT2", "Pixels", "Units for axis 2", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_dbl(ADDITIONAL_KEYS_FILE, "SPEC_CALIBRATION", "CRVAL2", 1, "[pixel] Value at ref. pixel on axis 2", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_dbl(ADDITIONAL_KEYS_FILE, "SPEC_CALIBRATION", "CDELT2", 1, "[pixel] Pixel scale on axis 2", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);
		write_additional_key_to_file_dbl(ADDITIONAL_KEYS_FILE, "SPEC_CALIBRATION", "CRPIX2", 1, "[pixel] Reference pixel on axis 2", ADDITIONAL_KEYS_FILE_WRITE_ACCESS);

		// ***********************************************************************
		// Set output frame parameters

		fitsfile *output_f_ptr;
	
		int output_f_status = 0;
		long output_f_naxes [2] = {num_bins,nyelements};
	
		long output_f_fpixel = 1;

		// ***********************************************************************
		// Create [output_frame_values_1D] array to hold the output data in the 
                // correct format

		double output_frame_values_1D [num_bins*nyelements];
		memset(output_frame_values_1D, 0, sizeof(double)*num_bins*nyelements);
                int kk;
		for (ii=0; ii<nyelements; ii++) {
	
			jj = ii * num_bins;
	
			for (kk=0; kk<num_bins; kk++) {
	
				output_frame_values_1D[jj] = output_frame_values[ii][kk];
				jj++;

			}
		
		}

		// ***********************************************************************
		// Create and write [output_frame_values_1D] to output file (ARG 5)	
	
		if (!fits_create_file(&output_f_ptr, output_f, &output_f_status)) {
	
			if (!fits_create_img(output_f_ptr, INTERMEDIATE_IMG_ACCURACY[0], 2, output_f_naxes, &output_f_status)) {

				if (!fits_write_img(output_f_ptr, INTERMEDIATE_IMG_ACCURACY[1], output_f_fpixel, num_bins * nyelements, output_frame_values_1D, &output_f_status)) {

				} else { 

					write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -12, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);
					fits_report_error(stdout, output_f_status); 

					free(input_f);
					free(interpolation_type);
					free(output_f);

					fclose(dispersion_solutions_f);
					fclose(outputfile);

					if(fits_close_file(input_f_ptr, &input_f_status)) fits_report_error (stdout, input_f_status); 
					if(fits_close_file(output_f_ptr, &output_f_status)); 

					return 1; 

				}

			} else {

				write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -13, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);
				fits_report_error(stdout, output_f_status); 

				free(input_f);
				free(interpolation_type);
				free(output_f);

				fclose(dispersion_solutions_f);
				fclose(outputfile);

                                if(fits_close_file(input_f_ptr, &input_f_status)) fits_report_error (stdout, input_f_status); 
                                if(fits_close_file(output_f_ptr, &output_f_status)); 

				return 1; 

			}

		} else {

			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -14, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);
			fits_report_error(stdout, output_f_status); 

			free(input_f);
			free(interpolation_type);
			free(output_f);

			fclose(dispersion_solutions_f);
			fclose(outputfile);

			if(fits_close_file(input_f_ptr, &input_f_status)) fits_report_error (stdout, input_f_status);  

			return 1; 

		}

		// ***********************************************************************
		// Clean up heap memory

		free(input_f);
		free(interpolation_type);
		free(output_f);

		// ***********************************************************************
		// Close input file (ARG 1), output file (ARG 7) and 
		// [FRARCFIT_OUTPUTF_WAVFITS_FILE] file

		if (fclose(dispersion_solutions_f)) {

			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -15, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);

			fclose(outputfile);

                        if(fits_close_file(input_f_ptr, &input_f_status)) fits_report_error (stdout, input_f_status); 
                        if(fits_close_file(output_f_ptr, &output_f_status)); 

			return 1; 

		}

		if (fclose(outputfile)) {

			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -16, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);

                        if(fits_close_file(input_f_ptr, &input_f_status)) fits_report_error (stdout, input_f_status); 
                        if(fits_close_file(output_f_ptr, &output_f_status)); 

			return 1; 

		}

		if(fits_close_file(input_f_ptr, &input_f_status)) { 

			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -17, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);
			fits_report_error (stdout, input_f_status); 

                        if(fits_close_file(output_f_ptr, &output_f_status)); 

			return 1; 

	    	}

		if(fits_close_file(output_f_ptr, &output_f_status)) { 

			write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", -18, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);
			fits_report_error (stdout, output_f_status); 

			return 1; 

	    	}

		// ***********************************************************************
		// Write success to [ERROR_CODES_FILE]

		write_key_to_file(ERROR_CODES_FILE, REF_ERROR_CODES_FILE, "L2STATRE", RETURN_FLAG, "Status flag for L2 lorebin routine", ERROR_CODES_FILE_WRITE_ACCESS);

		return 0;

	}

}
Esempio n. 12
0
status_t find_time(const BMessage& msg, const char* name, AmTime* timeVal)
{
	return find_time(msg, name, 0, timeVal);
}