int gmx_helix(int argc, char *argv[])
{
    const char        *desc[] = {
        "[THISMODULE] computes all kinds of helix properties. First, the peptide",
        "is checked to find the longest helical part, as determined by",
        "hydrogen bonds and [GRK]phi[grk]/[GRK]psi[grk] angles.",
        "That bit is fitted",
        "to an ideal helix around the [IT]z[it]-axis and centered around the origin.",
        "Then the following properties are computed:[PAR]",
        "[BB]1.[bb] Helix radius (file [TT]radius.xvg[tt]). This is merely the",
        "RMS deviation in two dimensions for all C[GRK]alpha[grk] atoms.",
        "it is calculated as [SQRT]([SUM][sum][SUB]i[sub] (x^2(i)+y^2(i)))/N[sqrt] where N is the number",
        "of backbone atoms. For an ideal helix the radius is 0.23 nm[BR]",
        "[BB]2.[bb] Twist (file [TT]twist.xvg[tt]). The average helical angle per",
        "residue is calculated. For an [GRK]alpha[grk]-helix it is 100 degrees,",
        "for 3-10 helices it will be smaller, and ",
        "for 5-helices it will be larger.[BR]",
        "[BB]3.[bb] Rise per residue (file [TT]rise.xvg[tt]). The helical rise per",
        "residue is plotted as the difference in [IT]z[it]-coordinate between C[GRK]alpha[grk]",
        "atoms. For an ideal helix, this is 0.15 nm[BR]",
        "[BB]4.[bb] Total helix length (file [TT]len-ahx.xvg[tt]). The total length",
        "of the",
        "helix in nm. This is simply the average rise (see above) times the",
        "number of helical residues (see below).[BR]",
        "[BB]5.[bb] Helix dipole, backbone only (file [TT]dip-ahx.xvg[tt]).[BR]",
        "[BB]6.[bb] RMS deviation from ideal helix, calculated for the C[GRK]alpha[grk]",
        "atoms only (file [TT]rms-ahx.xvg[tt]).[BR]",
        "[BB]7.[bb] Average C[GRK]alpha[grk] - C[GRK]alpha[grk] dihedral angle (file [TT]phi-ahx.xvg[tt]).[BR]",
        "[BB]8.[bb] Average [GRK]phi[grk] and [GRK]psi[grk] angles (file [TT]phipsi.xvg[tt]).[BR]",
        "[BB]9.[bb] Ellipticity at 222 nm according to Hirst and Brooks.",
        "[PAR]"
    };
    static gmx_bool    bCheck = FALSE, bFit = TRUE, bDBG = FALSE, bEV = FALSE;
    static int         rStart = 0, rEnd = 0, r0 = 1;
    t_pargs            pa []  = {
        { "-r0", FALSE, etINT, {&r0},
          "The first residue number in the sequence" },
        { "-q",  FALSE, etBOOL, {&bCheck},
          "Check at every step which part of the sequence is helical" },
        { "-F",  FALSE, etBOOL, {&bFit},
          "Toggle fit to a perfect helix" },
        { "-db", FALSE, etBOOL, {&bDBG},
          "Print debug info" },
        { "-ev", FALSE, etBOOL, {&bEV},
          "Write a new 'trajectory' file for ED" },
        { "-ahxstart", FALSE, etINT, {&rStart},
          "First residue in helix" },
        { "-ahxend", FALSE, etINT, {&rEnd},
          "Last residue in helix" }
    };

    typedef struct {
        FILE       *fp, *fp2;
        gmx_bool    bfp2;
        const char *filenm;
        const char *title;
        const char *xaxis;
        const char *yaxis;
        real        val;
    } t_xvgrfile;

    t_xvgrfile     xf[efhNR] = {
        { NULL, NULL, TRUE,  "radius",  "Helix radius",               NULL, "r (nm)", 0.0 },
        { NULL, NULL, TRUE,  "twist",   "Twist per residue",          NULL, "Angle (deg)", 0.0 },
        { NULL, NULL, TRUE,  "rise",    "Rise per residue",           NULL, "Rise (nm)", 0.0 },
        { NULL, NULL, FALSE, "len-ahx", "Length of the Helix",        NULL, "Length (nm)", 0.0 },
        { NULL, NULL, FALSE, "dip-ahx", "Helix Backbone Dipole",      NULL, "rq (nm e)", 0.0 },
        { NULL, NULL, TRUE,  "rms-ahx", "RMS Deviation from Ideal Helix", NULL, "RMS (nm)", 0.0 },
        { NULL, NULL, FALSE, "rmsa-ahx", "Average RMSD per Residue",   "Residue", "RMS (nm)", 0.0 },
        { NULL, NULL, FALSE,  "cd222",   "Ellipticity at 222 nm", NULL, "nm", 0.0 },
        { NULL, NULL, TRUE,  "pprms",   "RMS Distance from \\8a\\4-helix", NULL, "deg", 0.0 },
        { NULL, NULL, TRUE,  "caphi",   "Average Ca-Ca Dihedral",     NULL, "\\8F\\4(deg)", 0.0 },
        { NULL, NULL, TRUE,  "phi",     "Average \\8F\\4 angles", NULL, "deg", 0.0 },
        { NULL, NULL, TRUE,  "psi",     "Average \\8Y\\4 angles", NULL, "deg", 0.0 },
        { NULL, NULL, TRUE,  "hb3",     "Average n-n+3 hbond length", NULL, "nm", 0.0 },
        { NULL, NULL, TRUE,  "hb4",     "Average n-n+4 hbond length", NULL, "nm", 0.0 },
        { NULL, NULL, TRUE,  "hb5",     "Average n-n+5 hbond length", NULL, "nm", 0.0 },
        { NULL, NULL, FALSE,  "JCaHa",   "J-Coupling Values",        "Residue", "Hz", 0.0 },
        { NULL, NULL, FALSE,  "helicity", "Helicity per Residue",     "Residue", "% of time", 0.0 }
    };

    output_env_t   oenv;
    char           buf[54];
    t_trxstatus   *status;
    int            natoms, nre, nres;
    t_bb          *bb;
    int            i, j, m, nall, nbb, nca, teller, nSel = 0;
    atom_id       *bbindex, *caindex, *allindex;
    t_topology    *top;
    int            ePBC;
    rvec          *x, *xref;
    real           t;
    real           rms;
    matrix         box;
    gmx_rmpbc_t    gpbc = NULL;
    gmx_bool       bRange;
    t_filenm       fnm[] = {
        { efTPX, NULL,  NULL,   ffREAD  },
        { efNDX, NULL,  NULL,   ffREAD  },
        { efTRX, "-f",  NULL,   ffREAD  },
        { efSTO, "-cz", "zconf", ffWRITE },
    };
#define NFILE asize(fnm)

    if (!parse_common_args(&argc, argv, PCA_CAN_VIEW | PCA_CAN_TIME | PCA_BE_NICE,
                           NFILE, fnm, asize(pa), pa, asize(desc), desc, 0, NULL, &oenv))
    {
        return 0;
    }

    bRange = (opt2parg_bSet("-ahxstart", asize(pa), pa) &&
              opt2parg_bSet("-ahxend", asize(pa), pa));

    top = read_top(ftp2fn(efTPX, NFILE, fnm), &ePBC);

    natoms = read_first_x(oenv, &status, opt2fn("-f", NFILE, fnm), &t, &x, box);

    if (natoms != top->atoms.nr)
    {
        gmx_fatal(FARGS, "Sorry can only run when the number of atoms in the run input file (%d) is equal to the number in the trajectory (%d)",
                  top->atoms.nr, natoms);
    }

    bb = mkbbind(ftp2fn(efNDX, NFILE, fnm), &nres, &nbb, r0, &nall, &allindex,
                 top->atoms.atomname, top->atoms.atom, top->atoms.resinfo);
    snew(bbindex, natoms);
    snew(caindex, nres);

    fprintf(stderr, "nall=%d\n", nall);

    /* Open output files, default x-axis is time */
    for (i = 0; (i < efhNR); i++)
    {
        sprintf(buf, "%s.xvg", xf[i].filenm);
        remove(buf);
        xf[i].fp = xvgropen(buf, xf[i].title,
                            xf[i].xaxis ? xf[i].xaxis : "Time (ps)",
                            xf[i].yaxis, oenv);
        if (xf[i].bfp2)
        {
            sprintf(buf, "%s.out", xf[i].filenm);
            remove(buf);
            xf[i].fp2 = gmx_ffopen(buf, "w");
        }
    }

    /* Read reference frame from tpx file to compute helix length */
    snew(xref, top->atoms.nr);
    read_tpx(ftp2fn(efTPX, NFILE, fnm),
             NULL, NULL, &natoms, xref, NULL, NULL, NULL);
    calc_hxprops(nres, bb, xref);
    do_start_end(nres, bb, &nbb, bbindex, &nca, caindex, bRange, rStart, rEnd);
    sfree(xref);
    if (bDBG)
    {
        fprintf(stderr, "nca=%d, nbb=%d\n", nca, nbb);
        pr_bb(stdout, nres, bb);
    }

    gpbc = gmx_rmpbc_init(&top->idef, ePBC, natoms);

    teller = 0;
    do
    {
        if ((teller++ % 10) == 0)
        {
            fprintf(stderr, "\rt=%.2f", t);
        }
        gmx_rmpbc(gpbc, natoms, box, x);


        calc_hxprops(nres, bb, x);
        if (bCheck)
        {
            do_start_end(nres, bb, &nbb, bbindex, &nca, caindex, FALSE, 0, 0);
        }

        if (nca >= 5)
        {
            rms = fit_ahx(nres, bb, natoms, nall, allindex, x, nca, caindex, bFit);

            if (teller == 1)
            {
                write_sto_conf(opt2fn("-cz", NFILE, fnm), "Helix fitted to Z-Axis",
                               &(top->atoms), x, NULL, ePBC, box);
            }

            xf[efhRAD].val   = radius(xf[efhRAD].fp2, nca, caindex, x);
            xf[efhTWIST].val = twist(nca, caindex, x);
            xf[efhRISE].val  = rise(nca, caindex, x);
            xf[efhLEN].val   = ahx_len(nca, caindex, x);
            xf[efhCD222].val = ellipticity(nres, bb);
            xf[efhDIP].val   = dip(nbb, bbindex, x, top->atoms.atom);
            xf[efhRMS].val   = rms;
            xf[efhCPHI].val  = ca_phi(nca, caindex, x);
            xf[efhPPRMS].val = pprms(xf[efhPPRMS].fp2, nres, bb);

            for (j = 0; (j <= efhCPHI); j++)
            {
                fprintf(xf[j].fp,   "%10g  %10g\n", t, xf[j].val);
            }

            av_phipsi(xf[efhPHI].fp, xf[efhPSI].fp, xf[efhPHI].fp2, xf[efhPSI].fp2,
                      t, nres, bb);
            av_hblen(xf[efhHB3].fp, xf[efhHB3].fp2,
                     xf[efhHB4].fp, xf[efhHB4].fp2,
                     xf[efhHB5].fp, xf[efhHB5].fp2,
                     t, nres, bb);
        }
    }
    while (read_next_x(oenv, status, &t, x, box));
    fprintf(stderr, "\n");

    gmx_rmpbc_done(gpbc);

    close_trj(status);

    for (i = 0; (i < nres); i++)
    {
        if (bb[i].nrms > 0)
        {
            fprintf(xf[efhRMSA].fp, "%10d  %10g\n", r0+i, bb[i].rmsa/bb[i].nrms);
        }
        fprintf(xf[efhAHX].fp, "%10d  %10g\n", r0+i, (bb[i].nhx*100.0)/(real )teller);
        fprintf(xf[efhJCA].fp, "%10d  %10g\n",
                r0+i, 140.3+(bb[i].jcaha/(double)teller));
    }

    for (i = 0; (i < efhNR); i++)
    {
        gmx_ffclose(xf[i].fp);
        if (xf[i].bfp2)
        {
            gmx_ffclose(xf[i].fp2);
        }
        do_view(oenv, xf[i].filenm, "-nxy");
    }

    return 0;
}
Esempio n. 2
0
int gmx_helix(int argc,char *argv[])
{
  const char *desc[] = {
    "g_helix computes all kind of helix properties. First, the peptide",
    "is checked to find the longest helical part. This is determined by",
    "Hydrogen bonds and Phi/Psi angles.",
    "That bit is fitted",
    "to an ideal helix around the Z-axis and centered around the origin.",
    "Then the following properties are computed:[PAR]",
    "[BB]1.[bb] Helix radius (file radius.xvg). This is merely the",
    "RMS deviation in two dimensions for all Calpha atoms.",
    "it is calced as sqrt((SUM i(x^2(i)+y^2(i)))/N), where N is the number",
    "of backbone atoms. For an ideal helix the radius is 0.23 nm[BR]",
    "[BB]2.[bb] Twist (file twist.xvg). The average helical angle per",
    "residue is calculated. For alpha helix it is 100 degrees,",
    "for 3-10 helices it will be smaller,", 
    "for 5-helices it will be larger.[BR]",
    "[BB]3.[bb] Rise per residue (file rise.xvg). The helical rise per", 
    "residue is plotted as the difference in Z-coordinate between Ca", 
    "atoms. For an ideal helix this is 0.15 nm[BR]",
    "[BB]4.[bb] Total helix length (file len-ahx.xvg). The total length", 
    "of the", 
    "helix in nm. This is simply the average rise (see above) times the",  
    "number of helical residues (see below).[BR]",
    "[BB]5.[bb] Number of helical residues (file n-ahx.xvg). The title says",
    "it all.[BR]",
    "[BB]6.[bb] Helix Dipole, backbone only (file dip-ahx.xvg).[BR]",
    "[BB]7.[bb] RMS deviation from ideal helix, calculated for the Calpha",
    "atoms only (file rms-ahx.xvg).[BR]",
    "[BB]8.[bb] Average Calpha-Calpha dihedral angle (file phi-ahx.xvg).[BR]",
    "[BB]9.[bb] Average Phi and Psi angles (file phipsi.xvg).[BR]",
    "[BB]10.[bb] Ellipticity at 222 nm according to [IT]Hirst and Brooks[it]",
    "[PAR]"
  };
  static const char *ppp[efhNR+2] = { 
    NULL, "RAD", "TWIST", "RISE", "LEN", "NHX", "DIP", "RMS", "CPHI", 
    "RMSA", "PHI", "PSI", "HB3", "HB4", "HB5", "CD222", NULL
  };
  static gmx_bool bCheck=FALSE,bFit=TRUE,bDBG=FALSE,bEV=FALSE;
  static int  rStart=0,rEnd=0,r0=1;
  t_pargs pa [] = {
    { "-r0", FALSE, etINT, {&r0},
      "The first residue number in the sequence" },
    { "-q",  FALSE, etBOOL,{&bCheck},
      "Check at every step which part of the sequence is helical" },
    { "-F",  FALSE, etBOOL,{&bFit},
      "Toggle fit to a perfect helix" },
    { "-db", FALSE, etBOOL,{&bDBG},
      "Print debug info" },
    { "-prop", FALSE, etENUM, {ppp},
      "Select property to weight eigenvectors with. WARNING experimental stuff" },
    { "-ev", FALSE, etBOOL,{&bEV},
      "Write a new 'trajectory' file for ED" },
    { "-ahxstart", FALSE, etINT, {&rStart},
      "First residue in helix" },
    { "-ahxend", FALSE, etINT, {&rEnd},
      "Last residue in helix" }
  };

  typedef struct {
    FILE *fp,*fp2;
    gmx_bool bfp2;
    const char *filenm;
    const char *title;
    const char *xaxis;
    const char *yaxis;
    real val;
  } t_xvgrfile;
  
  t_xvgrfile xf[efhNR] = {
    { NULL, NULL, TRUE,  "radius",  "Helix radius",               NULL, "r (nm)" , 0.0 },
    { NULL, NULL, TRUE,  "twist",   "Twist per residue",          NULL, "Angle (deg)", 0.0 },
    { NULL, NULL, TRUE,  "rise",    "Rise per residue",           NULL, "Rise (nm)", 0.0 },
    { NULL, NULL, FALSE, "len-ahx", "Length of the Helix",        NULL, "Length (nm)", 0.0 },
    { NULL, NULL, FALSE, "dip-ahx", "Helix Backbone Dipole",      NULL, "rq (nm e)", 0.0 },
    { NULL, NULL, TRUE,  "rms-ahx", "RMS Deviation from Ideal Helix", NULL, "RMS (nm)", 0.0 },
    { NULL, NULL, FALSE, "rmsa-ahx","Average RMSD per Residue",   "Residue", "RMS (nm)", 0.0 },
    { NULL, NULL,FALSE,  "cd222",   "Ellipticity at 222 nm", NULL, "nm", 0.0 },
    { NULL, NULL, TRUE,  "pprms",   "RMS Distance from \\8a\\4-helix", NULL, "deg" , 0.0 },
    { NULL, NULL, TRUE,  "caphi",   "Average Ca-Ca Dihedral",     NULL, "\\8F\\4(deg)", 0.0 },
    { NULL, NULL, TRUE,  "phi",     "Average \\8F\\4 angles", NULL, "deg" , 0.0 },
    { NULL, NULL, TRUE,  "psi",     "Average \\8Y\\4 angles", NULL, "deg" , 0.0 },
    { NULL, NULL, TRUE,  "hb3",     "Average n-n+3 hbond length", NULL, "nm" , 0.0 },
    { NULL, NULL, TRUE,  "hb4",     "Average n-n+4 hbond length", NULL, "nm" , 0.0 },
    { NULL, NULL, TRUE,  "hb5",     "Average n-n+5 hbond length", NULL, "nm" , 0.0 },
    { NULL, NULL,FALSE,  "JCaHa",   "J-Coupling Values",        "Residue", "Hz" , 0.0 },
    { NULL, NULL,FALSE,  "helicity","Helicity per Residue",     "Residue", "% of time" , 0.0 }
  };
 
  output_env_t oenv;
  FILE       *otrj;
  char       buf[54],prop[256];
  t_trxstatus *status;
  int        natoms,nre,nres;
  t_bb       *bb;
  int        i,j,ai,m,nall,nbb,nca,teller,nSel=0;
  atom_id    *bbindex,*caindex,*allindex;
  t_topology *top;
  int        ePBC;
  rvec       *x,*xref,*xav;
  real       t;
  real       rms,fac;
  matrix     box;
  gmx_rmpbc_t  gpbc=NULL;
  gmx_bool       bRange;
  t_filenm  fnm[] = {
    { efTPX, NULL,  NULL,   ffREAD  },
    { efNDX, NULL,  NULL,   ffREAD  },
    { efTRX, "-f",  NULL,   ffREAD  },
    { efG87, "-to", NULL,   ffOPTWR },
    { efSTO, "-cz", "zconf",ffWRITE },
    { efSTO, "-co", "waver",ffWRITE }
  };
#define NFILE asize(fnm)

  CopyRight(stderr,argv[0]);
  parse_common_args(&argc,argv,PCA_CAN_VIEW | PCA_CAN_TIME | PCA_BE_NICE,
		    NFILE,fnm,asize(pa),pa,asize(desc),desc,0,NULL,&oenv);
  
  bRange=(opt2parg_bSet("-ahxstart",asize(pa),pa) &&
	  opt2parg_bSet("-ahxend",asize(pa),pa));
		        
  top=read_top(ftp2fn(efTPX,NFILE,fnm),&ePBC);
  
  natoms=read_first_x(oenv,&status,opt2fn("-f",NFILE,fnm),&t,&x,box);

  if (opt2bSet("-to",NFILE,fnm)) {
    otrj=opt2FILE("-to",NFILE,fnm,"w");
    strcpy(prop,ppp[0]);
    fprintf(otrj,"%s Weighted Trajectory: %d atoms, NO box\n",prop,natoms);
  }
  else
    otrj=NULL;
    
  if (natoms != top->atoms.nr)
    gmx_fatal(FARGS,"Sorry can only run when the number of atoms in the run input file (%d) is equal to the number in the trajectory (%d)",
	    top->atoms.nr,natoms);
	    
  bb=mkbbind(ftp2fn(efNDX,NFILE,fnm),&nres,&nbb,r0,&nall,&allindex,
	     top->atoms.atomname,top->atoms.atom,top->atoms.resinfo);
  snew(bbindex,natoms);
  snew(caindex,nres);
  
  fprintf(stderr,"nall=%d\n",nall);
    
  /* Open output files, default x-axis is time */
  for(i=0; (i<efhNR); i++) {
    sprintf(buf,"%s.xvg",xf[i].filenm);
    remove(buf);
    xf[i].fp=xvgropen(buf,xf[i].title,
                      xf[i].xaxis ? xf[i].xaxis : "Time (ps)",
		      xf[i].yaxis,oenv);
    if (xf[i].bfp2) {
      sprintf(buf,"%s.out",xf[i].filenm);
      remove(buf);
      xf[i].fp2=ffopen(buf,"w");
    }
  }

  /* Read reference frame from tpx file to compute helix length */
  snew(xref,top->atoms.nr);
  read_tpx(ftp2fn(efTPX,NFILE,fnm),
	   NULL,NULL,&natoms,xref,NULL,NULL,NULL);
  calc_hxprops(nres,bb,xref,box);
  do_start_end(nres,bb,xref,&nbb,bbindex,&nca,caindex,bRange,rStart,rEnd);
  sfree(xref);
  if (bDBG) {
    fprintf(stderr,"nca=%d, nbb=%d\n",nca,nbb);
    pr_bb(stdout,nres,bb);
  }
  
  gpbc = gmx_rmpbc_init(&top->idef,ePBC,natoms,box);

  snew(xav,natoms);
  teller=0;
  do {
    if ((teller++ % 10) == 0)
      fprintf(stderr,"\rt=%.2f",t);
    gmx_rmpbc(gpbc,natoms,box,x);

    
    calc_hxprops(nres,bb,x,box);
    if (bCheck)
      do_start_end(nres,bb,x,&nbb,bbindex,&nca,caindex,FALSE,0,0);
    
    if (nca >= 5) {
      rms=fit_ahx(nres,bb,natoms,nall,allindex,x,nca,caindex,box,bFit);
      
      if (teller == 1) {
	write_sto_conf(opt2fn("-cz",NFILE,fnm),"Helix fitted to Z-Axis",
		       &(top->atoms),x,NULL,ePBC,box);
      }
            
      xf[efhRAD].val   = radius(xf[efhRAD].fp2,nca,caindex,x);
      xf[efhTWIST].val = twist(xf[efhTWIST].fp2,nca,caindex,x);
      xf[efhRISE].val  = rise(nca,caindex,x);
      xf[efhLEN].val   = ahx_len(nca,caindex,x,box);
      xf[efhCD222].val = ellipticity(nres,bb);
      xf[efhDIP].val   = dip(nbb,bbindex,x,top->atoms.atom);
      xf[efhRMS].val   = rms;
      xf[efhCPHI].val  = ca_phi(nca,caindex,x,box);
      xf[efhPPRMS].val = pprms(xf[efhPPRMS].fp2,nres,bb);
      
      for(j=0; (j<=efhCPHI); j++)
	fprintf(xf[j].fp,   "%10g  %10g\n",t,xf[j].val);
      
      av_phipsi(xf[efhPHI].fp,xf[efhPSI].fp,xf[efhPHI].fp2,xf[efhPSI].fp2,
		t,nres,bb);
      av_hblen(xf[efhHB3].fp,xf[efhHB3].fp2,
	       xf[efhHB4].fp,xf[efhHB4].fp2,
	       xf[efhHB5].fp,xf[efhHB5].fp2,
	       t,nres,bb);
      
      if (otrj) 
	dump_otrj(otrj,nall,allindex,x,xf[nSel].val,xav);
    }
  } while (read_next_x(oenv,status,&t,natoms,x,box));
  fprintf(stderr,"\n");
  
  gmx_rmpbc_done(gpbc);

  close_trj(status);

  if (otrj) {
    ffclose(otrj);
    fac=1.0/teller;
    for(i=0; (i<nall); i++) {
      ai=allindex[i];
      for(m=0; (m<DIM); m++)
	xav[ai][m]*=fac;
    }
    write_sto_conf_indexed(opt2fn("-co",NFILE,fnm),
			   "Weighted and Averaged conformation",
			   &(top->atoms),xav,NULL,ePBC,box,nall,allindex);
  }
  
  for(i=0; (i<nres); i++) {
    if (bb[i].nrms > 0) {
      fprintf(xf[efhRMSA].fp,"%10d  %10g\n",r0+i,bb[i].rmsa/bb[i].nrms);
    }
    fprintf(xf[efhAHX].fp,"%10d  %10g\n",r0+i,(bb[i].nhx*100.0)/(real )teller);
    fprintf(xf[efhJCA].fp,"%10d  %10g\n",
	    r0+i,140.3+(bb[i].jcaha/(double)teller));
  }
  
  for(i=0; (i<efhNR); i++) {
    ffclose(xf[i].fp);
    if (xf[i].bfp2)
      ffclose(xf[i].fp2);
    do_view(oenv,xf[i].filenm,"-nxy");
  }
  
  thanx(stderr);
  
  return 0;
}