Esempio n. 1
0
Error
pack2floatnum(
  floatnum x,
  p_number_desc n)
{
  floatstruct tmp;
  int digits;
  int saveerr;
  int saverange;
  Error result;
  signed char base;

  if ((result = _pack2int(x, &n->intpart)) != Success)
    return result;
  if (float_isnan(x))
    return Success;
  saveerr = float_geterror();
  saverange = float_setrange(MAXEXP);
  float_create(&tmp);
  float_move(&tmp, x);
  float_setzero(x);
  digits = DECPRECISION - float_getexponent(&tmp);
  if (digits <= 0
      || (result = _pack2frac(x, &n->fracpart, digits)) == Success)
    float_add(x, x, &tmp, DECPRECISION);
  if (result != Success)
    return result;
  if ((!float_getlength(x)) == 0) /* no zero, no NaN? */
  {
    base = n->prefix.base;
    float_setinteger(&tmp, base);
    if (n->exp >= 0)
    {
      _raiseposi_(&tmp, n->exp, DECPRECISION + 2);
      float_mul(x, x, &tmp, DECPRECISION + 2);
    }
    else
    {
      _raiseposi_(&tmp, -n->exp, DECPRECISION + 2);
      float_div(x, x, &tmp, DECPRECISION + 2);
    }
  }
  float_free(&tmp);
  float_setsign(x, n->prefix.sign == IO_SIGN_COMPLEMENT? -1 : n->prefix.sign);
  float_geterror();
  float_seterror(saveerr);
  float_setrange(saverange);
  if (!float_isvalidexp(float_getexponent(x)))
    float_setnan(x);
  return float_isnan(x)? IOExpOverflow : Success;
}
Esempio n. 2
0
Error float_out(
  p_otokens tokens,
  floatnum x,
  int scale,
  signed char base,
  char outmode)
{
  t_number_desc n;

  _emptytokens(tokens);
  /* do some sanity checks first */
  if (!_validmode(outmode) || scale < 0 || !_isvalidbase(base))
    return InvalidParam;
  _clearnumber(&n);
  if (float_iszero(x))
    n.prefix.base = IO_BASE_ZERO;
  else if (!float_isnan(x))
    n.prefix.base = base;
  if (!_isvalidbase(n.prefix.base))
    /* NaN and 0 are handled here */
    return desc2str(tokens, &n, 0);
  n.prefix.sign = float_getsign(x);
  float_abs(x);
  switch (outmode)
  {
  case IO_MODE_FIXPOINT:
    return _outfixp(tokens, x, &n, scale);
  case IO_MODE_ENG:
    return _outeng(tokens, x, &n, scale);
  case IO_MODE_COMPLEMENT:
    return _outcompl(tokens, x, &n, 0);
  default:
    return _outsci(tokens, x, &n, scale);
  }
}
Esempio n. 3
0
char
_doshift(
  floatnum dest,
  cfloatnum x,
  cfloatnum shift,
  char right)
{
  int ishift;
  t_longint lx;

  if (float_isnan(shift))
    return _seterror(dest, NoOperand);
  if (!float_isinteger(shift))
    return _seterror(dest, OutOfDomain);
  if(!_cvtlogic(&lx, x))
    return 0;
  if (float_iszero(shift))
  {
    float_copy(dest, x, EXACT);
    return 1;
  }
  ishift = float_asinteger(shift);
  if (ishift == 0)
    ishift = (3*LOGICRANGE) * float_getsign(shift);
  if (!right)
    ishift = -ishift;
  if (ishift > 0)
    _shr(&lx, ishift);
  else
    _shl(&lx, -ishift);
  _logic2floatnum(dest, &lx);
  return 1;
}
Esempio n. 4
0
char
float_raisei(
  floatnum power,
  cfloatnum base,
  int exponent,
  int digits)
{
  if (digits <= 0 || digits > maxdigits)
    return _seterror(power, InvalidPrecision);
  if (float_isnan(base))
    return _seterror(power, NoOperand);
  if (float_iszero(base))
  {
    if (exponent == 0)
      return _seterror(power, OutOfDomain);
    if (exponent < 0)
      return _seterror(power, ZeroDivide);
    return _setzero(power);
  }
  digits += 14;
  if (digits > maxdigits)
    digits = maxdigits;
  float_copy(power, base, digits);
  if (!_raisei(power, exponent, digits)
      || !float_isvalidexp(float_getexponent(power)))
  {
    if (float_getexponent(base) < 0)
      return _seterror(power, Underflow);
    return _seterror(power, Overflow);
  }
  return 1;
}
Esempio n. 5
0
char
float_factorial(
  floatnum x,
  int digits)
{
  if (!float_isnan(x))
    float_add(x, x, &c1, digits);
  return float_gamma(x, digits);
}
Esempio n. 6
0
char
float_raise(
  floatnum power,
  cfloatnum base,
  cfloatnum exponent,
  int digits)
{
  signed char sgn;

  if (float_isnan(exponent) || float_isnan(base))
    return _seterror(power, NoOperand);
  if (digits <= 0 || digits > MATHPRECISION)
    return _seterror(power, InvalidPrecision);
  if (float_iszero(base))
  {
    switch(float_getsign(exponent))
    {
    case 0:
      return _seterror(power, OutOfDomain);
    case -1:
      return _seterror(power, ZeroDivide);
    }
    return _setzero(power);
  }
  sgn = float_getsign(base);
  if (sgn < 0)
  {
    if (!float_isinteger(exponent))
      return _seterror(power, OutOfDomain);
    if ((float_getdigit(exponent, float_getexponent(exponent)) & 1) == 0)
      sgn = 1;
  }
  float_copy(power, base, digits+1);
  float_abs(power);
  if (!_raise(power, exponent, digits))
  {
    float_seterror(Overflow);
    if (float_getexponent(base) * float_getsign(exponent) < 0)
      float_seterror(Underflow);
    return _setnan(power);
  }
  float_setsign(power, sgn);
  return 1;
}
Esempio n. 7
0
char
float_pochhammer(
  floatnum x,
  cfloatnum delta,
  int digits)
{
  if (!chckmathparam(x, digits))
    return 0;
  return float_isnan(delta)?
         _seterror(x, NoOperand)
         : _pochhammer(x, delta, digits);
}
Esempio n. 8
0
static char
_cvtlogic(
  t_longint* lx,
  cfloatnum x)
{
  if (float_isnan(x))
  {
    float_seterror(NoOperand);
    return 0;
  }
  if (_floatnum2logic(lx, x))
    return 1;
  float_seterror(OutOfLogicRange);
  return 0;
}
Esempio n. 9
0
char
erfcsum(
  floatnum x, /* should be the square of the parameter to erfc */
  int digits)
{
  int i, workprec;
  floatstruct sum, smd;
  floatnum Ei;

  if (digits > erfcdigits)
  {
    /* cannot re-use last evaluation's intermediate results */
    for (i = MAXERFCIDX; --i >= 0;)
      /* clear all exp(-k*k*alpha*alpha) to indicate their absence */
      float_free(&erfccoeff[i]);
    /* current precision */
    erfcdigits = digits;
    /* create new alpha appropriate for the desired precision
       This alpha need not be high precision, any alpha near the
       one evaluated here would do */
    float_muli(&erfcalpha, &cLn10, digits + 4, 3);
    float_sqrt(&erfcalpha, 3);
    float_div(&erfcalpha, &cPi, &erfcalpha, 3);
    float_mul(&erfcalphasqr, &erfcalpha, &erfcalpha, EXACT);
    /* the exp(-k*k*alpha*alpha) are later evaluated iteratively.
       Initiate the iteration here */
    float_copy(&erfct2, &erfcalphasqr, EXACT);
    float_neg(&erfct2);
    _exp(&erfct2, digits + 3); /* exp(-alpha*alpha) */
    float_copy(erfccoeff, &erfct2, EXACT); /* start value */
    float_mul(&erfct3, &erfct2, &erfct2, digits + 3); /* exp(-2*alpha*alpha) */
  }
  float_create(&sum);
  float_create(&smd);
  float_setzero(&sum);
  for (i = 0; ++i < MAXERFCIDX;)
  {
    Ei = &erfccoeff[i-1];
    if (float_isnan(Ei))
    {
      /* if exp(-i*i*alpha*alpha) is not available, evaluate it from
         the coefficient of the last summand */
      float_mul(&erfct2, &erfct2, &erfct3, workprec + 3);
      float_mul(Ei, &erfct2, &erfccoeff[i-2], workprec + 3);
    }
    /* Ei finally decays rapidly. save some time by adjusting the
       working precision */
    workprec = digits + float_getexponent(Ei) + 1;
    if (workprec <= 0)
      break;
    /* evaluate the summand exp(-i*i*alpha*alpha)/(i*i*alpha*alpha+x) */
    float_muli(&smd, &erfcalphasqr, i*i, workprec);
    float_add(&smd, x, &smd, workprec + 2);
    float_div(&smd, Ei, &smd, workprec + 1);
    /* add summand to the series */
    float_add(&sum, &sum, &smd, digits + 3);
  }
  float_move(x, &sum);
  float_free(&smd);
  return 1;
}