/** * fm10k_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. **/ int fm10k_open(struct net_device *netdev) { struct fm10k_intfc *interface = netdev_priv(netdev); int err; /* allocate transmit descriptors */ err = fm10k_setup_all_tx_resources(interface); if (err) goto err_setup_tx; /* allocate receive descriptors */ err = fm10k_setup_all_rx_resources(interface); if (err) goto err_setup_rx; /* allocate interrupt resources */ err = fm10k_qv_request_irq(interface); if (err) goto err_req_irq; /* setup GLORT assignment for this port */ fm10k_request_glort_range(interface); /* Notify the stack of the actual queue counts */ err = netif_set_real_num_tx_queues(netdev, interface->num_tx_queues); if (err) goto err_set_queues; err = netif_set_real_num_rx_queues(netdev, interface->num_rx_queues); if (err) goto err_set_queues; #if IS_ENABLED(CONFIG_VXLAN) /* update VXLAN port configuration */ vxlan_get_rx_port(netdev); #endif fm10k_up(interface); return 0; err_set_queues: fm10k_qv_free_irq(interface); err_req_irq: fm10k_free_all_rx_resources(interface); err_setup_rx: fm10k_free_all_tx_resources(interface); err_setup_tx: return err; }
/** * fm10k_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. **/ int fm10k_open(struct net_device *netdev) { struct fm10k_intfc *interface = netdev_priv(netdev); int err; /* allocate transmit descriptors */ err = fm10k_setup_all_tx_resources(interface); if (err) goto err_setup_tx; /* allocate receive descriptors */ err = fm10k_setup_all_rx_resources(interface); if (err) goto err_setup_rx; /* allocate interrupt resources */ err = fm10k_qv_request_irq(interface); if (err) goto err_req_irq; /* setup GLORT assignment for this port */ fm10k_request_glort_range(interface); /* Notify the stack of the actual queue counts */ err = netif_set_real_num_tx_queues(netdev, interface->num_tx_queues); if (err) goto err_set_queues; err = netif_set_real_num_rx_queues(netdev, interface->num_rx_queues); if (err) goto err_set_queues; udp_tunnel_get_rx_info(netdev); fm10k_up(interface); return 0; err_set_queues: fm10k_qv_free_irq(interface); err_req_irq: fm10k_free_all_rx_resources(interface); err_setup_rx: fm10k_free_all_tx_resources(interface); err_setup_tx: return err; }
static int fm10k_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct fm10k_intfc *interface = netdev_priv(netdev); struct fm10k_ring *temp_ring; int i, err = 0; u32 new_rx_count, new_tx_count; if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) return -EINVAL; new_tx_count = clamp_t(u32, ring->tx_pending, FM10K_MIN_TXD, FM10K_MAX_TXD); new_tx_count = ALIGN(new_tx_count, FM10K_REQ_TX_DESCRIPTOR_MULTIPLE); new_rx_count = clamp_t(u32, ring->rx_pending, FM10K_MIN_RXD, FM10K_MAX_RXD); new_rx_count = ALIGN(new_rx_count, FM10K_REQ_RX_DESCRIPTOR_MULTIPLE); if ((new_tx_count == interface->tx_ring_count) && (new_rx_count == interface->rx_ring_count)) { /* nothing to do */ return 0; } while (test_and_set_bit(__FM10K_RESETTING, &interface->state)) usleep_range(1000, 2000); if (!netif_running(interface->netdev)) { for (i = 0; i < interface->num_tx_queues; i++) interface->tx_ring[i]->count = new_tx_count; for (i = 0; i < interface->num_rx_queues; i++) interface->rx_ring[i]->count = new_rx_count; interface->tx_ring_count = new_tx_count; interface->rx_ring_count = new_rx_count; goto clear_reset; } /* allocate temporary buffer to store rings in */ i = max_t(int, interface->num_tx_queues, interface->num_rx_queues); temp_ring = vmalloc(i * sizeof(struct fm10k_ring)); if (!temp_ring) { err = -ENOMEM; goto clear_reset; } fm10k_down(interface); /* Setup new Tx resources and free the old Tx resources in that order. * We can then assign the new resources to the rings via a memcpy. * The advantage to this approach is that we are guaranteed to still * have resources even in the case of an allocation failure. */ if (new_tx_count != interface->tx_ring_count) { for (i = 0; i < interface->num_tx_queues; i++) { memcpy(&temp_ring[i], interface->tx_ring[i], sizeof(struct fm10k_ring)); temp_ring[i].count = new_tx_count; err = fm10k_setup_tx_resources(&temp_ring[i]); if (err) { while (i) { i--; fm10k_free_tx_resources(&temp_ring[i]); } goto err_setup; } } for (i = 0; i < interface->num_tx_queues; i++) { fm10k_free_tx_resources(interface->tx_ring[i]); memcpy(interface->tx_ring[i], &temp_ring[i], sizeof(struct fm10k_ring)); } interface->tx_ring_count = new_tx_count; } /* Repeat the process for the Rx rings if needed */ if (new_rx_count != interface->rx_ring_count) { for (i = 0; i < interface->num_rx_queues; i++) { memcpy(&temp_ring[i], interface->rx_ring[i], sizeof(struct fm10k_ring)); temp_ring[i].count = new_rx_count; err = fm10k_setup_rx_resources(&temp_ring[i]); if (err) { while (i) { i--; fm10k_free_rx_resources(&temp_ring[i]); } goto err_setup; } } for (i = 0; i < interface->num_rx_queues; i++) { fm10k_free_rx_resources(interface->rx_ring[i]); memcpy(interface->rx_ring[i], &temp_ring[i], sizeof(struct fm10k_ring)); } interface->rx_ring_count = new_rx_count; } err_setup: fm10k_up(interface); vfree(temp_ring); clear_reset: clear_bit(__FM10K_RESETTING, &interface->state); return err; }