Esempio n. 1
0
int
fmpcb_poly_contains_fmpq_poly(const fmpcb_poly_t poly1, const fmpq_poly_t poly2)
{
    long i;
    fmpq_t t;

    if (poly2->length > poly1->length)
        return 0;

    fmpq_init(t);

    for (i = 0; i < poly2->length; i++)
    {
        fmpq_poly_get_coeff_fmpq(t, poly2, i);
        if (!fmpcb_contains_fmpq(poly1->coeffs + i, t))
        {
            fmpq_clear(t);
            return 0;
        }
    }

    fmpq_clear(t);

    for (i = poly2->length; i < poly1->length; i++)
        if (!fmpcb_contains_zero(poly1->coeffs + i))
            return 0;

    return 1;
}
Esempio n. 2
0
dgsl_rot_mp_t *dgsl_rot_mp_init(const long n, const fmpz_poly_t B, mpfr_t sigma, fmpq_poly_t c, const dgsl_alg_t algorithm, const oz_flag_t flags) {
  assert(mpfr_cmp_ui(sigma, 0) > 0);

  dgsl_rot_mp_t *self = (dgsl_rot_mp_t*)calloc(1, sizeof(dgsl_rot_mp_t));
  if(!self) dgs_die("out of memory");

  dgsl_alg_t alg = algorithm;

  self->n = n;

  self->prec = mpfr_get_prec(sigma);

  fmpz_poly_init(self->B);
  fmpz_poly_set(self->B, B);
  if(fmpz_poly_length(self->B) > n)
    dgs_die("polynomial is longer than length n");
  else
    fmpz_poly_realloc(self->B, n);


  fmpz_poly_init(self->c_z);
  fmpq_poly_init(self->c);

  mpfr_init2(self->sigma, self->prec);
  mpfr_set(self->sigma, sigma, MPFR_RNDN);

  if (alg == DGSL_DETECT) {
    if (fmpz_poly_is_one(self->B) && (c && fmpq_poly_is_zero(c))) {
      alg = DGSL_IDENTITY;
    } else if (c && fmpq_poly_is_zero(c))
      alg = DGSL_INLATTICE;
    else
      alg = DGSL_COSET; //TODO: we could test for lattice membership here
  }

  size_t tau = 3;
  if (2*ceil(sqrt(log2((double)n))) > tau)
    tau = 2*ceil(sqrt(log2((double)n)));

  switch(alg) {
  case DGSL_IDENTITY: {
    self->D = (dgs_disc_gauss_mp_t**)calloc(1, sizeof(dgs_disc_gauss_mp_t*));
    mpfr_t c_;
    mpfr_init2(c_, self->prec);
    mpfr_set_d(c_, 0.0, MPFR_RNDN);
    self->D[0] = dgs_disc_gauss_mp_init(self->sigma, c_, tau, DGS_DISC_GAUSS_DEFAULT);
    self->call = dgsl_rot_mp_call_identity;
    mpfr_clear(c_);
    break;
  }
  case DGSL_GPV_INLATTICE: {
    self->D = (dgs_disc_gauss_mp_t**)calloc(n, sizeof(dgs_disc_gauss_mp_t*));

    if (c && !fmpq_poly_is_zero(c)) {
      fmpq_t c_i;
      fmpq_init(c_i);
      for(int i=0; i<n; i++) {
        fmpq_poly_get_coeff_fmpq(c_i, c, i);
        fmpz_poly_set_coeff_fmpz(self->c_z, i, fmpq_numref(c_i));
      }
      fmpq_clear(c_i);
    }
    mpfr_mat_t G;
    mpfr_mat_init(G, n, n, self->prec);
    mpfr_mat_set_fmpz_poly(G, B);
    mpfr_mat_gso(G, MPFR_RNDN);

    mpfr_t sigma_;
    mpfr_init2(sigma_, self->prec);

    mpfr_t norm;
    mpfr_init2(norm, self->prec);

    mpfr_t c_;
    mpfr_init2(c_, self->prec);
    mpfr_set_d(c_, 0.0, MPFR_RNDN);

    for(long i=0; i<n; i++) {
      _mpfr_vec_2norm(norm, G->rows[i], n, MPFR_RNDN);
      assert(mpfr_cmp_d(norm, 0.0) > 0);
      mpfr_div(sigma_, self->sigma, norm, MPFR_RNDN);
      assert(mpfr_cmp_d(sigma_, 0.0) > 0);
      self->D[i] = dgs_disc_gauss_mp_init(sigma_, c_, tau, DGS_DISC_GAUSS_DEFAULT);
    }

    mpfr_clear(sigma_);
    mpfr_clear(norm);
    mpfr_clear(c_);
    mpfr_mat_clear(G);

    self->call = dgsl_rot_mp_call_gpv_inlattice;
    break;
  }
  case DGSL_INLATTICE: {
    fmpq_poly_init(self->sigma_sqrt);
    long r= 2*ceil(sqrt(log(n)));

    fmpq_poly_t Bq;    fmpq_poly_init(Bq);
    fmpq_poly_set_fmpz_poly(Bq, self->B);
    fmpq_poly_oz_invert_approx(self->B_inv, Bq, n, self->prec, flags);
    fmpq_poly_clear(Bq);

    _dgsl_rot_mp_sqrt_sigma_2(self->sigma_sqrt, self->B, sigma, r, n, self->prec, flags);

    mpfr_init2(self->r_f, self->prec);
    mpfr_set_ui(self->r_f, r, MPFR_RNDN);

    self->call = dgsl_rot_mp_call_inlattice;
    break;
  }
  case DGSL_COSET:
    dgs_die("not implemented");

  default:
    dgs_die("not implemented");
  }


  return self;
}
Esempio n. 3
0
int fmpq_poly_oz_sqrt_approx_pade(fmpq_poly_t f_sqrt, const fmpq_poly_t f, const long n, const int p, const mpfr_prec_t prec, const mpfr_prec_t bound, oz_flag_t flags, const fmpq_poly_t init) {
  fmpq_poly_t y;       fmpq_poly_init(y);
  fmpq_poly_t y_next;  fmpq_poly_init(y_next);
  fmpq_poly_t z;       fmpq_poly_init(z);
  fmpq_poly_t z_next;  fmpq_poly_init(z_next);

  mpfr_t norm;      mpfr_init2(norm, prec);
  mpfr_t prev_norm; mpfr_init2(prev_norm, prec);
  mpfr_t log_f;     mpfr_init2(log_f, prec);

  if (init) {
    // z = y/x
    fmpq_poly_set(y, init);
    _fmpq_poly_oz_invert_approx(z, f, n, prec);
    fmpq_poly_oz_mul(z, z, y, n);
  } else {
    fmpq_poly_set(y, f);
    fmpq_poly_set_coeff_si(z, 0, 1);
  }

  fmpq_t *xi = (fmpq_t*)calloc(p, sizeof(fmpq_t));
  fmpq_t *a2 = (fmpq_t*)calloc(p, sizeof(fmpq_t));
  fmpq_t *c  = (fmpq_t*)calloc(p, sizeof(fmpq_t));
  fmpq_poly_t *t_ = (fmpq_poly_t*)calloc(p, sizeof(fmpq_poly_t));
  fmpq_poly_t *s_ = (fmpq_poly_t*)calloc(p, sizeof(fmpq_poly_t));

  mpfr_t pi;  mpfr_init2(pi, 4*prec);
  mpfr_const_pi(pi, MPFR_RNDN);

#pragma omp parallel for
  for(int i=0; i<p; i++) {
    mpfr_t xi_r; mpfr_init2(xi_r, 4*prec);
    mpfr_t a2_r; mpfr_init2(a2_r, 4*prec);

    /*  ζ_i = 1/2 * (1 + cos( (2·i -1)·π/(2·p) )) */
    mpfr_set_si(xi_r, 2*i+1, MPFR_RNDN);
    mpfr_mul(xi_r, xi_r, pi, MPFR_RNDN);
    mpfr_div_si(xi_r, xi_r, 2*p, MPFR_RNDN);
    mpfr_cos(xi_r, xi_r, MPFR_RNDN);
    mpfr_add_si(xi_r, xi_r, 1, MPFR_RNDN);
    mpfr_div_si(xi_r, xi_r, 2, MPFR_RNDN);

    /* α_i^2 = 1/ζ_i -1 */
    mpfr_set_si(a2_r, 1, MPFR_RNDN);
    mpfr_div(a2_r, a2_r, xi_r, MPFR_RNDN);
    mpfr_sub_si(a2_r, a2_r, 1, MPFR_RNDN);

    fmpq_init(xi[i]);
    fmpq_init(a2[i]);
    fmpq_set_mpfr(xi[i], xi_r, MPFR_RNDN);
    fmpq_set_mpfr(a2[i], a2_r, MPFR_RNDN);

    fmpq_init(c[i]);
    fmpq_poly_init(t_[i]);
    fmpq_poly_init(s_[i]);

    mpfr_clear(xi_r);
    mpfr_clear(a2_r);
  }

  mpfr_clear(pi);

  uint64_t t = oz_walltime(0);

  int r = 0;
  int cont = 1;
  for(long  k=0; cont; k++) {
    if (k == 0 || mpfr_cmp_ui(prev_norm, 1) > 0)
      _fmpq_poly_oz_sqrt_approx_scale(y, z, n, prec);

    /*   T = sum([1/xi[i] * ~(Z*Y + a2[i]) for i in range(p)]) */
#pragma omp parallel for
  for(int i=0; i<p; i++) {
    fmpq_poly_oz_mul(t_[i], z, y, n);
    fmpq_poly_get_coeff_fmpq(c[i], t_[i], 0);
    fmpq_add(c[i], c[i], a2[i]);
    fmpq_poly_set_coeff_fmpq(t_[i], 0, c[i]);
    fmpq_poly_scalar_mul_fmpq(t_[i], t_[i], xi[i]);
    _fmpq_poly_oz_invert_approx(s_[i], t_[i], n, prec);
  }

  for(int i=1; i<p; i++)
    fmpq_poly_add(s_[0],   s_[0], s_[i]);

#pragma omp parallel sections
    {
#pragma omp section
      {
        fmpq_poly_oz_mul(y_next, y, s_[0], n);
        fmpq_poly_scalar_div_si(y_next, y_next, p);
        fmpq_poly_set(y, y_next);
      }
#pragma omp section
      {
        fmpq_poly_oz_mul(z_next, z, s_[0], n);
        fmpq_poly_scalar_div_si(z_next, z_next, p);
        fmpq_poly_set(z, z_next);
      }
    }
    cont = !_fmpq_poly_oz_sqrt_approx_break(norm, y, f, n, bound, prec);

    if(flags & OZ_VERBOSE) {
      mpfr_log2(log_f, norm, MPFR_RNDN);
      mpfr_fprintf(stderr, "Computing sqrt(Σ)::  k: %4d,  Δ=|sqrt(Σ)^2-Σ|: %7.2Rf", k, log_f);
      fprintf(stderr, " <? %4ld, ", -bound);
      fprintf(stderr, "t: %8.2fs\n", oz_seconds(oz_walltime(t)));
      fflush(0);
    }

    if (cont) {
      if (k>0 && mpfr_cmp_ui_2exp(norm, 1, bound) >= 0) {
        /* something went really wrong */
        r = -1;
        break;
      }
      if (k>0 && mpfr_cmp(norm, prev_norm) >= 0) {
        /*  we don't converge any more */
        r = 1;
        break;
      }
      mpfr_set(prev_norm, norm, MPFR_RNDN);
    }
  }

  for(int i=0; i<p; i++) {
    fmpq_clear(xi[i]);
    fmpq_clear(a2[i]);
    fmpq_clear(c[i]);
    fmpq_poly_clear(t_[i]);
    fmpq_poly_clear(s_[i]);
  }
  free(xi);
  free(a2);
  free(c);
  free(t_);
  free(s_);

  mpfr_clear(log_f);
  fmpq_poly_set(f_sqrt, y);
  mpfr_clear(norm);
  mpfr_clear(prev_norm);
  fmpq_poly_clear(y_next);
  fmpq_poly_clear(y);
  fmpq_poly_clear(z_next);
  fmpq_poly_clear(z);
  return r;
}