static int list_dependencies_print(const char *name, unsigned int level, unsigned int branches, bool last, struct unit_times *times, struct boot_times *boot) { unsigned int i; char ts[FORMAT_TIMESPAN_MAX], ts2[FORMAT_TIMESPAN_MAX]; for (i = level; i != 0; i--) printf("%s", draw_special_char(branches & (1 << (i-1)) ? DRAW_TREE_VERT : DRAW_TREE_SPACE)); printf("%s", draw_special_char(last ? DRAW_TREE_RIGHT : DRAW_TREE_BRANCH)); if (times) { if (times->time) printf("%s%s @%s +%s%s", ANSI_HIGHLIGHT_RED_ON, name, format_timespan(ts, sizeof(ts), times->activating - boot->userspace_time, USEC_PER_MSEC), format_timespan(ts2, sizeof(ts2), times->time, USEC_PER_MSEC), ANSI_HIGHLIGHT_OFF); else if (times->activated > boot->userspace_time) printf("%s @%s", name, format_timespan(ts, sizeof(ts), times->activated - boot->userspace_time, USEC_PER_MSEC)); else printf("%s", name); } else printf("%s", name); printf("\n"); return 0; }
static void print_source(uint64_t flags, usec_t rtt) { char rtt_str[FORMAT_TIMESTAMP_MAX]; if (!arg_legend) return; if (flags == 0) return; fputs("\n-- Information acquired via", stdout); if (flags != 0) printf(" protocol%s%s%s%s%s", flags & SD_RESOLVED_DNS ? " DNS" :"", flags & SD_RESOLVED_LLMNR_IPV4 ? " LLMNR/IPv4" : "", flags & SD_RESOLVED_LLMNR_IPV6 ? " LLMNR/IPv6" : "", flags & SD_RESOLVED_MDNS_IPV4 ? "mDNS/IPv4" : "", flags & SD_RESOLVED_MDNS_IPV6 ? "mDNS/IPv6" : ""); assert_se(format_timespan(rtt_str, sizeof(rtt_str), rtt, 100)); printf(" in %s", rtt_str); fputc('.', stdout); fputc('\n', stdout); printf("-- Data is authenticated: %s\n", yes_no(flags & SD_RESOLVED_AUTHENTICATED)); }
static void print_source(int ifindex, uint64_t flags, usec_t rtt) { char rtt_str[FORMAT_TIMESTAMP_MAX]; if (!arg_legend) return; if (ifindex <= 0 && flags == 0) return; fputs("\n-- Information acquired via", stdout); if (flags != 0) printf(" protocol%s%s%s", flags & SD_RESOLVED_DNS ? " DNS" :"", flags & SD_RESOLVED_LLMNR_IPV4 ? " LLMNR/IPv4" : "", flags & SD_RESOLVED_LLMNR_IPV6 ? " LLMNR/IPv6" : ""); if (ifindex > 0) { char ifname[IF_NAMESIZE] = ""; printf(" interface %s", strna(if_indextoname(ifindex, ifname))); } assert_se(format_timespan(rtt_str, sizeof(rtt_str), rtt, 100)); printf(" in %s", rtt_str); fputc('.', stdout); fputc('\n', stdout); }
int main(int argc, char* argv[]) { char s[MAX(FORMAT_TIMESPAN_MAX, FORMAT_TIMESTAMP_MAX)]; int r; dual_timestamp fw, l, k; dual_timestamp_from_monotonic(&k, 0); r = efi_get_boot_timestamps(NULL, &fw, &l); if (r < 0) { log_error("Failed to read variables: %s", strerror(-r)); return 1; } log_info("Firmware began %s before kernel.", format_timespan(s, sizeof(s), fw.monotonic, 0)); log_info("Loader began %s before kernel.", format_timespan(s, sizeof(s), l.monotonic, 0)); log_info("Firmware began %s.", format_timestamp(s, sizeof(s), fw.realtime)); log_info("Loader began %s.", format_timestamp(s, sizeof(s), l.realtime)); log_info("Kernel began %s.", format_timestamp(s, sizeof(s), k.realtime)); return 0; }
static int test_efi_loader(void) { usec_t loader_start; usec_t loader_exit; char ts_start[FORMAT_TIMESPAN_MAX]; char ts_exit[FORMAT_TIMESPAN_MAX]; char ts_span[FORMAT_TIMESPAN_MAX]; int r; r = efi_loader_get_boot_usec(&loader_start, &loader_exit); if (r < 0) { if (r != -ENOENT) log_error_errno(r, "Failed to read EFI loader data: %m"); return r; } log_info("EFI Loader: start=%s exit=%s duration=%s", format_timespan(ts_start, sizeof(ts_start), loader_start, USEC_PER_MSEC), format_timespan(ts_exit, sizeof(ts_exit), loader_exit, USEC_PER_MSEC), format_timespan(ts_span, sizeof(ts_span), loader_exit - loader_start, USEC_PER_MSEC)); return 0; }
static int test_efi_loader(void) { usec_t loader_start; usec_t loader_exit; char ts_start[FORMAT_TIMESPAN_MAX]; char ts_exit[FORMAT_TIMESPAN_MAX]; char ts_span[FORMAT_TIMESPAN_MAX]; int r; r = efi_loader_get_boot_usec(&loader_start, &loader_exit); if (r < 0) { bool ok = r == -ENOENT || (getuid() != 0 && r == -EACCES); log_full_errno(ok ? LOG_DEBUG : LOG_ERR, r, "Failed to read EFI loader data: %m"); return ok ? 0 : r; } log_info("EFI Loader: start=%s exit=%s duration=%s", format_timespan(ts_start, sizeof(ts_start), loader_start, USEC_PER_MSEC), format_timespan(ts_exit, sizeof(ts_exit), loader_exit, USEC_PER_MSEC), format_timespan(ts_span, sizeof(ts_span), loader_exit - loader_start, USEC_PER_MSEC)); return 1; }
static int test_boot_timestamps(void) { char s[MAX(FORMAT_TIMESPAN_MAX, FORMAT_TIMESTAMP_MAX)]; int r; dual_timestamp fw, l, k; dual_timestamp_from_monotonic(&k, 0); r = boot_timestamps(NULL, &fw, &l); if (r < 0) { bool ok = r == -ENOENT || (getuid() != 0 && r == -EACCES); log_full_errno(ok ? LOG_DEBUG : LOG_ERR, r, "Failed to read variables: %m"); return ok ? 0 : r; } log_info("Firmware began %s before kernel.", format_timespan(s, sizeof(s), fw.monotonic, 0)); log_info("Loader began %s before kernel.", format_timespan(s, sizeof(s), l.monotonic, 0)); log_info("Firmware began %s.", format_timestamp(s, sizeof(s), fw.realtime)); log_info("Loader began %s.", format_timestamp(s, sizeof(s), l.realtime)); log_info("Kernel began %s.", format_timestamp(s, sizeof(s), k.realtime)); return 1; }
static int update_timeout(void) { int r; if (watchdog_fd < 0) return 0; if (watchdog_timeout == USEC_INFINITY) return 0; else if (watchdog_timeout == 0) { int flags; flags = WDIOS_DISABLECARD; r = ioctl(watchdog_fd, WDIOC_SETOPTIONS, &flags); if (r < 0) { log_warning("Failed to disable hardware watchdog: %m"); return -errno; } } else { int sec, flags; char buf[FORMAT_TIMESPAN_MAX]; sec = (int) ((watchdog_timeout + USEC_PER_SEC - 1) / USEC_PER_SEC); r = ioctl(watchdog_fd, WDIOC_SETTIMEOUT, &sec); if (r < 0) { log_warning("Failed to set timeout to %is: %m", sec); return -errno; } watchdog_timeout = (usec_t) sec * USEC_PER_SEC; log_info("Set hardware watchdog to %s.", format_timespan(buf, sizeof(buf), watchdog_timeout, 0)); flags = WDIOS_ENABLECARD; r = ioctl(watchdog_fd, WDIOC_SETOPTIONS, &flags); if (r < 0) { log_warning("Failed to enable hardware watchdog: %m"); return -errno; } r = ioctl(watchdog_fd, WDIOC_KEEPALIVE, 0); if (r < 0) { log_warning("Failed to ping hardware watchdog: %m"); return -errno; } } return 0; }
static void automount_dump(Unit *u, FILE *f, const char *prefix) { char time_string[FORMAT_TIMESPAN_MAX]; Automount *a = AUTOMOUNT(u); assert(a); fprintf(f, "%sAutomount State: %s\n" "%sResult: %s\n" "%sWhere: %s\n" "%sDirectoryMode: %04o\n" "%sTimeoutIdleUSec: %s\n", prefix, automount_state_to_string(a->state), prefix, automount_result_to_string(a->result), prefix, a->where, prefix, a->directory_mode, prefix, format_timespan(time_string, FORMAT_TIMESPAN_MAX, a->timeout_idle_usec, USEC_PER_SEC)); }
static void test_format_timespan_one(usec_t x, usec_t accuracy) { char l[FORMAT_TIMESPAN_MAX]; const char *t; usec_t y; log_info(USEC_FMT" (at accuracy "USEC_FMT")", x, accuracy); assert_se(t = format_timespan(l, sizeof l, x, accuracy)); log_info(" = <%s>", t); assert_se(parse_sec(t, &y) >= 0); log_info(" = "USEC_FMT, y); if (accuracy <= 0) accuracy = 1; assert_se(x / accuracy == y / accuracy); }
static int update_timeout(void) { int r; if (watchdog_fd < 0) return 0; if (watchdog_timeout == USEC_INFINITY) return 0; else if (watchdog_timeout == 0) { int flags; flags = WDIOS_DISABLECARD; r = ioctl(watchdog_fd, WDIOC_SETOPTIONS, &flags); if (r < 0) return log_warning_errno(errno, "Failed to disable hardware watchdog: %m"); } else { int sec, flags; char buf[FORMAT_TIMESPAN_MAX]; sec = (int) ((watchdog_timeout + USEC_PER_SEC - 1) / USEC_PER_SEC); r = ioctl(watchdog_fd, WDIOC_SETTIMEOUT, &sec); if (r < 0) return log_warning_errno(errno, "Failed to set timeout to %is: %m", sec); watchdog_timeout = (usec_t) sec * USEC_PER_SEC; log_info("Set hardware watchdog to %s.", format_timespan(buf, sizeof(buf), watchdog_timeout, 0)); flags = WDIOS_ENABLECARD; r = ioctl(watchdog_fd, WDIOC_SETOPTIONS, &flags); if (r < 0) { /* ENOTTY means the watchdog is always enabled so we're fine */ log_full(errno == ENOTTY ? LOG_DEBUG : LOG_WARNING, "Failed to enable hardware watchdog: %m"); if (errno != ENOTTY) return -errno; } r = ioctl(watchdog_fd, WDIOC_KEEPALIVE, 0); if (r < 0) return log_warning_errno(errno, "Failed to ping hardware watchdog: %m"); } return 0; }
static int write_idle_timeout(FILE *f, const char *where, const char *opts) { _cleanup_free_ char *timeout = NULL; char timespan[FORMAT_TIMESPAN_MAX]; usec_t u; int r; r = fstab_filter_options(opts, "x-systemd.idle-timeout\0", NULL, &timeout, NULL); if (r < 0) return log_warning_errno(r, "Failed to parse options: %m"); if (r == 0) return 0; r = parse_sec(timeout, &u); if (r < 0) { log_warning("Failed to parse timeout for %s, ignoring: %s", where, timeout); return 0; } fprintf(f, "TimeoutIdleSec=%s\n", format_timespan(timespan, sizeof(timespan), u, 0)); return 0; }
int main(int argc, char *argv[]) { char buf[CONST_MAX(FORMAT_TIMESPAN_MAX, FORMAT_BYTES_MAX)]; nsec_t nsec; uint64_t v; int r; log_parse_environment(); log_open(); assert_se(procfs_cpu_get_usage(&nsec) >= 0); log_info("Current system CPU time: %s", format_timespan(buf, sizeof(buf), nsec/NSEC_PER_USEC, 1)); assert_se(procfs_memory_get_current(&v) >= 0); log_info("Current memory usage: %s", format_bytes(buf, sizeof(buf), v)); assert_se(procfs_tasks_get_current(&v) >= 0); log_info("Current number of tasks: %" PRIu64, v); assert_se(procfs_tasks_get_limit(&v) >= 0); log_info("Limit of tasks: %" PRIu64, v); assert_se(v > 0); assert_se(procfs_tasks_set_limit(v) >= 0); if (v > 100) { uint64_t w; r = procfs_tasks_set_limit(v-1); assert_se(IN_SET(r, 0, -EPERM, -EACCES, -EROFS)); assert_se(procfs_tasks_get_limit(&w) >= 0); assert_se((r == 0 && w == v - 1) || (r < 0 && w == v)); assert_se(procfs_tasks_set_limit(v) >= 0); assert_se(procfs_tasks_get_limit(&w) >= 0); assert_se(v == w); } return 0; }
static int write_timeout(FILE *f, const char *where, const char *opts, const char *filter, const char *variable) { _cleanup_free_ char *timeout = NULL; char timespan[FORMAT_TIMESPAN_MAX]; usec_t u; int r; r = fstab_filter_options(opts, filter, NULL, &timeout, NULL); if (r < 0) return log_warning_errno(r, "Failed to parse options: %m"); if (r == 0) return 0; r = parse_sec_fix_0(timeout, &u); if (r < 0) { log_warning("Failed to parse timeout for %s, ignoring: %s", where, timeout); return 0; } fprintf(f, "%s=%s\n", variable, format_timespan(timespan, sizeof(timespan), u, 0)); return 0; }
int mac_selinux_init(void) { int r = 0; #ifdef HAVE_SELINUX usec_t before_timestamp, after_timestamp; struct mallinfo before_mallinfo, after_mallinfo; if (label_hnd) return 0; if (!mac_selinux_use()) return 0; before_mallinfo = mallinfo(); before_timestamp = now(CLOCK_MONOTONIC); label_hnd = selabel_open(SELABEL_CTX_FILE, NULL, 0); if (!label_hnd) { log_enforcing("Failed to initialize SELinux context: %m"); r = security_getenforce() == 1 ? -errno : 0; } else { char timespan[FORMAT_TIMESPAN_MAX]; int l; after_timestamp = now(CLOCK_MONOTONIC); after_mallinfo = mallinfo(); l = after_mallinfo.uordblks > before_mallinfo.uordblks ? after_mallinfo.uordblks - before_mallinfo.uordblks : 0; log_debug("Successfully loaded SELinux database in %s, size on heap is %iK.", format_timespan(timespan, sizeof(timespan), after_timestamp - before_timestamp, 0), (l+1023)/1024); } #endif return r; }
static int pretty_boot_time(sd_bus *bus, char **_buf) { char ts[FORMAT_TIMESPAN_MAX]; struct boot_times *t; static char buf[4096]; size_t size; char *ptr; int r; r = acquire_boot_times(bus, &t); if (r < 0) return r; ptr = buf; size = sizeof(buf); size = strpcpyf(&ptr, size, "Startup finished in "); if (t->firmware_time) size = strpcpyf(&ptr, size, "%s (firmware) + ", format_timespan(ts, sizeof(ts), t->firmware_time - t->loader_time, USEC_PER_MSEC)); if (t->loader_time) size = strpcpyf(&ptr, size, "%s (loader) + ", format_timespan(ts, sizeof(ts), t->loader_time, USEC_PER_MSEC)); if (t->kernel_time) size = strpcpyf(&ptr, size, "%s (kernel) + ", format_timespan(ts, sizeof(ts), t->kernel_done_time, USEC_PER_MSEC)); if (t->initrd_time > 0) size = strpcpyf(&ptr, size, "%s (initrd) + ", format_timespan(ts, sizeof(ts), t->userspace_time - t->initrd_time, USEC_PER_MSEC)); size = strpcpyf(&ptr, size, "%s (userspace) ", format_timespan(ts, sizeof(ts), t->finish_time - t->userspace_time, USEC_PER_MSEC)); if (t->kernel_time > 0) strpcpyf(&ptr, size, "= %s", format_timespan(ts, sizeof(ts), t->firmware_time + t->finish_time, USEC_PER_MSEC)); else strpcpyf(&ptr, size, "= %s", format_timespan(ts, sizeof(ts), t->finish_time - t->userspace_time, USEC_PER_MSEC)); ptr = strdup(buf); if (!ptr) return log_oom(); *_buf = ptr; return 0; }
int mac_selinux_setup(bool *loaded_policy) { #ifdef HAVE_SELINUX int enforce = 0; usec_t before_load, after_load; security_context_t con; int r; union selinux_callback cb; bool initialized = false; assert(loaded_policy); /* Turn off all of SELinux' own logging, we want to do that */ cb.func_log = null_log; selinux_set_callback(SELINUX_CB_LOG, cb); /* Don't load policy in the initrd if we don't appear to have * it. For the real root, we check below if we've already * loaded policy, and return gracefully. */ if (in_initrd() && access(selinux_path(), F_OK) < 0) return 0; /* Already initialized by somebody else? */ r = getcon_raw(&con); if (r == 0) { initialized = !streq(con, "kernel"); freecon(con); } /* Make sure we have no fds open while loading the policy and * transitioning */ log_close(); /* Now load the policy */ before_load = now(CLOCK_MONOTONIC); r = selinux_init_load_policy(&enforce); if (r == 0) { _cleanup_(mac_selinux_freep) char *label = NULL; char timespan[FORMAT_TIMESPAN_MAX]; mac_selinux_retest(); /* Transition to the new context */ r = mac_selinux_get_create_label_from_exe(SYSTEMD_BINARY_PATH, &label); if (r < 0 || !label) { log_open(); log_error("Failed to compute init label, ignoring."); } else { r = setcon_raw(label); log_open(); if (r < 0) log_error("Failed to transition into init label '%s', ignoring.", label); } after_load = now(CLOCK_MONOTONIC); log_info("Successfully loaded SELinux policy in %s.", format_timespan(timespan, sizeof(timespan), after_load - before_load, 0)); *loaded_policy = true; } else {
static void display(Hashmap *a) { Iterator i; Group *g; Group **array; signed path_columns; unsigned rows, n = 0, j, maxtcpu = 0, maxtpath = 3; /* 3 for ellipsize() to work properly */ char buffer[MAX3(21, FORMAT_BYTES_MAX, FORMAT_TIMESPAN_MAX)]; assert(a); if (!terminal_is_dumb()) fputs(ANSI_HOME_CLEAR, stdout); array = alloca(sizeof(Group*) * hashmap_size(a)); HASHMAP_FOREACH(g, a, i) if (g->n_tasks_valid || g->cpu_valid || g->memory_valid || g->io_valid) array[n++] = g; qsort_safe(array, n, sizeof(Group*), group_compare); /* Find the longest names in one run */ for (j = 0; j < n; j++) { unsigned cputlen, pathtlen; format_timespan(buffer, sizeof(buffer), (usec_t) (array[j]->cpu_usage / NSEC_PER_USEC), 0); cputlen = strlen(buffer); maxtcpu = MAX(maxtcpu, cputlen); pathtlen = strlen(array[j]->path); maxtpath = MAX(maxtpath, pathtlen); } if (arg_cpu_type == CPU_PERCENT) xsprintf(buffer, "%6s", "%CPU"); else xsprintf(buffer, "%*s", maxtcpu, "CPU Time"); rows = lines(); if (rows <= 10) rows = 10; if (on_tty()) { const char *on, *off; path_columns = columns() - 36 - strlen(buffer); if (path_columns < 10) path_columns = 10; on = ansi_highlight_underline(); off = ansi_underline(); printf("%s%s%-*s%s %s%7s%s %s%s%s %s%8s%s %s%8s%s %s%8s%s%s\n", ansi_underline(), arg_order == ORDER_PATH ? on : "", path_columns, "Control Group", arg_order == ORDER_PATH ? off : "", arg_order == ORDER_TASKS ? on : "", arg_count == COUNT_PIDS ? "Tasks" : arg_count == COUNT_USERSPACE_PROCESSES ? "Procs" : "Proc+", arg_order == ORDER_TASKS ? off : "", arg_order == ORDER_CPU ? on : "", buffer, arg_order == ORDER_CPU ? off : "", arg_order == ORDER_MEMORY ? on : "", "Memory", arg_order == ORDER_MEMORY ? off : "", arg_order == ORDER_IO ? on : "", "Input/s", arg_order == ORDER_IO ? off : "", arg_order == ORDER_IO ? on : "", "Output/s", arg_order == ORDER_IO ? off : "", ansi_normal()); } else path_columns = maxtpath; for (j = 0; j < n; j++) { _cleanup_free_ char *ellipsized = NULL; const char *path; if (on_tty() && j + 6 > rows) break; g = array[j]; path = isempty(g->path) ? "/" : g->path; ellipsized = ellipsize(path, path_columns, 33); printf("%-*s", path_columns, ellipsized ?: path); if (g->n_tasks_valid) printf(" %7" PRIu64, g->n_tasks); else fputs(" -", stdout); if (arg_cpu_type == CPU_PERCENT) { if (g->cpu_valid) printf(" %6.1f", g->cpu_fraction*100); else fputs(" -", stdout); } else printf(" %*s", maxtcpu, format_timespan(buffer, sizeof(buffer), (usec_t) (g->cpu_usage / NSEC_PER_USEC), 0)); printf(" %8s", maybe_format_bytes(buffer, sizeof(buffer), g->memory_valid, g->memory)); printf(" %8s", maybe_format_bytes(buffer, sizeof(buffer), g->io_valid, g->io_input_bps)); printf(" %8s", maybe_format_bytes(buffer, sizeof(buffer), g->io_valid, g->io_output_bps)); putchar('\n'); } }
int main(int argc, char *argv[]) { int r; Hashmap *a = NULL, *b = NULL; unsigned iteration = 0; usec_t last_refresh = 0; bool quit = false, immediate_refresh = false; _cleanup_free_ char *root = NULL; CGroupMask mask; log_parse_environment(); log_open(); r = cg_mask_supported(&mask); if (r < 0) { log_error_errno(r, "Failed to determine supported controllers: %m"); goto finish; } arg_count = (mask & CGROUP_MASK_PIDS) ? COUNT_PIDS : COUNT_USERSPACE_PROCESSES; r = parse_argv(argc, argv); if (r <= 0) goto finish; r = get_cgroup_root(&root); if (r < 0) { log_error_errno(r, "Failed to get root control group path: %m"); goto finish; } a = hashmap_new(&string_hash_ops); b = hashmap_new(&string_hash_ops); if (!a || !b) { r = log_oom(); goto finish; } signal(SIGWINCH, columns_lines_cache_reset); if (arg_iterations == (unsigned) -1) arg_iterations = on_tty() ? 0 : 1; while (!quit) { Hashmap *c; usec_t t; char key; char h[FORMAT_TIMESPAN_MAX]; t = now(CLOCK_MONOTONIC); if (t >= last_refresh + arg_delay || immediate_refresh) { r = refresh(root, a, b, iteration++); if (r < 0) { log_error_errno(r, "Failed to refresh: %m"); goto finish; } group_hashmap_clear(b); c = a; a = b; b = c; last_refresh = t; immediate_refresh = false; } display(b); if (arg_iterations && iteration >= arg_iterations) break; if (!on_tty()) /* non-TTY: Empty newline as delimiter between polls */ fputs("\n", stdout); fflush(stdout); if (arg_batch) (void) usleep(last_refresh + arg_delay - t); else { r = read_one_char(stdin, &key, last_refresh + arg_delay - t, NULL); if (r == -ETIMEDOUT) continue; if (r < 0) { log_error_errno(r, "Couldn't read key: %m"); goto finish; } } if (on_tty()) { /* TTY: Clear any user keystroke */ fputs("\r \r", stdout); fflush(stdout); } if (arg_batch) continue; switch (key) { case ' ': immediate_refresh = true; break; case 'q': quit = true; break; case 'p': arg_order = ORDER_PATH; break; case 't': arg_order = ORDER_TASKS; break; case 'c': arg_order = ORDER_CPU; break; case 'm': arg_order = ORDER_MEMORY; break; case 'i': arg_order = ORDER_IO; break; case '%': arg_cpu_type = arg_cpu_type == CPU_TIME ? CPU_PERCENT : CPU_TIME; break; case 'k': arg_count = arg_count != COUNT_ALL_PROCESSES ? COUNT_ALL_PROCESSES : COUNT_PIDS; fprintf(stdout, "\nCounting: %s.", counting_what()); fflush(stdout); sleep(1); break; case 'P': arg_count = arg_count != COUNT_USERSPACE_PROCESSES ? COUNT_USERSPACE_PROCESSES : COUNT_PIDS; fprintf(stdout, "\nCounting: %s.", counting_what()); fflush(stdout); sleep(1); break; case 'r': if (arg_count == COUNT_PIDS) fprintf(stdout, "\n\aCannot toggle recursive counting, not available in task counting mode."); else { arg_recursive = !arg_recursive; fprintf(stdout, "\nRecursive process counting: %s", yes_no(arg_recursive)); } fflush(stdout); sleep(1); break; case '+': if (arg_delay < USEC_PER_SEC) arg_delay += USEC_PER_MSEC*250; else arg_delay += USEC_PER_SEC; fprintf(stdout, "\nIncreased delay to %s.", format_timespan(h, sizeof(h), arg_delay, 0)); fflush(stdout); sleep(1); break; case '-': if (arg_delay <= USEC_PER_MSEC*500) arg_delay = USEC_PER_MSEC*250; else if (arg_delay < USEC_PER_MSEC*1250) arg_delay -= USEC_PER_MSEC*250; else arg_delay -= USEC_PER_SEC; fprintf(stdout, "\nDecreased delay to %s.", format_timespan(h, sizeof(h), arg_delay, 0)); fflush(stdout); sleep(1); break; case '?': case 'h': #define ON ANSI_HIGHLIGHT #define OFF ANSI_NORMAL fprintf(stdout, "\t<" ON "p" OFF "> By path; <" ON "t" OFF "> By tasks/procs; <" ON "c" OFF "> By CPU; <" ON "m" OFF "> By memory; <" ON "i" OFF "> By I/O\n" "\t<" ON "+" OFF "> Inc. delay; <" ON "-" OFF "> Dec. delay; <" ON "%%" OFF "> Toggle time; <" ON "SPACE" OFF "> Refresh\n" "\t<" ON "P" OFF "> Toggle count userspace processes; <" ON "k" OFF "> Toggle count all processes\n" "\t<" ON "r" OFF "> Count processes recursively; <" ON "q" OFF "> Quit"); fflush(stdout); sleep(3); break; default: if (key < ' ') fprintf(stdout, "\nUnknown key '\\x%x'. Ignoring.", key); else fprintf(stdout, "\nUnknown key '%c'. Ignoring.", key); fflush(stdout); sleep(1); break; } } r = 0; finish: group_hashmap_free(a); group_hashmap_free(b); return r < 0 ? EXIT_FAILURE : EXIT_SUCCESS; }
int mount_setup(bool loaded_policy) { static const char relabel[] = "/run/initramfs/root-fsck\0" "/run/initramfs/shutdown\0"; int r; unsigned i; const char *j; for (i = 0; i < ELEMENTSOF(mount_table); i ++) { r = mount_one(mount_table + i, true); if (r < 0) return r; } /* Nodes in devtmpfs and /run need to be manually updated for * the appropriate labels, after mounting. The other virtual * API file systems like /sys and /proc do not need that, they * use the same label for all their files. */ if (loaded_policy) { usec_t before_relabel, after_relabel; char timespan[FORMAT_TIMESPAN_MAX]; before_relabel = now(CLOCK_MONOTONIC); nftw("/dev", nftw_cb, 64, FTW_MOUNT|FTW_PHYS|FTW_ACTIONRETVAL); nftw("/run", nftw_cb, 64, FTW_MOUNT|FTW_PHYS|FTW_ACTIONRETVAL); /* Explicitly relabel these */ NULSTR_FOREACH(j, relabel) label_fix(j, true, false); after_relabel = now(CLOCK_MONOTONIC); log_info("Relabelled /dev and /run in %s.", format_timespan(timespan, sizeof(timespan), after_relabel - before_relabel)); } /* Create a few default symlinks, which are normally created * by udevd, but some scripts might need them before we start * udevd. */ dev_setup(NULL); /* Mark the root directory as shared in regards to mount * propagation. The kernel defaults to "private", but we think * it makes more sense to have a default of "shared" so that * nspawn and the container tools work out of the box. If * specific setups need other settings they can reset the * propagation mode to private if needed. */ if (detect_container(NULL) <= 0) if (mount(NULL, "/", NULL, MS_REC|MS_SHARED, NULL) < 0) log_warning("Failed to set up the root directory for shared mount propagation: %m"); /* Create a few directories we always want around, Note that * sd_booted() checks for /run/systemd/system, so this mkdir * really needs to stay for good, otherwise software that * copied sd-daemon.c into their sources will misdetect * systemd. */ mkdir_label("/run/systemd", 0755); mkdir_label("/run/systemd/system", 0755); mkdir_label("/run/systemd/inaccessible", 0000); return 0; }
int bus_print_property(const char *name, sd_bus_message *property, bool all) { char type; const char *contents; int r; assert(name); assert(property); r = sd_bus_message_peek_type(property, &type, &contents); if (r < 0) return r; switch (type) { case SD_BUS_TYPE_STRING: { const char *s; r = sd_bus_message_read_basic(property, type, &s); if (r < 0) return r; if (all || !isempty(s)) printf("%s=%s\n", name, s); return 1; } case SD_BUS_TYPE_BOOLEAN: { bool b; r = sd_bus_message_read_basic(property, type, &b); if (r < 0) return r; printf("%s=%s\n", name, yes_no(b)); return 1; } case SD_BUS_TYPE_UINT64: { uint64_t u; r = sd_bus_message_read_basic(property, type, &u); if (r < 0) return r; /* Yes, heuristics! But we can change this check * should it turn out to not be sufficient */ if (endswith(name, "Timestamp")) { char timestamp[FORMAT_TIMESTAMP_MAX], *t; t = format_timestamp(timestamp, sizeof(timestamp), u); if (t || all) printf("%s=%s\n", name, strempty(t)); } else if (strstr(name, "USec")) { char timespan[FORMAT_TIMESPAN_MAX]; printf("%s=%s\n", name, format_timespan(timespan, sizeof(timespan), u, 0)); } else printf("%s=%llu\n", name, (unsigned long long) u); return 1; } case SD_BUS_TYPE_UINT32: { uint32_t u; r = sd_bus_message_read_basic(property, type, &u); if (r < 0) return r; if (strstr(name, "UMask") || strstr(name, "Mode")) printf("%s=%04o\n", name, u); else printf("%s=%u\n", name, (unsigned) u); return 1; } case SD_BUS_TYPE_INT32: { int32_t i; r = sd_bus_message_read_basic(property, type, &i); if (r < 0) return r; printf("%s=%i\n", name, (int) i); return 1; } case SD_BUS_TYPE_DOUBLE: { double d; r = sd_bus_message_read_basic(property, type, &d); if (r < 0) return r; printf("%s=%g\n", name, d); return 1; } case SD_BUS_TYPE_ARRAY: if (streq(contents, "s")) { bool first = true; const char *str; r = sd_bus_message_enter_container(property, SD_BUS_TYPE_ARRAY, contents); if (r < 0) return r; while((r = sd_bus_message_read_basic(property, SD_BUS_TYPE_STRING, &str)) > 0) { if (first) printf("%s=", name); printf("%s%s", first ? "" : " ", str); first = false; } if (r < 0) return r; if (first && all) printf("%s=", name); if (!first || all) puts(""); r = sd_bus_message_exit_container(property); if (r < 0) return r; return 1; } else if (streq(contents, "y")) { const uint8_t *u; size_t n; r = sd_bus_message_read_array(property, SD_BUS_TYPE_BYTE, (const void**) &u, &n); if (r < 0) return r; if (all || n > 0) { unsigned int i; printf("%s=", name); for (i = 0; i < n; i++) printf("%02x", u[i]); puts(""); } return 1; } else if (streq(contents, "u")) { uint32_t *u; size_t n; r = sd_bus_message_read_array(property, SD_BUS_TYPE_UINT32, (const void**) &u, &n); if (r < 0) return r; if (all || n > 0) { unsigned int i; printf("%s=", name); for (i = 0; i < n; i++) printf("%08x", u[i]); puts(""); } return 1; } break; } return 0; }
int main(int argc, char *argv[]) { int r; Hashmap *a = NULL, *b = NULL; unsigned iteration = 0; usec_t last_refresh = 0; bool quit = false, immediate_refresh = false; log_parse_environment(); log_open(); r = parse_argv(argc, argv); if (r <= 0) goto finish; a = hashmap_new(string_hash_func, string_compare_func); b = hashmap_new(string_hash_func, string_compare_func); if (!a || !b) { r = log_oom(); goto finish; } signal(SIGWINCH, columns_lines_cache_reset); if (!on_tty()) arg_iterations = 1; while (!quit) { Hashmap *c; usec_t t; char key; char h[FORMAT_TIMESPAN_MAX]; t = now(CLOCK_MONOTONIC); if (t >= last_refresh + arg_delay || immediate_refresh) { r = refresh(a, b, iteration++); if (r < 0) goto finish; group_hashmap_clear(b); c = a; a = b; b = c; last_refresh = t; immediate_refresh = false; } r = display(b); if (r < 0) goto finish; if (arg_iterations && iteration >= arg_iterations) break; if (arg_batch) { usleep(last_refresh + arg_delay - t); } else { r = read_one_char(stdin, &key, last_refresh + arg_delay - t, NULL); if (r == -ETIMEDOUT) continue; if (r < 0) { log_error("Couldn't read key: %s", strerror(-r)); goto finish; } } fputs("\r \r", stdout); fflush(stdout); if (arg_batch) continue; switch (key) { case ' ': immediate_refresh = true; break; case 'q': quit = true; break; case 'p': arg_order = ORDER_PATH; break; case 't': arg_order = ORDER_TASKS; break; case 'c': arg_order = ORDER_CPU; break; case 'm': arg_order = ORDER_MEMORY; break; case 'i': arg_order = ORDER_IO; break; case '%': arg_cpu_type = arg_cpu_type == CPU_TIME ? CPU_PERCENT : CPU_TIME; break; case '+': if (arg_delay < USEC_PER_SEC) arg_delay += USEC_PER_MSEC*250; else arg_delay += USEC_PER_SEC; fprintf(stdout, "\nIncreased delay to %s.", format_timespan(h, sizeof(h), arg_delay, 0)); fflush(stdout); sleep(1); break; case '-': if (arg_delay <= USEC_PER_MSEC*500) arg_delay = USEC_PER_MSEC*250; else if (arg_delay < USEC_PER_MSEC*1250) arg_delay -= USEC_PER_MSEC*250; else arg_delay -= USEC_PER_SEC; fprintf(stdout, "\nDecreased delay to %s.", format_timespan(h, sizeof(h), arg_delay, 0)); fflush(stdout); sleep(1); break; case '?': case 'h': fprintf(stdout, "\t<" ON "p" OFF "> By path; <" ON "t" OFF "> By tasks; <" ON "c" OFF "> By CPU; <" ON "m" OFF "> By memory; <" ON "i" OFF "> By I/O\n" "\t<" ON "+" OFF "> Increase delay; <" ON "-" OFF "> Decrease delay; <" ON "%%" OFF "> Toggle time\n" "\t<" ON "q" OFF "> Quit; <" ON "SPACE" OFF "> Refresh"); fflush(stdout); sleep(3); break; default: fprintf(stdout, "\nUnknown key '%c'. Ignoring.", key); fflush(stdout); sleep(1); break; } } r = 0; finish: group_hashmap_free(a); group_hashmap_free(b); if (r < 0) { log_error("Exiting with failure: %s", strerror(-r)); return EXIT_FAILURE; } return EXIT_SUCCESS; }
int main(int argc, char *argv[]) { char t[] = "/tmp/journal-XXXXXX"; unsigned n; JournalFile *f; const char *verification_key = argv[1]; usec_t from = 0, to = 0, total = 0; char a[FORMAT_TIMESTAMP_MAX]; char b[FORMAT_TIMESTAMP_MAX]; char c[FORMAT_TIMESPAN_MAX]; struct stat st; uint64_t p; /* journal_file_open requires a valid machine id */ if (access("/etc/machine-id", F_OK) != 0) return EXIT_TEST_SKIP; log_set_max_level(LOG_DEBUG); assert_se(mkdtemp(t)); assert_se(chdir(t) >= 0); log_info("Generating..."); assert_se(journal_file_open("test.journal", O_RDWR|O_CREAT, 0666, true, !!verification_key, NULL, NULL, NULL, &f) == 0); for (n = 0; n < N_ENTRIES; n++) { struct iovec iovec; struct dual_timestamp ts; char *test; dual_timestamp_get(&ts); assert_se(asprintf(&test, "RANDOM=%lu", random() % RANDOM_RANGE)); iovec.iov_base = (void*) test; iovec.iov_len = strlen(test); assert_se(journal_file_append_entry(f, &ts, &iovec, 1, NULL, NULL, NULL) == 0); free(test); } journal_file_close(f); log_info("Verifying..."); assert_se(journal_file_open("test.journal", O_RDONLY, 0666, true, !!verification_key, NULL, NULL, NULL, &f) == 0); /* journal_file_print_header(f); */ journal_file_dump(f); assert_se(journal_file_verify(f, verification_key, &from, &to, &total, true) >= 0); if (verification_key && JOURNAL_HEADER_SEALED(f->header)) log_info("=> Validated from %s to %s, %s missing", format_timestamp(a, sizeof(a), from), format_timestamp(b, sizeof(b), to), format_timespan(c, sizeof(c), total > to ? total - to : 0, 0)); journal_file_close(f); if (verification_key) { log_info("Toggling bits..."); assert_se(stat("test.journal", &st) >= 0); for (p = 38448*8+0; p < ((uint64_t) st.st_size * 8); p ++) { bit_toggle("test.journal", p); log_info("[ %"PRIu64"+%"PRIu64"]", p / 8, p % 8); if (raw_verify("test.journal", verification_key) >= 0) log_notice(ANSI_HIGHLIGHT_RED ">>>> %"PRIu64" (bit %"PRIu64") can be toggled without detection." ANSI_NORMAL, p / 8, p % 8); bit_toggle("test.journal", p); } } log_info("Exiting..."); assert_se(rm_rf(t, REMOVE_ROOT|REMOVE_PHYSICAL) >= 0); return 0; }
static int display(Hashmap *a) { Iterator i; Group *g; Group **array; signed path_columns; unsigned rows, n = 0, j, maxtcpu = 0, maxtpath = 0; char buffer[MAX3(21, FORMAT_BYTES_MAX, FORMAT_TIMESPAN_MAX)]; assert(a); /* Set cursor to top left corner and clear screen */ if (on_tty()) fputs("\033[H" "\033[2J", stdout); array = alloca(sizeof(Group*) * hashmap_size(a)); HASHMAP_FOREACH(g, a, i) if (g->n_tasks_valid || g->cpu_valid || g->memory_valid || g->io_valid) array[n++] = g; qsort_safe(array, n, sizeof(Group*), group_compare); /* Find the longest names in one run */ for (j = 0; j < n; j++) { unsigned cputlen, pathtlen; format_timespan(buffer, sizeof(buffer), (nsec_t) (array[j]->cpu_usage / NSEC_PER_USEC), 0); cputlen = strlen(buffer); maxtcpu = MAX(maxtcpu, cputlen); pathtlen = strlen(array[j]->path); maxtpath = MAX(maxtpath, pathtlen); } if (arg_cpu_type == CPU_PERCENT) snprintf(buffer, sizeof(buffer), "%6s", "%CPU"); else snprintf(buffer, sizeof(buffer), "%*s", maxtcpu, "CPU Time"); rows = lines(); if (rows <= 10) rows = 10; if (on_tty()) { path_columns = columns() - 36 - strlen(buffer); if (path_columns < 10) path_columns = 10; printf("%s%-*s%s %s%7s%s %s%s%s %s%8s%s %s%8s%s %s%8s%s\n\n", arg_order == ORDER_PATH ? ON : "", path_columns, "Path", arg_order == ORDER_PATH ? OFF : "", arg_order == ORDER_TASKS ? ON : "", "Tasks", arg_order == ORDER_TASKS ? OFF : "", arg_order == ORDER_CPU ? ON : "", buffer, arg_order == ORDER_CPU ? OFF : "", arg_order == ORDER_MEMORY ? ON : "", "Memory", arg_order == ORDER_MEMORY ? OFF : "", arg_order == ORDER_IO ? ON : "", "Input/s", arg_order == ORDER_IO ? OFF : "", arg_order == ORDER_IO ? ON : "", "Output/s", arg_order == ORDER_IO ? OFF : ""); } else path_columns = maxtpath; for (j = 0; j < n; j++) { char *p; if (on_tty() && j + 5 > rows) break; g = array[j]; p = ellipsize(g->path, path_columns, 33); printf("%-*s", path_columns, p ? p : g->path); free(p); if (g->n_tasks_valid) printf(" %7u", g->n_tasks); else fputs(" -", stdout); if (arg_cpu_type == CPU_PERCENT) { if (g->cpu_valid) printf(" %6.1f", g->cpu_fraction*100); else fputs(" -", stdout); } else printf(" %*s", maxtcpu, format_timespan(buffer, sizeof(buffer), (nsec_t) (g->cpu_usage / NSEC_PER_USEC), 0)); if (g->memory_valid) printf(" %8s", format_bytes(buffer, sizeof(buffer), g->memory)); else fputs(" -", stdout); if (g->io_valid) { printf(" %8s", format_bytes(buffer, sizeof(buffer), g->io_input_bps)); printf(" %8s", format_bytes(buffer, sizeof(buffer), g->io_output_bps)); } else fputs(" - -", stdout); putchar('\n'); } return 0; }
static int client_set_lease_timeouts(sd_dhcp_client *client) { usec_t time_now; uint64_t lifetime_timeout; uint64_t t2_timeout; uint64_t t1_timeout; char time_string[FORMAT_TIMESPAN_MAX]; int r; assert(client); assert(client->event); assert(client->lease); assert(client->lease->lifetime); client->timeout_t1 = sd_event_source_unref(client->timeout_t1); client->timeout_t2 = sd_event_source_unref(client->timeout_t2); client->timeout_expire = sd_event_source_unref(client->timeout_expire); /* don't set timers for infinite leases */ if (client->lease->lifetime == 0xffffffff) return 0; r = sd_event_now(client->event, CLOCK_MONOTONIC, &time_now); if (r < 0) return r; assert(client->request_sent <= time_now); /* convert the various timeouts from relative (secs) to absolute (usecs) */ lifetime_timeout = client_compute_timeout(client, client->lease->lifetime, 1); if (client->lease->t1 && client->lease->t2) { /* both T1 and T2 are given */ if (client->lease->t1 < client->lease->t2 && client->lease->t2 < client->lease->lifetime) { /* they are both valid */ t2_timeout = client_compute_timeout(client, client->lease->t2, 1); t1_timeout = client_compute_timeout(client, client->lease->t1, 1); } else { /* discard both */ t2_timeout = client_compute_timeout(client, client->lease->lifetime, 7.0 / 8.0); client->lease->t2 = (client->lease->lifetime * 7) / 8; t1_timeout = client_compute_timeout(client, client->lease->lifetime, 0.5); client->lease->t1 = client->lease->lifetime / 2; } } else if (client->lease->t2 && client->lease->t2 < client->lease->lifetime) { /* only T2 is given, and it is valid */ t2_timeout = client_compute_timeout(client, client->lease->t2, 1); t1_timeout = client_compute_timeout(client, client->lease->lifetime, 0.5); client->lease->t1 = client->lease->lifetime / 2; if (t2_timeout <= t1_timeout) { /* the computed T1 would be invalid, so discard T2 */ t2_timeout = client_compute_timeout(client, client->lease->lifetime, 7.0 / 8.0); client->lease->t2 = (client->lease->lifetime * 7) / 8; } } else if (client->lease->t1 && client->lease->t1 < client->lease->lifetime) { /* only T1 is given, and it is valid */ t1_timeout = client_compute_timeout(client, client->lease->t1, 1); t2_timeout = client_compute_timeout(client, client->lease->lifetime, 7.0 / 8.0); client->lease->t2 = (client->lease->lifetime * 7) / 8; if (t2_timeout <= t1_timeout) { /* the computed T2 would be invalid, so discard T1 */ t2_timeout = client_compute_timeout(client, client->lease->lifetime, 0.5); client->lease->t2 = client->lease->lifetime / 2; } } else { /* fall back to the default timeouts */ t1_timeout = client_compute_timeout(client, client->lease->lifetime, 0.5); client->lease->t1 = client->lease->lifetime / 2; t2_timeout = client_compute_timeout(client, client->lease->lifetime, 7.0 / 8.0); client->lease->t2 = (client->lease->lifetime * 7) / 8; } /* arm lifetime timeout */ r = sd_event_add_time(client->event, &client->timeout_expire, CLOCK_MONOTONIC, lifetime_timeout, 10 * USEC_PER_MSEC, client_timeout_expire, client); if (r < 0) return r; r = sd_event_source_set_priority(client->timeout_expire, client->event_priority); if (r < 0) return r; log_dhcp_client(client, "lease expires in %s", format_timespan(time_string, FORMAT_TIMESPAN_MAX, lifetime_timeout - time_now, 0)); /* don't arm earlier timeouts if this has already expired */ if (lifetime_timeout <= time_now) return 0; /* arm T2 timeout */ r = sd_event_add_time(client->event, &client->timeout_t2, CLOCK_MONOTONIC, t2_timeout, 10 * USEC_PER_MSEC, client_timeout_t2, client); if (r < 0) return r; r = sd_event_source_set_priority(client->timeout_t2, client->event_priority); if (r < 0) return r; log_dhcp_client(client, "T2 expires in %s", format_timespan(time_string, FORMAT_TIMESPAN_MAX, t2_timeout - time_now, 0)); /* don't arm earlier timeout if this has already expired */ if (t2_timeout <= time_now) return 0; /* arm T1 timeout */ r = sd_event_add_time(client->event, &client->timeout_t1, CLOCK_MONOTONIC, t1_timeout, 10 * USEC_PER_MSEC, client_timeout_t1, client); if (r < 0) return r; r = sd_event_source_set_priority(client->timeout_t1, client->event_priority); if (r < 0) return r; log_dhcp_client(client, "T1 expires in %s", format_timespan(time_string, FORMAT_TIMESPAN_MAX, t1_timeout - time_now, 0)); return 0; }
int mount_cgroup_controllers(char ***join_controllers) { int r; char buf[LINE_MAX]; _cleanup_set_free_free_ Set *controllers = NULL; _cleanup_fclose_ FILE *f; /* Mount all available cgroup controllers that are built into the kernel. */ f = fopen("/proc/cgroups", "re"); if (!f) { log_error("Failed to enumerate cgroup controllers: %m"); return 0; } controllers = set_new(string_hash_func, string_compare_func); if (!controllers) return log_oom(); /* Ignore the header line */ (void) fgets(buf, sizeof(buf), f); for (;;) { char *controller; int enabled = 0; if (fscanf(f, "%ms %*i %*i %i", &controller, &enabled) != 2) { if (feof(f)) break; log_error("Failed to parse /proc/cgroups."); return -EIO; } if (!enabled) { free(controller); continue; } r = set_consume(controllers, controller); if (r < 0) { log_error("Failed to add controller to set."); return r; } } for (;;) { MountPoint p = { .what = "cgroup", .type = "cgroup", .flags = MS_NOSUID|MS_NOEXEC|MS_NODEV, .mode = MNT_IN_CONTAINER, }; char ***k = NULL; _cleanup_free_ char *options = NULL, *controller; controller = set_steal_first(controllers); if (!controller) break; if (join_controllers) for (k = join_controllers; *k; k++) if (strv_find(*k, controller)) break; if (k && *k) { char **i, **j; for (i = *k, j = *k; *i; i++) { if (!streq(*i, controller)) { char _cleanup_free_ *t; t = set_remove(controllers, *i); if (!t) { free(*i); continue; } } *(j++) = *i; } *j = NULL; options = strv_join(*k, ","); if (!options) return log_oom(); } else { options = controller; controller = NULL; } p.where = strappenda("/sys/fs/cgroup/", options); p.options = options; r = mount_one(&p, true); if (r < 0) return r; if (r > 0 && k && *k) { char **i; for (i = *k; *i; i++) { char *t = strappenda("/sys/fs/cgroup/", *i); r = symlink(options, t); if (r < 0 && errno != EEXIST) { log_error("Failed to create symlink %s: %m", t); return -errno; } } } } return 0; } static int nftw_cb( const char *fpath, const struct stat *sb, int tflag, struct FTW *ftwbuf) { /* No need to label /dev twice in a row... */ if (_unlikely_(ftwbuf->level == 0)) return FTW_CONTINUE; label_fix(fpath, false, false); /* /run/initramfs is static data and big, no need to * dynamically relabel its contents at boot... */ if (_unlikely_(ftwbuf->level == 1 && tflag == FTW_D && streq(fpath, "/run/initramfs"))) return FTW_SKIP_SUBTREE; return FTW_CONTINUE; }; int mount_setup(bool loaded_policy) { int r; unsigned i; for (i = 0; i < ELEMENTSOF(mount_table); i ++) { r = mount_one(mount_table + i, true); if (r < 0) return r; } /* Nodes in devtmpfs and /run need to be manually updated for * the appropriate labels, after mounting. The other virtual * API file systems like /sys and /proc do not need that, they * use the same label for all their files. */ if (loaded_policy) { usec_t before_relabel, after_relabel; char timespan[FORMAT_TIMESPAN_MAX]; before_relabel = now(CLOCK_MONOTONIC); nftw("/dev", nftw_cb, 64, FTW_MOUNT|FTW_PHYS|FTW_ACTIONRETVAL); nftw("/run", nftw_cb, 64, FTW_MOUNT|FTW_PHYS|FTW_ACTIONRETVAL); after_relabel = now(CLOCK_MONOTONIC); log_info("Relabelled /dev and /run in %s.", format_timespan(timespan, sizeof(timespan), after_relabel - before_relabel, 0)); } /* Create a few default symlinks, which are normally created * by udevd, but some scripts might need them before we start * udevd. */ dev_setup(NULL); /* Mark the root directory as shared in regards to mount * propagation. The kernel defaults to "private", but we think * it makes more sense to have a default of "shared" so that * nspawn and the container tools work out of the box. If * specific setups need other settings they can reset the * propagation mode to private if needed. */ if (detect_container(NULL) <= 0) if (mount(NULL, "/", NULL, MS_REC|MS_SHARED, NULL) < 0) log_warning("Failed to set up the root directory for shared mount propagation: %m"); /* Create a few directories we always want around, Note that * sd_booted() checks for /run/systemd/system, so this mkdir * really needs to stay for good, otherwise software that * copied sd-daemon.c into their sources will misdetect * systemd. */ mkdir_label("/run/systemd", 0755); mkdir_label("/run/systemd/system", 0755); mkdir_label("/run/systemd/inaccessible", 0000); return 0; }
static int print_timesync_property(const char *name, const char *expected_value, sd_bus_message *m, bool value, bool all) { char type; const char *contents; int r; assert(name); assert(m); r = sd_bus_message_peek_type(m, &type, &contents); if (r < 0) return r; switch (type) { case SD_BUS_TYPE_STRUCT: if (streq(name, "NTPMessage")) { _cleanup_(ntp_status_info_clear) NTPStatusInfo i = {}; char ts[FORMAT_TIMESPAN_MAX], stamp[FORMAT_TIMESTAMP_MAX]; r = map_ntp_message(NULL, NULL, m, NULL, &i); if (r < 0) return r; if (i.packet_count == 0) return 1; if (!value) { fputs(name, stdout); fputc('=', stdout); } printf("{ Leap=%u, Version=%u, Mode=%u, Stratum=%u, Precision=%i,", i.leap, i.version, i.mode, i.stratum, i.precision); printf(" RootDelay=%s,", format_timespan(ts, sizeof(ts), i.root_delay, 0)); printf(" RootDispersion=%s,", format_timespan(ts, sizeof(ts), i.root_dispersion, 0)); if (i.stratum == 1) printf(" Reference=%s,", i.reference.str); else printf(" Reference=%" PRIX32 ",", be32toh(i.reference.val)); printf(" OriginateTimestamp=%s,", format_timestamp(stamp, sizeof(stamp), i.origin)); printf(" ReceiveTimestamp=%s,", format_timestamp(stamp, sizeof(stamp), i.recv)); printf(" TransmitTimestamp=%s,", format_timestamp(stamp, sizeof(stamp), i.trans)); printf(" DestinationTimestamp=%s,", format_timestamp(stamp, sizeof(stamp), i.dest)); printf(" Ignored=%s PacketCount=%" PRIu64 ",", yes_no(i.spike), i.packet_count); printf(" Jitter=%s }\n", format_timespan(ts, sizeof(ts), i.jitter, 0)); return 1; } else if (streq(name, "ServerAddress")) { _cleanup_free_ char *str = NULL; r = map_server_address(NULL, NULL, m, NULL, &str); if (r < 0) return r; if (arg_all || !isempty(str)) bus_print_property_value(name, expected_value, value, str); return 1; } break; } return 0; }
static void print_ntp_status_info(NTPStatusInfo *i) { char ts[FORMAT_TIMESPAN_MAX], tmin[FORMAT_TIMESPAN_MAX], tmax[FORMAT_TIMESPAN_MAX]; usec_t delay, t14, t23, offset, root_distance; bool offset_sign; assert(i); /* * "Timestamp Name ID When Generated * ------------------------------------------------------------ * Originate Timestamp T1 time request sent by client * Receive Timestamp T2 time request received by server * Transmit Timestamp T3 time reply sent by server * Destination Timestamp T4 time reply received by client * * The round-trip delay, d, and system clock offset, t, are defined as: * d = (T4 - T1) - (T3 - T2) t = ((T2 - T1) + (T3 - T4)) / 2" */ printf(" Server: %s (%s)\n", i->server_address, i->server_name); printf("Poll interval: %s (min: %s; max %s)\n", format_timespan(ts, sizeof(ts), i->poll_interval, 0), format_timespan(tmin, sizeof(tmin), i->poll_min, 0), format_timespan(tmax, sizeof(tmax), i->poll_max, 0)); if (i->packet_count == 0) { printf(" Packet count: 0\n"); return; } if (i->dest < i->origin || i->trans < i->recv || i->dest - i->origin < i->trans - i->recv) { log_error("Invalid NTP response"); return; } delay = (i->dest - i->origin) - (i->trans - i->recv); t14 = i->origin + i->dest; t23 = i->recv + i->trans; offset_sign = t14 < t23; offset = (offset_sign ? t23 - t14 : t14 - t23) / 2; root_distance = i->root_delay / 2 + i->root_dispersion; printf(" Leap: %s\n" " Version: %" PRIu32 "\n" " Stratum: %" PRIu32 "\n", ntp_leap_to_string(i->leap), i->version, i->stratum); if (i->stratum <= 1) printf(" Reference: %s\n", i->reference.str); else printf(" Reference: %" PRIX32 "\n", be32toh(i->reference.val)); printf(" Precision: %s (%" PRIi32 ")\n", format_timespan(ts, sizeof(ts), DIV_ROUND_UP((nsec_t) (exp2(i->precision) * NSEC_PER_SEC), NSEC_PER_USEC), 0), i->precision); printf("Root distance: %s (max: %s)\n", format_timespan(ts, sizeof(ts), root_distance, 0), format_timespan(tmax, sizeof(tmax), i->root_distance_max, 0)); printf(" Offset: %s%s\n", offset_sign ? "+" : "-", format_timespan(ts, sizeof(ts), offset, 0)); printf(" Delay: %s\n", format_timespan(ts, sizeof(ts), delay, 0)); printf(" Jitter: %s\n", format_timespan(ts, sizeof(ts), i->jitter, 0)); printf(" Packet count: %" PRIu64 "\n", i->packet_count); if (!i->spike) printf(" Frequency: %+.3fppm\n", (double) i->freq / 0x10000); }
int mount_cgroup_controllers(char ***join_controllers) { _cleanup_set_free_free_ Set *controllers = NULL; int r; if (!cg_is_legacy_wanted()) return 0; /* Mount all available cgroup controllers that are built into the kernel. */ controllers = set_new(&string_hash_ops); if (!controllers) return log_oom(); r = cg_kernel_controllers(controllers); if (r < 0) return log_error_errno(r, "Failed to enumerate cgroup controllers: %m"); for (;;) { _cleanup_free_ char *options = NULL, *controller = NULL, *where = NULL; MountPoint p = { .what = "cgroup", .type = "cgroup", .flags = MS_NOSUID|MS_NOEXEC|MS_NODEV, .mode = MNT_IN_CONTAINER, }; char ***k = NULL; controller = set_steal_first(controllers); if (!controller) break; if (join_controllers) for (k = join_controllers; *k; k++) if (strv_find(*k, controller)) break; if (k && *k) { char **i, **j; for (i = *k, j = *k; *i; i++) { if (!streq(*i, controller)) { _cleanup_free_ char *t; t = set_remove(controllers, *i); if (!t) { free(*i); continue; } } *(j++) = *i; } *j = NULL; options = strv_join(*k, ","); if (!options) return log_oom(); } else { options = controller; controller = NULL; } where = strappend("/sys/fs/cgroup/", options); if (!where) return log_oom(); p.where = where; p.options = options; r = mount_one(&p, true); if (r < 0) return r; if (r > 0 && k && *k) { char **i; for (i = *k; *i; i++) { _cleanup_free_ char *t = NULL; t = strappend("/sys/fs/cgroup/", *i); if (!t) return log_oom(); r = symlink(options, t); if (r < 0 && errno != EEXIST) return log_error_errno(errno, "Failed to create symlink %s: %m", t); #ifdef SMACK_RUN_LABEL r = mac_smack_copy(t, options); if (r < 0 && r != -EOPNOTSUPP) return log_error_errno(r, "Failed to copy smack label from %s to %s: %m", options, t); #endif } } } /* Now that we mounted everything, let's make the tmpfs the * cgroup file systems are mounted into read-only. */ (void) mount("tmpfs", "/sys/fs/cgroup", "tmpfs", MS_REMOUNT|MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_STRICTATIME|MS_RDONLY, "mode=755"); return 0; } #if defined(HAVE_SELINUX) || defined(HAVE_SMACK) static int nftw_cb( const char *fpath, const struct stat *sb, int tflag, struct FTW *ftwbuf) { /* No need to label /dev twice in a row... */ if (_unlikely_(ftwbuf->level == 0)) return FTW_CONTINUE; label_fix(fpath, false, false); /* /run/initramfs is static data and big, no need to * dynamically relabel its contents at boot... */ if (_unlikely_(ftwbuf->level == 1 && tflag == FTW_D && streq(fpath, "/run/initramfs"))) return FTW_SKIP_SUBTREE; return FTW_CONTINUE; }; #endif int mount_setup(bool loaded_policy) { unsigned i; int r = 0; for (i = 0; i < ELEMENTSOF(mount_table); i ++) { int j; j = mount_one(mount_table + i, loaded_policy); if (j != 0 && r >= 0) r = j; } if (r < 0) return r; #if defined(HAVE_SELINUX) || defined(HAVE_SMACK) /* Nodes in devtmpfs and /run need to be manually updated for * the appropriate labels, after mounting. The other virtual * API file systems like /sys and /proc do not need that, they * use the same label for all their files. */ if (loaded_policy) { usec_t before_relabel, after_relabel; char timespan[FORMAT_TIMESPAN_MAX]; before_relabel = now(CLOCK_MONOTONIC); nftw("/dev", nftw_cb, 64, FTW_MOUNT|FTW_PHYS|FTW_ACTIONRETVAL); nftw("/run", nftw_cb, 64, FTW_MOUNT|FTW_PHYS|FTW_ACTIONRETVAL); after_relabel = now(CLOCK_MONOTONIC); log_info("Relabelled /dev and /run in %s.", format_timespan(timespan, sizeof(timespan), after_relabel - before_relabel, 0)); } #endif /* Create a few default symlinks, which are normally created * by udevd, but some scripts might need them before we start * udevd. */ dev_setup(NULL, UID_INVALID, GID_INVALID); /* Mark the root directory as shared in regards to mount * propagation. The kernel defaults to "private", but we think * it makes more sense to have a default of "shared" so that * nspawn and the container tools work out of the box. If * specific setups need other settings they can reset the * propagation mode to private if needed. */ if (detect_container() <= 0) if (mount(NULL, "/", NULL, MS_REC|MS_SHARED, NULL) < 0) log_warning_errno(errno, "Failed to set up the root directory for shared mount propagation: %m"); /* Create a few directories we always want around, Note that * sd_booted() checks for /run/systemd/system, so this mkdir * really needs to stay for good, otherwise software that * copied sd-daemon.c into their sources will misdetect * systemd. */ mkdir_label("/run/systemd", 0755); mkdir_label("/run/systemd/system", 0755); mkdir_label("/run/systemd/inaccessible", 0000); return 0; }
static int ipv4acd_on_timeout(sd_event_source *s, uint64_t usec, void *userdata) { sd_ipv4acd *acd = userdata; int r = 0; assert(acd); switch (acd->state) { case IPV4ACD_STATE_STARTED: ipv4acd_set_state(acd, IPV4ACD_STATE_WAITING_PROBE, true); if (acd->n_conflict >= MAX_CONFLICTS) { char ts[FORMAT_TIMESPAN_MAX]; log_ipv4acd(acd, "Max conflicts reached, delaying by %s", format_timespan(ts, sizeof(ts), RATE_LIMIT_INTERVAL_USEC, 0)); r = ipv4acd_set_next_wakeup(acd, RATE_LIMIT_INTERVAL_USEC, PROBE_WAIT_USEC); if (r < 0) goto fail; } else { r = ipv4acd_set_next_wakeup(acd, 0, PROBE_WAIT_USEC); if (r < 0) goto fail; } break; case IPV4ACD_STATE_WAITING_PROBE: case IPV4ACD_STATE_PROBING: /* Send a probe */ r = arp_send_probe(acd->fd, acd->ifindex, acd->address, &acd->mac_addr); if (r < 0) { log_ipv4acd_errno(acd, r, "Failed to send ARP probe: %m"); goto fail; } else { _cleanup_free_ char *address = NULL; union in_addr_union addr = { .in.s_addr = acd->address }; (void) in_addr_to_string(AF_INET, &addr, &address); log_ipv4acd(acd, "Probing %s", strna(address)); } if (acd->n_iteration < PROBE_NUM - 2) { ipv4acd_set_state(acd, IPV4ACD_STATE_PROBING, false); r = ipv4acd_set_next_wakeup(acd, PROBE_MIN_USEC, (PROBE_MAX_USEC-PROBE_MIN_USEC)); if (r < 0) goto fail; } else { ipv4acd_set_state(acd, IPV4ACD_STATE_WAITING_ANNOUNCE, true); r = ipv4acd_set_next_wakeup(acd, ANNOUNCE_WAIT_USEC, 0); if (r < 0) goto fail; } break; case IPV4ACD_STATE_ANNOUNCING: if (acd->n_iteration >= ANNOUNCE_NUM - 1) { ipv4acd_set_state(acd, IPV4ACD_STATE_RUNNING, false); break; } /* fall through */ case IPV4ACD_STATE_WAITING_ANNOUNCE: /* Send announcement packet */ r = arp_send_announcement(acd->fd, acd->ifindex, acd->address, &acd->mac_addr); if (r < 0) { log_ipv4acd_errno(acd, r, "Failed to send ARP announcement: %m"); goto fail; } else log_ipv4acd(acd, "ANNOUNCE"); ipv4acd_set_state(acd, IPV4ACD_STATE_ANNOUNCING, false); r = ipv4acd_set_next_wakeup(acd, ANNOUNCE_INTERVAL_USEC, 0); if (r < 0) goto fail; if (acd->n_iteration == 0) { acd->n_conflict = 0; ipv4acd_client_notify(acd, SD_IPV4ACD_EVENT_BIND); } break; default: assert_not_reached("Invalid state."); } return 0; fail: sd_ipv4acd_stop(acd); return 0; } static void ipv4acd_on_conflict(sd_ipv4acd *acd) { _cleanup_free_ char *address = NULL; union in_addr_union addr = { .in.s_addr = acd->address }; assert(acd); acd->n_conflict++; (void) in_addr_to_string(AF_INET, &addr, &address); log_ipv4acd(acd, "Conflict on %s (%u)", strna(address), acd->n_conflict); ipv4acd_reset(acd); ipv4acd_client_notify(acd, SD_IPV4ACD_EVENT_CONFLICT); } static int ipv4acd_on_packet( sd_event_source *s, int fd, uint32_t revents, void *userdata) { sd_ipv4acd *acd = userdata; struct ether_arp packet; ssize_t n; int r; assert(s); assert(acd); assert(fd >= 0); n = recv(fd, &packet, sizeof(struct ether_arp), 0); if (n < 0) { if (errno == EAGAIN || errno == EINTR) return 0; log_ipv4acd_errno(acd, errno, "Failed to read ARP packet: %m"); goto fail; } if ((size_t) n != sizeof(struct ether_arp)) { log_ipv4acd(acd, "Ignoring too short ARP packet."); return 0; } switch (acd->state) { case IPV4ACD_STATE_ANNOUNCING: case IPV4ACD_STATE_RUNNING: if (ipv4acd_arp_conflict(acd, &packet)) { usec_t ts; assert_se(sd_event_now(acd->event, clock_boottime_or_monotonic(), &ts) >= 0); /* Defend address */ if (ts > acd->defend_window) { acd->defend_window = ts + DEFEND_INTERVAL_USEC; r = arp_send_announcement(acd->fd, acd->ifindex, acd->address, &acd->mac_addr); if (r < 0) { log_ipv4acd_errno(acd, r, "Failed to send ARP announcement: %m"); goto fail; } else log_ipv4acd(acd, "DEFEND"); } else ipv4acd_on_conflict(acd); } break; case IPV4ACD_STATE_WAITING_PROBE: case IPV4ACD_STATE_PROBING: case IPV4ACD_STATE_WAITING_ANNOUNCE: /* BPF ensures this packet indicates a conflict */ ipv4acd_on_conflict(acd); break; default: assert_not_reached("Invalid state."); } return 0; fail: sd_ipv4acd_stop(acd); return 0; }