Esempio n. 1
0
void matmul_strassen(volatile float * a, volatile float * b, volatile float * c, int NN)
{
	float **as, **bs, **cs;
	int i, j;
	int LEAF_SIZE;

    as = allocate_real_matrix(NN, -1);
    bs = allocate_real_matrix(NN, -1);
    cs = allocate_real_matrix(NN, -1);

    for (i=0; i<NN; i++)
    	for (j=0; j<NN; j++)
    	{
    		as[i][j] = a[i*NN+j];
    		bs[i][j] = b[i*NN+j];
    	}

	LEAF_SIZE = 32;
	strassen(as, bs, cs, NN, LEAF_SIZE);

    for (i=0; i<NN; i++)
    	for (j=0; j<NN; j++)
    	{
    		c[i*NN+j] = cs[i][j];
    	}

    as = free_real_matrix(as, NN);
    bs = free_real_matrix(bs, NN);
    cs = free_real_matrix(cs, NN);

    return;
}
Esempio n. 2
0
int LLL(long n, double **b)
{
    /* Lattice reduction algorithm. */
    double *B = allocate_real_vector(n);
    double **bs = allocate_real_matrix(n, n);
    double **mu = allocate_real_matrix(n, n);
    double C, t, temp, x, y;
    long i, j, k, l;

    for (i = 0; i < n; i++) bs[0][i] = b[0][i];
    B[0] = Scalar(n, bs[0], bs[0]);
    for (i = 1; i < n; i++) {
        for (j = 0; j < n; j++) bs[i][j] = b[i][j];
        for (j = 0; j < i; j++) {
            mu[i][j] = Scalar(n, b[i], bs[j]) / B[j];
            for (k = 0; k < n; k++)
                bs[i][k] -= mu[i][j] * bs[j][k];
        }
        B[i] = Scalar(n, bs[i], bs[i]);
    }
L3:
    k = 1;
L4:
    l = k - 1;
    Reduce(k, l, n, b, mu);
    x = mu[k][l];
    y = 0.75 - x * x;
    if (B[k] < y * B[l]) {
        C = B[k] + x * x * B[l];
        mu[k][l] = x * B[l] / C;
        B[k] *= B[l] / C;
        B[l] = C;
        for (i = 0; i < n; i++) {
            temp = b[k][i];
            b[k][i] = b[l][i];
            b[l][i] = temp;
        }
        if (k > 1) {
            for (j = 0; j < k - 1; j++) {
                temp = mu[k][j];
                mu[k][j] = mu[l][j];
                mu[l][j] = temp;
            }
        }
        for (i = k + 1; i < n; i++) {
            t = mu[i][k];
            mu[i][k] = mu[i][l] - x * t;
            mu[i][l] = t + mu[k][l] * mu[i][k];
        }
        k = max(1, k - 1);
        goto L4;
    }
    for (l = k - 2; l >= 0; l--) Reduce(k, l, n, b, mu);
    k++;
    if (k < n) goto L4;
    free_real_matrix(bs, n);
    free_real_matrix(mu, n);
    free_real_vector(B);
    return 1;
}
Esempio n. 3
0
int SubsetSum(long n, double s, double *a, double *x)
{
    long n1 = n + 1;
    double **b = allocate_real_matrix(n1, n1);
    double sum;
    long i, j, m = ceil(sqrt(n) / 2.0);

    for (i = 0; i < n1; i++) {
        if (i < n) {
            for (j = 0; j < n1; j++) b[i][j] = 0.0;
            b[i][i] = 1.0;
            b[i][n1 - 1] = m * a[i];
        }
        else {
            for (j = 0; j < n; j++) b[i][j] = 0.5;
            b[i][n1 - 1] = m * s;
        }
    }
    printf("the matrix to be reduced is:\n\n");
    for (i = 0; i < n1; i++) {
        for (j = 0; j < n1; j++)
            printf("%6.2f ", b[i][j]);
        printf("\n");
    }
    printf("\n");
    if (!LLL(n1, b)) {
        free_real_matrix(b, n1);
        return 0;
    }
    printf("the reduced matrix is:\n\n");
    for (i = 0; i < n1; i++) {
        for (j = 0; j < n1; j++)
            printf("%6.2f ", b[i][j]);
        printf("\n");
    }
    printf("\n");
    for (i = 0; i < n1; i++) {
        for (j = 0; j < n; j++) x[j] = b[i][j] + 0.5;
        sum = 0.0;
        for (j = 0; j < n; j++) sum += a[j] * x[j];
        if (sum == s) {
            free_real_matrix(b, n1);
            return 1;
        }
        for (j = 0; j < n; j++) x[j] = - b[i][j] + 0.5;
        sum = 0.0;
        for (j = 0; j < n; j++) sum += a[j] * x[j];
        if (sum == s) {
            free_real_matrix(b, n1);
            return 1;
        }
    }
    free_real_matrix(b, n1);
    return 0;
}
Esempio n. 4
0
void main ()
{
	real_t **allocate_real_matrix(int, int, int, int);
	void free_real_matrix(real_t **, int, int, int);
	void liniger1vs(real_t *, real_t, int, real_t [], real_t *,
				void (*)(int, real_t[], real_t *), real_t **,
				void (*)(int, real_t **, real_t [], real_t *),
				int, real_t, real_t, real_t, real_t,	real_t [],
				void (*)(real_t, real_t, int, real_t [], real_t,
							real_t **, real_t []));
	int i,itmax;
	real_t x,sigma,reta,y[3],**j,info[10];

	j=allocate_real_matrix(1,2,1,2);
	printf("The results with LINIGER1VS are:\n\n");
	reta=1.0;
	for (i=1; i<=3; i++) {
		reta *= 1.0e-2;
		x=y[2]=0.0;
		y[1]=1.0;
		liniger1vs(&x,50.0,2,y,&sigma,f,j,jacobian,10,0.1,50.0,
					reta,reta,info,out);
	}
	printf("\n");
	reta = -1.0;
	for (i=1; i<=3; i++) {
		reta *= 1.0e-2;
		x=y[2]=0.0;
		y[1]=1.0;
		liniger1vs(&x,50.0,2,y,&sigma,f,j,jacobian,10,0.1,1.0,
					reta,reta,info,out);
	}
	free_real_matrix(j,1,2,1);
}
Esempio n. 5
0
void main ()
{
	real_t **allocate_real_matrix(int, int, int, int);
	void free_real_matrix(real_t **, int, int, int);
	void arkmat(real_t *, real_t, int, int, real_t **,
		void (*)(int, int, real_t, real_t **, real_t **),
		int, int *, real_t *,
		void (*)(real_t, real_t, int, int, real_t **, int, int, real_t *));
	int i,j,n,m,typ,orde;
	real_t **u,t,te,cos1,spr;

	u=allocate_real_matrix(1,20,1,10);
	hpi=2.0*atan(1.0);
	h2=1.0/9.0;
	h1=(2.0*hpi)/9.0;
	n=m=10;
	h1k=h1*h1;
	h2k=h2*h2;
	tel=0;
	t=0.0;
	te=1.0;
	for (j=1; j<=m; j++) u[n][j]=sin(h1*(j-1));
	for (i=1; i<=n; i++) {
		cos1=cos(h2*hpi*(i-1));
		for (j=1; j<=m; j++) u[i][j]=u[n][j]*cos1;
	}
	inimat(n+1,n+n,1,m,u,0.0);
	typ=3;
	orde=2;
	spr=80.0;
	arkmat(&t,te,m,n+n,u,der,typ,&orde,&spr,out);
	free_real_matrix(u,1,20,1);
}
Esempio n. 6
0
void main ()
{
	real_t *allocate_real_vector(int, int);
	real_t **allocate_real_matrix(int, int, int, int);
	void free_real_vector(real_t *, int);
	void free_real_matrix(real_t **, int, int, int);
	void eigsym1(real_t [], int, int, real_t [], real_t **, real_t []);
	int i,j;
	real_t a[11],val[3],em[10],**vec;

	vec=allocate_real_matrix(1,4,1,2);
	em[0]=1.0e-6;	em[2]=1.0e-5;	em[4]=1.0e-3;
	em[6]=1.0e-5;	em[8]=5.0;
	for (i=1; i<=4; i++)
		for (j=i; j<=4; j++) a[(j*j-j)/2+i]=1.0/(i+j-1);
	eigsym1(a,4,2,val,vec,em);
	printf("The eigenvalues:\n  %12.5e   %12.5e\n\nThe eigenvectors:\n"
			"  %12.5e   %12.5e\n  %12.5e   %12.5e\n  %12.5e   %12.5e\n"
			"  %12.5e   %12.5e\n\nEM[1] = %e\n"
			"EM[7] = %e\nEM[3] =%3.0f\nEM[5] =%3.0f\nEM[9] =%3.0f\n",
			val[1],val[2],vec[1][1],vec[1][2],vec[2][1],vec[2][2],
			vec[3][1],vec[3][2],vec[4][1],vec[4][2],
			em[1],em[7],em[3],em[5],em[9]);
	free_real_matrix(vec,1,4,1);
}
Esempio n. 7
0
void main ()
{
	real_t **allocate_real_matrix(int, int, int, int);
	void free_real_matrix(real_t **, int, int, int);
	void marquardt(int, int, real_t [], real_t [], real_t **,
						int (*)(int, int, real_t[], real_t[]),
						void (*)(int, int, real_t[], real_t[], real_t **),
						real_t [], real_t []);
	real_t in[7],out[8],rv[7],par[4],**jjinv;

	jjinv=allocate_real_matrix(1,3,1,3);
	in[0]=1.0e-6;  in[3]=1.0e-4;  in[4]=1.0e-1;  in[5]=75.0;
	in[6]=1.0e-2;
	x[1] = -5.0;  x[2] = -3.0;  x[3] = -1.0;  x[4]=1.0;
	x[5]=3.0;  x[6]=5.0;
	y[1]=127.0;  y[2]=151.0;  y[3]=379.0;  y[4]=421.0;
	y[5]=460.0;  y[6]=426.0;
	par[1]=580.0;  par[2] = -180.0;  par[3] = -0.160;
	marquardt(6,3,par,rv,jjinv,expfunct,jacobian,in,out);
	printf("Parameters:\n   %9.4e   %9.4e   %9.4e\n\nOUT:\n"
		" %14.6e\n %14.6e\n %14.6e\n %14.6e\n %14.6e\n %14.6e\n"
		" %14.6e\n\nLast residual vector:\n"
		" %6.1f  %6.1f  %6.1f  %6.1f  %6.1f  %6.1f\n",
		par[1],par[2],par[3],out[7],out[2],out[6],out[3],out[4],
		out[5],out[1],rv[1],rv[2],rv[3],rv[4],rv[5],rv[6]);
	free_real_matrix(jjinv,1,3,1);
}
Esempio n. 8
0
void main ()
{
	real_t **allocate_real_matrix(int, int, int, int);
	void free_real_matrix(real_t **, int, int, int);
	void qzi(int, real_t **, real_t **, real_t **, real_t [],
				real_t [], real_t [], int [], real_t []);
	int k,l,iter[5];
	real_t **a,**b,**x,alfr[5],alfi[5],beta[5],em[2];

	a=allocate_real_matrix(1,4,1,4);
	b=allocate_real_matrix(1,4,1,4);
	x=allocate_real_matrix(1,4,1,4);
	a[1][1]=2.0;  a[1][2]=3.0;     a[1][3] = -3.0;   a[1][4]=4.0;
	a[2][1]=1.0;  a[2][2] = -1.0;  a[2][3]=5.0;      a[2][4]=1.0;
	a[3][1]=0.0;  a[3][2]=2.0;     a[3][3]=6.0;      a[3][4]=8.0;
	a[4][1]=1.0;  a[4][2]=1.0;     a[4][3]=0.0;      a[4][4]=4.0;
	b[1][1]=1.0;  b[1][2]=5.0;     b[1][3]=9.0;      b[1][4]=0.0;
	b[2][1]=2.0;  b[2][2]=6.0;     b[2][3]=10.0;     b[2][4]=2.0;
	b[3][1]=3.0;  b[3][2]=7.0;     b[3][3]=11.0;     b[3][4] = -1.0;
	b[4][1]=4.0;  b[4][2]=8.0;     b[4][3]=12.0;     b[4][4]=3.0;
	for (k=1; k<=4; k++)
		for (l=1; l<=4; l++)	x[k][l] = (k == l) ? 1.0 : 0.0;
	em[0]=1.0e-35;
	em[1]=1.0e-6;
	qzi(4,a,b,x,alfr,alfi,beta,iter,em);
	for (k=1; k<=4; k++)
		printf("ITER[%1d]=%3d\n",k,iter[k]);
	printf("\nEigenvectors:\n");
	for (k=1; k<=4; k++)
		printf(" %12.6e  %12.6e  %12.6e  %12.6e\n",
				x[k][1],x[k][2],x[k][3],x[k][4]);
	printf("\nALFA(real part)    ALFA(imaginary part)      BETA\n");
	for (k=1; k<=4; k++)
		printf(" %12.6e  %16.6e  %21.6e\n",alfr[k],alfi[k],beta[k]);
	printf("\nLAMBDA(real part)  LAMBDA(imaginary part)\n");
	for (k=1; k<=4; k++)
		if (beta[k] == 0.0)
			printf("  INFINITE          INDEFINITE\n");
		else
			printf(" %12.6e  %16.6e\n",
					alfr[k]/beta[k],alfi[k]/beta[k]);
	free_real_matrix(a,1,4,1);
	free_real_matrix(b,1,4,1);
	free_real_matrix(x,1,4,1);
}
Esempio n. 9
0
void main ()
{
	real_t *allocate_real_vector(int, int);
	real_t **allocate_real_matrix(int, int, int, int);
	void free_real_vector(real_t *, int);
	void free_real_matrix(real_t **, int, int, int);
	void chldecsol2(real_t **, int, real_t [], real_t []);
	real_t chldeterm2(real_t **, int);
	void chldecinv2(real_t **, int, real_t []);
	int i,j;
	real_t determinant,**pascal2,*b,*aux;

	pascal2=allocate_real_matrix(1,4,1,4);
	b=allocate_real_vector(1,4);
	aux=allocate_real_vector(2,3);

	for (j=1; j<=4; j++) {
		pascal2[1][j]=1.0;
		for (i=2; i<=j; i++)
			pascal2[i][j] = (i == j) ?
					pascal2[i-1][j]*2.0 : pascal2[i][j-1]+pascal2[i-1][j];
		b[j]=pow(2.0,j);
	}
	aux[2]=1.0e-11;
	chldecsol2(pascal2,4,aux,b);
	if (aux[3] == 4)
		determinant=chldeterm2(pascal2,4);
	else
		printf("Matrix not positive definite");
	printf("Solution with CHLDECSOL2:\n %e  %e  %e  %e\n",
			b[1],b[2],b[3],b[4]);
	printf("\nDeterminant with CHLDETERM2: %e\n",determinant);
	for (j=1; j<=4; j++) {
		pascal2[1][j]=1.0;
		for (i=2; i<=j; i++)
			pascal2[i][j] = (i == j) ?
					pascal2[i-1][j]*2.0 : pascal2[i][j-1]+pascal2[i-1][j];
	}
	chldecinv2(pascal2,4,aux);
	printf("\nInverse matrix with CHLDECINV2:\n");
	for (i=1; i<=4; i++) {
		for (j=1; j<=4; j++)
			if (j < i)
				printf("           ");
			else
				printf("%11.5f",pascal2[i][j]);
		printf("\n");
	}

	free_real_matrix(pascal2,1,4,1);
	free_real_vector(b,1);
	free_real_vector(aux,2);
}
Esempio n. 10
0
void main ()
{
	real_t **allocate_real_matrix(int, int, int, int);
	void free_real_matrix(real_t **, int, int, int);
	void rotcomcol(int, int, int, int, real_t **, real_t **,
						real_t, real_t, real_t);
	int i,j;
	real_t **ar,**ai;

	ar=allocate_real_matrix(1,2,1,2);
	ai=allocate_real_matrix(1,2,1,2);
	ar[1][1]=4.0;	ar[1][2]=5.0;	ar[2][1] = -5.0;	ar[2][2]=4.0;
	ai[1][1]=3.0;	ai[1][2]=ai[2][1]=0.0;	ai[2][2] = -3.0;
	rotcomcol(1,2,1,2,ar,ai,0.08,0.06,-0.1);
	printf("After postmultiplication:\n"
		" %+3.1f%+3.1f*I  %+3.1f%+3.1f*I\n"
		" %+3.1f%+3.1f*I  %+3.1f%+3.1f*I\n",
		ar[1][1],ai[1][1],ar[1][2],ai[1][2],
		ar[2][1],ai[2][1],ar[2][2],ai[2][2]);
	free_real_matrix(ar,1,2,1);
	free_real_matrix(ai,1,2,1);
}
Esempio n. 11
0
void main ()
{
	real_t **allocate_real_matrix(int, int, int, int);
	void free_real_matrix(real_t **, int, int, int);
	void richardson(real_t **, int, int, int, int,
			int, void (*)(int, int, int, int, real_t **),
			real_t, real_t, int *, real_t [], int *, real_t *, real_t *,
			void (*)(real_t **, int, int, int, int, int *, real_t [],
						int, real_t, real_t));
	void elimination(real_t **, int, int, int, int,
			void (*)(int, int, int, int, real_t **),
			real_t, real_t, int *, real_t [], int *, real_t *, real_t *,
			void (*)(real_t **, int, int, int, int, int *, real_t [],
							int, real_t, real_t));
	int j,l,lj,uj,ll,ul,n,p,k;
	real_t pi,domeigval,rateconvr,rateconve,rateconv,a,b,discr[3],**u;

	u=allocate_real_matrix(0,11,0,11);
	printf("RICHARDSON and ELIMINATION deliver:\n\n");
	pi=3.14159265358979;
	lj=0;  uj=11;  ll=0;  ul=11;  n=50;
	a=0.326;  b=7.83;
	h=pi/(uj-lj);
	h2=h*h;
	for (j=lj; j<=uj; j++)
		for (l=ll; l<=ul; l++)
			u[j][l] = (j==lj || j==uj || l==ll || l==ul) ?
							(j*h)*(j*h)*(l*h)*(l*h) : 1.0;
	nn=n;
	richardson(u,lj,uj,ll,ul,1,residual,a,b,&n,discr,&k,&rateconv,
					&domeigval,out1);
	rateconvr=rateconv;
	printf("\n dominant eigenvalue:  %e\n\n",domeigval);
	elimination(u,lj,uj,ll,ul,residual,a,b,&p,discr,&k,&rateconv,
					&domeigval,out2);
	rateconve=rateconv;
	nn=n+p;
	printf("\nTotal number of iterations: %2d\n"
		"Rate of convergence with respect to\n"
		"   the zeroth iterand of RICHARDSON:   %e\n",
		nn,(n*rateconvr+p*rateconve)/nn);
	free_real_matrix(u,0,11,0);
}
Esempio n. 12
0
void main ()
{
	real_t **allocate_real_matrix(int, int, int, int);
	void free_real_matrix(real_t **, int, int, int);
	void liniger2(real_t *, real_t, int, real_t [], real_t *, real_t *,
			real_t (*)(int, real_t[], int, real_t *, real_t *),
			int (*)(int), real_t **,
			void (*)(int, real_t **, real_t [], real_t *, real_t *),
			int *, int, real_t, real_t, real_t,
			void (*)(real_t, real_t, int, real_t [], real_t, real_t,
						real_t **, int));
	int i,k,itmax;
	real_t x,sigma1,sigma2,step,y[3],**j;

	j=allocate_real_matrix(1,2,1,2);
	printf("The results with LINIGER2 (second order) are:\n"
		" K   DER.EV. JAC.EV.     Y[1]         Y[2]\n");
	for (i=1; i<=2; i++) {
		step = (i == 1) ? 10.0 : 1.0;
		for (itmax=1; itmax<=3; itmax += 2) {
			passes=pasjac=0;
			x=y[2]=0.0;
			y[1]=1.0;
			sigma2=0.0;
			liniger2(&x,50.0,2,y,&sigma1,&sigma2,f,evaluate1,j,
						jacobian,&k,itmax,step,1.0e-4,1.0e-4,out);
		}
	}
	printf("\nThe results with LINIGER2 (third order) are:\n"
		" K   DER.EV. JAC.EV.     Y[1]         Y[2]\n");
	for (i=1; i<=2; i++) {
		step = (i == 1) ? 10.0 : 1.0;
		for (itmax=1; itmax<=3; itmax += 2) {
			passes=pasjac=0;
			x=y[2]=0.0;
			y[1]=1.0;
			sigma2=0.0;
			liniger2(&x,50.0,2,y,&sigma1,&sigma2,f,evaluate2,j,
						jacobian,&k,itmax,step,1.0e-4,1.0e-4,out);
		}
	}
	free_real_matrix(j,1,2,1);
}
Esempio n. 13
0
void main ()
{
	real_t **allocate_real_matrix(int, int, int, int);
	void free_real_matrix(real_t **, int, int, int);
	void decsol(real_t **, int, real_t [], real_t []);
	int i,j;
	real_t **a,b[5],aux[4];

	a=allocate_real_matrix(1,4,1,4);
	for (i=1; i<=4; i++) {
		for (j=1; j<=4; j++) a[i][j]=1.0/(i+j-1);
		b[i]=a[i][3];
	}
	aux[2]=1.0e-5;
	decsol(a,4,aux,b);
	printf("Solution: %e  %e  %e  %e\n",b[1],b[2],b[3],b[4]);
	printf("Sign(Det) =%3.0f\nNumber of eliminations =%3.0f\n",
			aux[1],aux[3]);
	free_real_matrix(a,1,4,1);
}
Esempio n. 14
0
void main ()
{
	real_t **allocate_real_matrix(int, int, int, int);
	void free_real_matrix(real_t **, int, int, int);
	void gssinverb(real_t **, int, real_t []);
	int i;
	real_t **a,aux[12];

	a=allocate_real_matrix(1,4,1,4);
	a[1][1]=4.0;  a[1][2]=2.0;  a[1][3]=4.0;  a[1][4]=1.0;
	a[2][1]=30.0; a[2][2]=20.0; a[2][3]=45.0; a[2][4]=12.0;
	a[3][1]=20.0; a[3][2]=15.0; a[3][3]=36.0; a[3][4]=10.0;
	a[4][1]=35.0; a[4][2]=28.0; a[4][3]=70.0;	a[4][4]=20.0;
	aux[0]=aux[2]=aux[6]=1.0e-14;
	aux[4]=8;
	gssinverb(a,4,aux);
	printf("Calculated inverse:\n");
	for (i=1; i<=4; i++)
		printf(" %4.0f%4.0f%4.0f%4.0f\n",a[i][1],a[i][2],a[i][3],a[i][4]);
	printf("\nAUX elements:\n%e\n%e\n%e\n%e\n%e\n%e\n",
			aux[1],aux[3],aux[5],aux[7],aux[9],aux[11]);
	free_real_matrix(a,1,4,1);
}
Esempio n. 15
0
void main ()
{
	real_t **allocate_real_matrix(int, int, int, int);
	void free_real_matrix(real_t **, int, int, int);
	void hshhrmtri(real_t **, int, real_t [], real_t [], real_t [],
						real_t [], real_t [], real_t []);
	void inimat(int, int, int, int, real_t **, real_t);
	real_t **a,d[5],b[5],bb[5],tr[4],ti[4],em[2];

	a=allocate_real_matrix(1,4,1,4);
	inimat(1,4,1,4,a,0.0);
	a[1][1]=a[2][2]=3.0;
	a[1][2]=a[3][3]=a[3][4]=a[4][4]=1.0;
	a[3][2]=2.0;
	a[4][1] = -2.0;
	em[0]=1.0e-6;
	hshhrmtri(a,4,d,b,bb,em,tr,ti);
	printf("HSHHRMTRI delivers\n\nD[1:4]:  %7.3f %7.3f %7.3f %7.3f\n"
			"B[1:3]:  %7.3f %7.3f %7.3f\n"
			"BB[1:3]: %7.3f %7.3f %7.3f\n"
			"EM[1]:   %7.3f\n",
			d[1],d[2],d[3],d[4],b[1],b[2],b[3],bb[1],bb[2],bb[3],em[1]);
	free_real_matrix(a,1,4,1);
}
Esempio n. 16
0
int peidefunct(int nrow, int ncol, real_t par[], real_t res[],
		int n, int m, int nobs, int *nbp, int first, int *sec,
		int *max, int *nis, real_t eps1, int weight, int bp[],
		real_t save[], real_t ymax[], real_t y[], real_t **yp,
		real_t **fy, real_t **fp, int cobs[], real_t tobs[],
		real_t obs[], real_t in[], real_t aux[], int clean,
		int (*deriv)(int,int,real_t [],real_t [],real_t,real_t []),
		int (*jacdfdy)(int,int,real_t [],real_t [],real_t,real_t **),
		int (*jacdfdp)(int,int,real_t [],real_t [],real_t,real_t **),
		void (*callystart)(int,int,real_t [],real_t [],real_t[]),
		void (*monitor)(int,int,int,real_t [],real_t [],int,int))
{
	/* this function is internally used by PEIDE */

	void peidereset(int, int, real_t, real_t, real_t, real_t, real_t [],
				real_t [], real_t *, real_t *, real_t *, int *);
	void peideorder(int, int, real_t, real_t [], real_t [],
			real_t *, real_t *, real_t *, real_t *, real_t *, int *);
	void peidestep(int, int, int, real_t, real_t, real_t, real_t,
			real_t [], real_t [], real_t [], real_t [], int *, real_t *);
	real_t peideinterpol(int, int, int, real_t, real_t []);
	int l,k,knew,fails,same,kpold,n6,nnpar,j5n,cobsii,*p,evaluate,
			evaluated,decompose,conv,extra,npar,i,j,jj,ii;
	real_t xold,hold,a0,tolup,tol,toldwn,tolconv,h,ch,chnew,error,
			dfi,tobsdif,a[6],*delta,*lastdelta,*df,*y0,**jacob,xend,
			hmax,hmin,eps,s,aa,x,t,c;

	p=allocate_integer_vector(1,n);
	delta=allocate_real_vector(1,n);
	lastdelta=allocate_real_vector(1,n);
	df=allocate_real_vector(1,n);
	y0=allocate_real_vector(1,n);
	jacob=allocate_real_matrix(1,n,1,n);

	if (*sec) {
		*sec=0;
		goto Finish;
	}
	xend=tobs[nobs];
	eps=in[2];
	npar=m;
	extra=(*nis)=0;
	ii=1;
	jj = (*nbp == 0) ? 0 : 1;
	n6=n*6;
	inivec(-3,-1,save,0.0);
	inivec(n6+1,(6+m)*n,y,0.0);
	inimat(1,nobs+(*nbp),1,m+(*nbp),yp,0.0);
	t=tobs[1];
	x=tobs[0];
	(*callystart)(n,m,par,y,ymax);
	hmax=tobs[1]-tobs[0];
	hmin=hmax*in[1];
	/* evaluate jacobian */
	evaluate=0;
	decompose=evaluated=1;
	if (!(*jacdfdy)(n,m,par,y,x,fy)) {
		save[-3]=4.0;
		goto Finish;
	}
	nnpar=n*npar;

	Newstart:
	k=1;
	kpold=0;
	same=2;
	peideorder(n,k,eps,a,save,&tol,&tolup,&toldwn,&tolconv,
					&a0,&decompose);
	if (!(*deriv)(n,m,par,y,x,df)) {
		save[-3]=3.0;
		goto Finish;
	}
	s=FLT_MIN;
	for (i=1; i<=n; i++) {
		aa=matvec(1,n,i,fy,df)/ymax[i];
		s += aa*aa;
	}
	h=sqrt(2.0*eps/sqrt(s));
	if (h > hmax)
		h=hmax;
	else
		if (h < hmin) h=hmin;
	xold=x;
	hold=h;
	ch=1.0;
	for (i=1; i<=n; i++) {
		save[i]=y[i];
		save[n+i]=y[n+i]=df[i]*h;
	}
	fails=0;
	while (x < xend) {
		if (x+h <= xend)
			x += h;
		else {
			h=xend-x;
			x=xend;
			ch=h/hold;
			c=1.0;
			for (j=n; j<=k*n; j += n) {
				c *= ch;
				for (i=j+1; i<=j+n; i++) y[i] *= c;
			}
			same = (same < 3) ? 3 : same+1;
		}
		/* prediction */
		for (l=1; l<=n; l++) {
			for (i=l; i<=(k-1)*n+l; i += n)
				for (j=(k-1)*n+l; j>=i; j -= n) y[j] += y[j+n];
			delta[l]=0.0;
		}
		evaluated=0;
		/* correction and estimation local error */
		for (l=1; l<=3; l++) {
			if (!(*deriv)(n,m,par,y,x,df)) {
				save[-3]=3;
				goto Finish;
			}
			for (i=1; i<=n; i++) df[i]=df[i]*h-y[n+i];
			if (evaluate) {
				/* evaluate jacobian */
				evaluate=0;
				decompose=evaluated=1;
				if (!(*jacdfdy)(n,m,par,y,x,fy)) {
					save[-3]=4.0;
					goto Finish;
				}
			}
			if (decompose) {
				/* decompose jacobian */
				decompose=0;
				c = -a0*h;
				for (j=1; j<=n; j++) {
					for (i=1; i<=n; i++) jacob[i][j]=fy[i][j]*c;
					jacob[j][j] += 1.0;
				}
				dec(jacob,n,aux,p);
			}
			sol(jacob,n,p,df);
			conv=1;
			for (i=1; i<=n; i++) {
				dfi=df[i];
				y[i] += a0*dfi;
				y[n+i] += dfi;
				delta[i] += dfi;
				conv=(conv && (fabs(dfi) < tolconv*ymax[i]));
			}
			if (conv) {
				s=FLT_MIN;
				for (i=1; i<=n; i++) {
					aa=delta[i]/ymax[i];
					s += aa*aa;
				}
				error=s;
				break;
			}
		}
		/* acceptance or rejection */
		if (!conv) {
			if (!evaluated)
				evaluate=1;
			else {
				ch /= 4.0;
				if (h < 4.0*hmin) {
					save[-1] += 10.0;
					hmin /= 10.0;
					if (save[-1] > 40.0) goto Finish;
				}
			}
			peidereset(n,k,hmin,hmax,hold,xold,y,save,&ch,&x,
							&h,&decompose);
		} else if (error > tol) {
			fails++;
			if (h > 1.1*hmin) {
				if (fails > 2) {
					peidereset(n,k,hmin,hmax,hold,xold,y,save,&ch,&x,
								&h,&decompose);
					goto Newstart;
				} else {
					/* calculate step and order */
					peidestep(n,k,fails,tolup,toldwn,tol,error,delta,
								lastdelta,y,ymax,&knew,&chnew);
					if (knew != k) {
						k=knew;
						peideorder(n,k,eps,a,save,&tol,&tolup,
									&toldwn,&tolconv,&a0,&decompose);
					}
					ch *= chnew;
					peidereset(n,k,hmin,hmax,hold,xold,y,save,&ch,&x,
								&h,&decompose);
				}
			} else {
				if (k == 1) {
					/* violate eps criterion */
					save[-2] += 1.0;
					same=4;
					goto Errortestok;
				}
				k=1;
				peidereset(n,k,hmin,hmax,hold,xold,y,save,&ch,&x,
							&h,&decompose);
				peideorder(n,k,eps,a,save,&tol,&tolup,
							&toldwn,&tolconv,&a0,&decompose);
				same=2;
			}
		} else {
			Errortestok:
			fails=0;
			for (i=1; i<=n; i++) {
				c=delta[i];
				for (l=2; l<=k; l++) y[l*n+i] += a[l]*c;
				if (fabs(y[i]) > ymax[i]) ymax[i]=fabs(y[i]);
			}
			same--;
			if (same == 1)
				dupvec(1,n,0,lastdelta,delta);
			else if (same == 0) {
				/* calculate step and order */
				peidestep(n,k,fails,tolup,toldwn,tol,error,delta,
							lastdelta,y,ymax,&knew,&chnew);
				if (chnew > 1.1) {
					if (k != knew) {
						if (knew > k)
							mulvec(knew*n+1,knew*n+n,-knew*n,y,delta,
									a[k]/knew);
						k=knew;
						peideorder(n,k,eps,a,save,&tol,&tolup,
									&toldwn,&tolconv,&a0,&decompose);
					}
					same=k+1;
					if (chnew*h > hmax) chnew=hmax/h;
					h *= chnew;
					c=1.0;
					for (j=n; j<=k*n; j += n) {
						c *= chnew;
						mulvec(j+1,j+n,0,y,y,c);
					}
					decompose=1;
				} else
					same=10;
			}
			(*nis)++;
			/* start of an integration step of yp */
			if (clean) {
				hold=h;
				xold=x;
				kpold=k;
				ch=1.0;
				dupvec(1,k*n+n,0,save,y);
			} else {
				if (h != hold) {
					ch=h/hold;
					c=1.0;
					for (j=n6+nnpar; j<=kpold*nnpar+n6; j += nnpar) {
						c *= ch;
						for (i=j+1; i<=j+nnpar; i++) y[i] *= c;
					}
					hold=h;
				}
				if (k > kpold)
					inivec(n6+k*nnpar+1,n6+k*nnpar+nnpar,y,0.0);
				xold=x;
				kpold=k;
				ch=1.0;
				dupvec(1,k*n+n,0,save,y);
				/* evaluate jacobian */
				evaluate=0;
				decompose=evaluated=1;
				if (!(*jacdfdy)(n,m,par,y,x,fy)) {
					save[-3]=4.0;
					goto Finish;
				}
				/* decompose jacobian */
				decompose=0;
				c = -a0*h;
				for (j=1; j<=n; j++) {
					for (i=1; i<=n; i++) jacob[i][j]=fy[i][j]*c;
					jacob[j][j] += 1.0;
				}
				dec(jacob,n,aux,p);
				if (!(*jacdfdp)(n,m,par,y,x,fp)) {
					save[-3]=5.0;
					goto Finish;
				}
				if (npar > m) inimat(1,n,m+1,npar,fp,0.0);
				/* prediction */
				for (l=0; l<=k-1; l++)
					for (j=k-1; j>=l; j--)
						elmvec(j*nnpar+n6+1,j*nnpar+n6+nnpar,nnpar,
									y,y,1.0);
				/* correction */
				for (j=1; j<=npar; j++) {
					j5n=(j+5)*n;
					dupvec(1,n,j5n,y0,y);
					for (i=1; i<=n; i++)
						df[i]=h*(fp[i][j]+matvec(1,n,i,fy,y0))-
									y[nnpar+j5n+i];
					sol(jacob,n,p,df);
					for (l=0; l<=k; l++) {
						i=l*nnpar+j5n;
						elmvec(i+1,i+n,-i,y,df,a[l]);
					}
				}
			}
			while (x >= t) {
				/* calculate a row of the jacobian matrix and an
					element of the residual vector */
				tobsdif=(tobs[ii]-x)/h;
				cobsii=cobs[ii];
				res[ii]=peideinterpol(cobsii,n,k,tobsdif,y)-obs[ii];
				if (!clean) {
					for (i=1; i<=npar; i++)
						yp[ii][i]=peideinterpol(cobsii+(i+5)*n,nnpar,k,
														tobsdif,y);
					/* introducing break-points */
					if (bp[jj] != ii) {
					} else if (first && fabs(res[ii]) < eps1) {
						(*nbp)--;
						for (i=jj; i<=(*nbp); i++) bp[i]=bp[i+1];
						bp[*nbp+1]=0;
					} else {
						extra++;
						if (first) par[m+jj]=obs[ii];
						/* introducing a jacobian row and a residual
							vector element for continuity requirements */
						yp[nobs+jj][m+jj] = -weight;
						mulrow(1,npar,nobs+jj,ii,yp,yp,weight);
						res[nobs+jj]=weight*(res[ii]+obs[ii]-par[m+jj]);
					}
				}
				if (ii == nobs)
					goto Finish;
				else {
					t=tobs[ii+1];
					if (bp[jj] == ii && jj < *nbp) jj++;
					hmax=t-tobs[ii];
					hmin=hmax*in[1];
					ii++;
				}
			}
			/* break-points introduce new initial values for y & yp */
			if (extra > 0) {
				for (i=1; i<=n; i++) {
					y[i]=peideinterpol(i,n,k,tobsdif,y);
					for (j=1; j<=npar; j++)
						y[i+(j+5)*n]=peideinterpol(i+(j+5)*n,nnpar,
															k,tobsdif,y);
				}
				for (l=1; l<=extra; l++) {
					cobsii=cobs[bp[npar-m+l]];
					y[cobsii]=par[npar+l];
					for (i=1; i<=npar+extra; i++) y[cobsii+(5+i)*n]=0.0;
					inivec(1+nnpar+(l+5)*n,nnpar+(l+6)*n,y,0.0);
					y[cobsii+(5+npar+l)*n]=1.0;
				}
				npar += extra;
				extra=0;
				x=tobs[ii-1];
				/* evaluate jacobian */
				evaluate=0;
				decompose=evaluated=1;
				if (!(*jacdfdy)(n,m,par,y,x,fy)) {
					save[-3]=4.0;
					goto Finish;
				}
				nnpar=n*npar;
				goto Newstart;
			}
		}
	}
	Finish:
	if (save[-2] > *max) *max=save[-2];
	if (!first) (*monitor)(1,ncol,nrow,par,res,weight,*nis);
	free_integer_vector(p,1);
	free_real_vector(delta,1);
	free_real_vector(lastdelta,1);
	free_real_vector(df,1);
	free_real_vector(y0,1);
	free_real_matrix(jacob,1,n,1);
	return (save[-1] <= 40.0 && save[-3] == 0.0);
}
Esempio n. 17
0
void peide(int n, int m, int nobs, int *nbp, real_t par[],
		real_t res[], int bp[], real_t **jtjinv,
		real_t in[], real_t out[],
		int (*deriv)(int,int,real_t [],real_t [],real_t,real_t []),
		int (*jacdfdy)(int,int,real_t [],real_t [],real_t,real_t **),
		int (*jacdfdp)(int,int,real_t [],real_t [],real_t,real_t **),
		void (*callystart)(int,int,real_t [],real_t [],real_t[]),
		void (*data)(int,real_t [],real_t [],int[]),
		void (*monitor)(int,int,int,real_t [],real_t [],int,int))
{
	int i,j,weight,ncol,nrow,away,max,nfe,nis,*cobs,
			first,sec,clean,nbpold,maxfe,fe,it,err,emergency;
	real_t eps1,res1,in3,in4,fac3,fac4,aux[4],*obs,*save,*tobs,
			**yp,*ymax,*y,**fy,**fp,w,**aid,temp,
			vv,ww,w2,mu,res2,fpar,fparpres,lambda,lambdamin,p,pw,
			reltolres,abstolres,em[8],*val,*b,*bb,*parpres,**jaco;
	static real_t save1[35]={1.0, 1.0, 9.0, 4.0, 0.0, 2.0/3.0, 1.0,
			1.0/3.0, 36.0, 20.25, 1.0, 6.0/11.0, 1.0, 6.0/11.0,
			1.0/11.0, 84.028, 53.778, 0.25, 0.48, 1.0, 0.7, 0.2,
			0.02, 156.25, 108.51, 0.027778, 120.0/274.0, 1.0,
			225.0/274.0, 85.0/274.0, 15.0/274.0, 1.0/274.0, 0.0,
			187.69, 0.0047361};

	nbpold=(*nbp);
	cobs=allocate_integer_vector(1,nobs);
	obs=allocate_real_vector(1,nobs);
	save=allocate_real_vector(-38,6*n);
	tobs=allocate_real_vector(0,nobs);
	ymax=allocate_real_vector(1,n);
	y=allocate_real_vector(1,6*n*(nbpold+m+1));
	yp=allocate_real_matrix(1,nbpold+nobs,1,nbpold+m);
	fy=allocate_real_matrix(1,n,1,n);
	fp=allocate_real_matrix(1,n,1,m+nbpold);
	aid=allocate_real_matrix(1,m+nbpold,1,m+nbpold);

	for (i=0; i<=34; i++) save[-38+i]=save1[i];
	(*data)(nobs,tobs,obs,cobs);
	weight=1;
	first=sec=0;
	clean=(*nbp > 0);
	aux[2]=FLT_EPSILON;
	eps1=1.0e10;
	out[1]=0.0;
	bp[0]=max=0;
	/* smooth integration without break-points */
	if (!peidefunct(nobs,m,par,res,
			n,m,nobs,nbp,first,&sec,&max,&nis,eps1,weight,bp,
			save,ymax,y,yp,fy,fp,cobs,tobs,obs,in,aux,clean,deriv,
			jacdfdy,jacdfdp,callystart,monitor)) goto Escape;
	res1=sqrt(vecvec(1,nobs,0,res,res));
	nfe=1;
	if (in[5] == 1.0) {
		out[1]=1.0;
		goto Escape;
	}
	if (clean) {
		first=1;
		clean=0;
		fac3=sqrt(sqrt(in[3]/res1));
		fac4=sqrt(sqrt(in[4]/res1));
		eps1=res1*fac4;
		if (!peidefunct(nobs,m,par,res,
				n,m,nobs,nbp,first,&sec,&max,&nis,eps1,weight,bp,
				save,ymax,y,yp,fy,fp,cobs,tobs,obs,in,aux,clean,deriv,
				jacdfdy,jacdfdp,callystart,monitor)) goto Escape;
		first=0;
	} else
		nfe=0;
	ncol=m+(*nbp);
	nrow=nobs+(*nbp);
	sec=1;
	in3=in[3];
	in4=in[4];
	in[3]=res1;
	weight=away=0;
	out[4]=out[5]=w=0.0;
	temp=sqrt(weight)+1.0;
	weight=temp*temp;
	while (weight != 16 && *nbp > 0) {
		if (away == 0 && w != 0.0) {
			/* if no break-points were omitted then one function
				function evaluation is saved */
			w=weight/w;
			for (i=nobs+1; i<=nrow; i++) {
				for (j=1; j<=ncol; j++) yp[i][j] *= w;
				res[i] *= w;
			}
			sec=1;
			nfe--;
		}
		in[3] *= fac3*weight;
		in[4]=eps1;
		(*monitor)(2,ncol,nrow,par,res,weight,nis);
		/* marquardt's method */
		val=allocate_real_vector(1,ncol);
		b=allocate_real_vector(1,ncol);
		bb=allocate_real_vector(1,ncol);
		parpres=allocate_real_vector(1,ncol);
		jaco=allocate_real_matrix(1,nrow,1,ncol);
		vv=10.0;
		w2=0.5;
		mu=0.01;
		ww = (in[6] < 1.0e-7) ? 1.0e-8 : 1.0e-1*in[6];
		em[0]=em[2]=em[6]=in[0];
		em[4]=10*ncol;
		reltolres=in[3];
		abstolres=in[4]*in[4];
		maxfe=in[5];
		err=0;
		fe=it=1;
		p=fpar=res2=0.0;
		pw = -log(ww*in[0])/2.30;
		if (!peidefunct(nrow,ncol,par,res,
					n,m,nobs,nbp,first,&sec,&max,&nis,eps1,
					weight,bp,save,ymax,y,yp,fy,fp,cobs,tobs,obs,
					in,aux,clean,deriv,jacdfdy,jacdfdp,
					callystart,monitor))
			err=3;
		else {
			fpar=vecvec(1,nrow,0,res,res);
			out[3]=sqrt(fpar);
			emergency=0;
			it=1;
			do {
				dupmat(1,nrow,1,ncol,jaco,yp);
				i=qrisngvaldec(jaco,nrow,ncol,val,aid,em);
				if (it == 1)
					lambda=in[6]*vecvec(1,ncol,0,val,val);
				else
					if (p == 0.0) lambda *= w2;
				for (i=1; i<=ncol; i++)
					b[i]=val[i]*tamvec(1,nrow,i,jaco,res);
				while (1) {
					for (i=1; i<=ncol; i++)
						bb[i]=b[i]/(val[i]*val[i]+lambda);
					for (i=1; i<=ncol; i++)
						parpres[i]=par[i]-matvec(1,ncol,i,aid,bb);
					fe++;
					if (fe >= maxfe)
						err=1;
					else
						if (!peidefunct(nrow,ncol,parpres,res,
								n,m,nobs,nbp,first,&sec,&max,&nis,
								eps1,weight,bp,save,ymax,y,yp,fy,fp,
								cobs,tobs,obs,in,aux,clean,deriv,
								jacdfdy,jacdfdp,callystart,monitor))
							err=2;
					if (err != 0) {
						emergency=1;
						break;
					}
					fparpres=vecvec(1,nrow,0,res,res);
					res2=fpar-fparpres;
					if (res2 < mu*vecvec(1,ncol,0,b,bb)) {
						p += 1.0;
						lambda *= vv;
						if (p == 1.0) {
							lambdamin=ww*vecvec(1,ncol,0,val,val);
							if (lambda < lambdamin) lambda=lambdamin;
						}
						if (p >= pw) {
							err=4;
							emergency=1;
							break;
						}
					} else {
						dupvec(1,ncol,0,par,parpres);
						fpar=fparpres;
						break;
					}
				}
				if (emergency) break;
				it++;
			} while (fpar>abstolres &&
							res2>reltolres*fpar+abstolres);
			for (i=1; i<=ncol; i++)
				mulcol(1,ncol,i,i,jaco,aid,1.0/(val[i]+in[0]));
			for (i=1; i<=ncol; i++)
				for (j=1; j<=i; j++)
					aid[i][j]=aid[j][i]=mattam(1,ncol,i,j,jaco,jaco);
			lambda=lambdamin=val[1];
			for (i=2; i<=ncol; i++)
				if (val[i] > lambda)
					lambda=val[i];
				else
					if (val[i] < lambdamin) lambdamin=val[i];
			temp=lambda/(lambdamin+in[0]);
			out[7]=temp*temp;
			out[2]=sqrt(fpar);
			out[6]=sqrt(res2+fpar)-out[2];
		}
		out[4]=fe;
		out[5]=it-1;
		out[1]=err;
		free_real_vector(val,1);
		free_real_vector(b,1);
		free_real_vector(bb,1);
		free_real_vector(parpres,1);
		free_real_matrix(jaco,1,nrow,1);
		if (out[1] > 0.0) goto Escape;
		/* the relative starting value of lambda is adjusted
			to the last value of lambda used */
		away=out[4]-out[5]-1.0;
		in[6] *= pow(5.0,away)*pow(2.0,away-out[5]);
		nfe += out[4];
		w=weight;
		temp=sqrt(weight)+1.0;
		eps1=temp*temp*in[4]*fac4;
		away=0;
		/* omit useless break-points */
		for (j=1; j<=(*nbp); j++)
			if (fabs(obs[bp[j]]+res[bp[j]]-par[j+m]) < eps1) {
				(*nbp)--;
				for (i=j; i<=(*nbp); i++) bp[i]=bp[i+1];
				dupvec(j+m,(*nbp)+m,1,par,par);
				j--;
				away++;
				bp[*nbp+1]=0;
			}
		ncol -= away;
		nrow -= away;
		temp=sqrt(weight)+1.0;
		weight=temp*temp;
	}
	in[3]=in3;
	in[4]=in4;
	*nbp=0;
	weight=1;
	(*monitor)(2,m,nobs,par,res,weight,nis);
	/* marquardt's method */
	val=allocate_real_vector(1,m);
	b=allocate_real_vector(1,m);
	bb=allocate_real_vector(1,m);
	parpres=allocate_real_vector(1,m);
	jaco=allocate_real_matrix(1,nobs,1,m);
	vv=10.0;
	w2=0.5;
	mu=0.01;
	ww = (in[6] < 1.0e-7) ? 1.0e-8 : 1.0e-1*in[6];
	em[0]=em[2]=em[6]=in[0];
	em[4]=10*m;
	reltolres=in[3];
	abstolres=in[4]*in[4];
	maxfe=in[5];
	err=0;
	fe=it=1;
	p=fpar=res2=0.0;
	pw = -log(ww*in[0])/2.30;
	if (!peidefunct(nobs,m,par,res,
				n,m,nobs,nbp,first,&sec,&max,&nis,eps1,weight,bp,
				save,ymax,y,yp,fy,fp,cobs,tobs,obs,in,aux,clean,
				deriv,jacdfdy,jacdfdp,callystart,monitor))
		err=3;
	else {
		fpar=vecvec(1,nobs,0,res,res);
		out[3]=sqrt(fpar);
		emergency=0;
		it=1;
		do {
			dupmat(1,nobs,1,m,jaco,yp);
			i=qrisngvaldec(jaco,nobs,m,val,jtjinv,em);
			if (it == 1)
				lambda=in[6]*vecvec(1,m,0,val,val);
			else
				if (p == 0.0) lambda *= w2;
			for (i=1; i<=m; i++)
				b[i]=val[i]*tamvec(1,nobs,i,jaco,res);
			while (1) {
				for (i=1; i<=m; i++)
					bb[i]=b[i]/(val[i]*val[i]+lambda);
				for (i=1; i<=m; i++)
					parpres[i]=par[i]-matvec(1,m,i,jtjinv,bb);
				fe++;
				if (fe >= maxfe)
					err=1;
				else
					if (!peidefunct(nobs,m,parpres,res,
							n,m,nobs,nbp,first,&sec,&max,&nis,eps1,
							weight,bp,save,ymax,y,yp,fy,fp,cobs,tobs,
							obs,in,aux,clean,deriv,jacdfdy,jacdfdp,
							callystart,monitor))
						err=2;
				if (err != 0) {
					emergency=1;
					break;
				}
				fparpres=vecvec(1,nobs,0,res,res);
				res2=fpar-fparpres;
				if (res2 < mu*vecvec(1,m,0,b,bb)) {
					p += 1.0;
					lambda *= vv;
					if (p == 1.0) {
						lambdamin=ww*vecvec(1,m,0,val,val);
						if (lambda < lambdamin) lambda=lambdamin;
					}
					if (p >= pw) {
						err=4;
						emergency=1;
						break;
					}
				} else {
					dupvec(1,m,0,par,parpres);
					fpar=fparpres;
					break;
				}
			}
			if (emergency) break;
			it++;
		} while (fpar>abstolres && res2>reltolres*fpar+abstolres);
		for (i=1; i<=m; i++)
			mulcol(1,m,i,i,jaco,jtjinv,1.0/(val[i]+in[0]));
		for (i=1; i<=m; i++)
			for (j=1; j<=i; j++)
				jtjinv[i][j]=jtjinv[j][i]=mattam(1,m,i,j,jaco,jaco);
		lambda=lambdamin=val[1];
		for (i=2; i<=m; i++)
			if (val[i] > lambda)
				lambda=val[i];
			else
				if (val[i] < lambdamin) lambdamin=val[i];
		temp=lambda/(lambdamin+in[0]);
		out[7]=temp*temp;
		out[2]=sqrt(fpar);
		out[6]=sqrt(res2+fpar)-out[2];
	}
	out[4]=fe;
	out[5]=it-1;
	out[1]=err;
	free_real_vector(val,1);
	free_real_vector(b,1);
	free_real_vector(bb,1);
	free_real_vector(parpres,1);
	free_real_matrix(jaco,1,nobs,1);
	nfe += out[4];

	Escape:
	if (out[1] == 3.0)
		out[1]=2.0;
	else
		if (out[1] == 4.0) out[1]=6.0;
	if (save[-3] != 0.0) out[1]=save[-3];
	out[3]=res1;
	out[4]=nfe;
	out[5]=max;
	free_integer_vector(cobs,1);
	free_real_vector(obs,1);
	free_real_vector(save,-38);
	free_real_vector(tobs,0);
	free_real_vector(ymax,1);
	free_real_vector(y,1);
	free_real_matrix(yp,1,nbpold+nobs,1);
	free_real_matrix(fy,1,n,1);
	free_real_matrix(fp,1,n,1);
	free_real_matrix(aid,1,m+nbpold,1);
}
Esempio n. 18
0
void efsirk(real_t *x, real_t xe, int m, real_t y[],
			real_t *delta, void (*derivative)(int, real_t[], real_t *),
			void (*jacobian)(int, real_t **, real_t [], real_t *),
			real_t **j, int *n, real_t aeta, real_t reta, real_t hmin,
			real_t hmax, int linear,
			void (*output)(real_t, real_t, int, real_t [],
								real_t, real_t **, int))
{
	int *allocate_integer_vector(int, int);
	real_t *allocate_real_vector(int, int);
	real_t **allocate_real_matrix(int, int, int, int);
	void free_integer_vector(int *, int);
	void free_real_vector(real_t *, int);
	void free_real_matrix(real_t **, int, int, int);
	real_t vecvec(int, int, int, real_t [], real_t []);
	real_t matmat(int, int, int, int, real_t **, real_t **);
	real_t matvec(int, int, int, real_t **, real_t []);
	void gsselm(real_t **, int, real_t [], int [], int []);
	void solelm(real_t **, int, int [], int [], real_t []);
	int k,l,lin,*ri,*ci;
	real_t step,h,mu0,mu1,mu2,theta0,theta1,nu1,nu2,nu3,yk,fk,c1,c2,
			d,*f,*k0,*labda,**j1,aux[8],discr,eta,s,z1,z2,e,alpha1,a,b;

	ri=allocate_integer_vector(1,m);
	ci=allocate_integer_vector(1,m);
	f=allocate_real_vector(1,m);
	k0=allocate_real_vector(1,m);
	labda=allocate_real_vector(1,m);
	j1=allocate_real_matrix(1,m,1,m);

	aux[2]=FLT_EPSILON;
	aux[4]=8.0;
	for (k=1; k<=m; k++) f[k]=y[k];
	*n = 0;
	(*output)(*x,xe,m,y,*delta,j,*n);
	step=0.0;
	do {
		(*n)++;
		/* difference scheme */
		(*derivative)(m,f,delta);
		/* step size */
		if (linear)
			s=h=hmax;
		else
			if (*n == 1 || hmin == hmax)
				s=h=hmin;
			else {
				eta=aeta+reta*sqrt(vecvec(1,m,0,y,y));
				c1=nu3*step;
				for (k=1; k<=m; k++) labda[k] += c1*f[k]-y[k];
				discr=sqrt(vecvec(1,m,0,labda,labda));
				s=h=(eta/(0.75*(eta+discr))+0.33)*h;
				if (h < hmin)
					s=h=hmin;
				else
					if (h > hmax) s=h=hmax;
			}
		if ((*x)+s > xe) s=xe-(*x);
		lin=((step == s) && linear);
		step=s;
		if (!linear || *n == 1) (*jacobian)(m,j,y,delta);
		if (!lin) {
			/* coefficient */
			z1=step*(*delta);
			if (*n == 1) z2=z1+z1;
			if (fabs(z2-z1) > 1.0e-6*fabs(z1) || z2 > -1.0) {
				a=z1*z1+12.0;
				b=6.0*z1;
				if (fabs(z1) < 0.1)
					alpha1=(z1*z1/140.0-1.0)*z1/30.0;
				else if (z1 < 1.0e-14)
					alpha1=1.0/3.0;
				else if (z1 < -33.0)
					alpha1=(a+b)/(3.0*z1*(2.0+z1));
				else {
					e=((z1 < 230.0) ? exp(z1) : FLT_MAX);
					alpha1=((a-b)*e-a-b)/(((2.0-z1)*e-2.0-z1)*3.0*z1);
				}
				mu2=(1.0/3.0+alpha1)*0.25;
				mu1 = -(1.0+alpha1)*0.5;
				mu0=(6.0*mu1+2.0)/9.0;
				theta0=0.25;
				theta1=0.75;
				a=3.0*alpha1;
				nu3=(1.0+a)/(5.0-a)*0.5;
				a=nu3+nu3;
				nu1=0.5-a;
				nu2=(1.0+a)*0.75;
				z2=z1;
			}
			c1=step*mu1;
			d=step*step*mu2;
			for (k=1; k<=m; k++) {
				for (l=1; l<=m; l++)
					j1[k][l]=d*matmat(1,m,k,l,j,j)+c1*j[k][l];
				j1[k][k] += 1.0;
			}
			gsselm(j1,m,aux,ri,ci);
		}
		c1=step*step*mu0;
		d=step*2.0/3.0;
		for (k=1; k<=m; k++) {
			k0[k]=fk=f[k];
			labda[k]=d*fk+c1*matvec(1,m,k,j,f);
		}
		solelm(j1,m,ri,ci,labda);
		for (k=1; k<=m; k++) f[k]=y[k]+labda[k];
		(*derivative)(m,f,delta);
		c1=theta0*step;
		c2=theta1*step;
		d=nu1*step;
		for (k=1; k<=m; k++) {
			yk=y[k];
			fk=f[k];
			labda[k]=yk+d*fk+nu2*labda[k];
			y[k]=f[k]=yk+c1*k0[k]+c2*fk;
		}
		(*x) += step;
		(*output)(*x,xe,m,y,*delta,j,*n);
	} while (*x < xe);
	free_integer_vector(ri,1);
	free_integer_vector(ci,1);
	free_real_vector(f,1);
	free_real_vector(k0,1);
	free_real_vector(labda,1);
	free_real_matrix(j1,1,m,1);
}
Esempio n. 19
0
void ark(real_t *t, real_t *te, int *m0, int *m, real_t u[],
			void (*derivative)(int *, int *, real_t *, real_t[]),
			real_t data[],
			void (*out)(int *, int *, real_t *, real_t *, real_t [],
							real_t []))
{
	real_t *allocate_real_vector(int, int);
	real_t **allocate_real_matrix(int, int, int, int);
	void free_real_vector(real_t *, int);
	void free_real_matrix(real_t **, int, int, int);
	void inivec(int, int, real_t [], real_t);
	void mulvec(int, int, int, real_t [], real_t [], real_t);
	void dupvec(int, int, int, real_t [], real_t []);
	real_t vecvec(int, int, int, real_t [], real_t []);
	void elmvec(int, int, int, real_t [], real_t [], real_t);
	void decsol(real_t **, int, real_t [], real_t []);
	real_t arkmui(int, int, int, real_t []);
	real_t arklabda(int, int, int, int, real_t []);
	static real_t th1[8] = {1.0, 0.5, 1.0/6.0, 1.0/3.0, 1.0/24.0,
		1.0/12.0, 0.125, 0.25};
	static real_t ec0,ec1,ec2,tau0,tau1,tau2,taus,t2;
	int p,n,q,start,step1,last,i,j,k,l,n1,m00;
	real_t thetanm1,tau,betan,qinv,eta,*mu,*lambda,*thetha,*ro,*r,
			**alfa,th[9],aux[4],s,ss,theta0,tauacc,taustab,
			aa,bb,cc,ec,mt,lt;

	n=data[1];
	m00=(*m0);
	mu=allocate_real_vector(1,n);
	lambda=allocate_real_vector(1,n);
	thetha=allocate_real_vector(0,n);
	ro=allocate_real_vector(m00,*m);
	r=allocate_real_vector(m00,*m);
	alfa=allocate_real_matrix(1,8,1,n+1);

	p=data[2];
	ec1=ec2=0.0;
	betan=data[3];
	thetanm1 = (p == 3) ? 0.75 : 1.0;
	theta0=1.0-thetanm1;
	s=1.0;
	for (j=n-1; j>=1; j--) {
		s = -s*theta0+data[n+10-j];
		mu[j]=data[n+11-j]/s;
		lambda[j]=mu[j]-theta0;
	}
	for (i=1; i<=8; i++)
		for (j=0; j<=n; j++)
			if (i == 1) alfa[i][j+1]=1.0;
			else if (j == 0) alfa[i][j+1]=0.0;
			else if (i == 2 || i == 4 || i == 8)
					alfa[i][j+1]=pow(arkmui(j,n,p,lambda),(i+2)/3);
			else if ((i == 3 || i == 6) && j > 1) {
				s=0.0;
				for (l=1; l<=j-1; l++)
					s += arklabda(j,l,n,p,lambda)*
								pow(arkmui(l,n,p,lambda),i/3);
				alfa[i][j+1]=s;
			}
			else if (i == 5 && j > 2) {
				s=0.0;
				for (l=2; l<=j-1; l++) {
					ss=0.0;
					for (k=1; k<=l-1; k++)
						ss += arklabda(l,k,n,p,lambda)*
									arkmui(k,n,p,lambda);
					s += arklabda(j,l,n,p,lambda)*ss;
				}
				alfa[i][j+1]=s;
			}
			else if (i == 7 && j > 1) {
				s=0.0;
				for (l=1; l<=j-1; l++)
					s += arklabda(j,l,n,p,lambda)*arkmui(l,n,p,lambda);
				alfa[i][j+1]=s*arkmui(j,n,p,lambda);
			}
			else alfa[i][j+1]=0.0;
	n1 = ((n < 4) ? n+1 : ((n < 7) ? 4 : 8));
	for (i=1; i<=8; i++) th[i]=th1[i-1];
	if (p == 3 && n < 7) th[1]=th[2]=0.0;
	aux[2]=FLT_EPSILON;
	decsol(alfa,n1,aux,th);
	inivec(0,n,thetha,0.0);
	dupvec(0,n1-1,1,thetha,th);
	if (!(p == 3 && n < 7)) {
		thetha[0] -= theta0;
		thetha[n-1] -= thetanm1;
		q=p+1;
	} else
		q=3;
	qinv=1.0/q;
	start=(data[8] == 0.0);
	data[10]=0.0;
	last=0;
	dupvec(*m0,*m,0,r,u);
	(*derivative)(m0,m,t,r);
	do {
		/* stepsize */
		eta=sqrt(vecvec(*m0,*m,0,u,u))*data[7]+data[6];
		if (eta > 0.0) {
			if (start) {
				if (data[8] == 0) {
					tauacc=data[5];
					step1=1;
				} else
					if (step1) {
						tauacc=pow(eta/ec2,qinv);
						if (tauacc > 10.0*tau2)
							tauacc=10.0*tau2;
						else
							step1=0;
					} else {
						bb=(ec2-ec1)/tau1;
						cc = -bb*t2+ec2;
						ec=bb*(*t)+cc;
						tauacc = (ec < 0.0) ? tau2 : pow(eta/ec,qinv);
						start=0;
					}
			} else {
				aa=((ec0-ec1)/tau0+(ec2-ec1)/tau1)/(tau1+tau0);
				bb=(ec2-ec1)/tau1-(2.0*t2-tau1)*aa;
				cc = -(aa*t2+bb)*t2+ec2;
				ec=(aa*(*t)+bb)*(*t)+cc;
				tauacc = ((ec < 0.0) ? taus : pow(eta/ec,qinv));
				if (tauacc > 2.0*taus) tauacc=2.0*taus;
				if (tauacc < taus/2.0) tauacc=taus/2.0;
			}
		} else
			tauacc=data[5];
		if (tauacc < data[5]) tauacc=data[5];
		taustab=betan/data[4];
		if (taustab < data[5]) {
			data[10]=1.0;
			break;
		}
		tau = ((tauacc > taustab) ? taustab : tauacc);
		taus=tau;
		if (tau >= (*te)-(*t)) {
			tau=(*te)-(*t);
			last=1;
		}
		tau0=tau1;
		tau1=tau2;
		tau2=tau;
		/* difference scheme */
		mulvec(*m0,*m,0,ro,r,thetha[0]);
		if (p == 3) elmvec(*m0,*m,0,u,r,0.25*tau);
		for (i=1; i<=n-1; i++) {
			mt=mu[i]*tau;
			lt=lambda[i]*tau;
			for (j=(*m0); j<=(*m); j++) r[j]=lt*r[j]+u[j];
			s=(*t)+mt;
			(*derivative)(m0,m,&s,r);
			if (thetha[i] != 0.0) elmvec(*m0,*m,0,ro,r,thetha[i]);
			if (i == n) {
				data[9]=sqrt(vecvec(*m0,*m,0,ro,ro))*tau;
				ec0=ec1;
				ec1=ec2;
				ec2=data[9]/pow(tau,q);
			}
		}
		elmvec(*m0,*m,0,u,r,thetanm1*tau);
		dupvec(*m0,*m,0,r,u);
		s=(*t)+tau;
		(*derivative)(m0,m,&s,r);
		if (thetha[n] != 0.0) elmvec(*m0,*m,0,ro,r,thetha[n]);
		data[9]=sqrt(vecvec(*m0,*m,0,ro,ro))*tau;
		ec0=ec1;
		ec1=ec2;
		ec2=data[9]/pow(tau,q);
		t2=(*t);
		if (last) {
			last=0;
			(*t)=(*te);
		} else
			(*t) += tau;
		data[8] += 1.0;
		(*out)(m0,m,t,te,u,data);
	} while ((*t) != (*te));
	free_real_vector(mu,1);
	free_real_vector(lambda,1);
	free_real_vector(thetha,0);
	free_real_vector(ro,m00);
	free_real_vector(r,m00);
	free_real_matrix(alfa,1,8,1);
}
Esempio n. 20
0
void arkmat(real_t *t, real_t te, int m, int n, real_t **u,
			void (*der)(int, int, real_t, real_t **, real_t **),
			int type, int *order, real_t *spr,
			void (*out)(real_t, real_t, int, int, real_t **, int,
							int, real_t *))
{
	real_t **allocate_real_matrix(int, int, int, int);
	void free_real_matrix(real_t **, int, int, int);
	void elmcol(int, int, int, int, real_t **, real_t **, real_t);
	void dupmat(int, int, int, int, real_t **, real_t **);
	int sig,l,last,ta,tb,i;
	real_t tau,lambda[10],**uh,**du,mlt;
	static real_t lbd1[9]={1.0/9.0, 1.0/8.0, 1.0/7.0, 1.0/6.0,
						1.0/5.0, 1.0/4.0, 1.0/3.0, 1.0/2.0, 4.3};
	static real_t lbd2[9]={0.1418519249e-2, 0.3404154076e-2,
					0.0063118569, 0.01082794375, 0.01842733851,
					0.03278507942, 0.0653627415, 0.1691078577, 156.0};
	static real_t lbd3[9]={0.3534355908e-2, 0.8532600867e-2,
					0.015956206, 0.02772229155, 0.04812587964,
					0.08848689452, 0.1863578961, 0.5, 64.0};
	static real_t lbd4[9]={1.0/8.0, 1.0/20.0, 5.0/32.0, 2.0/17.0,
					17.0/80.0, 5.0/22.0, 11.0/32.0, 1.0/2.0, 8.0};

	uh=allocate_real_matrix(1,n,1,m);
	du=allocate_real_matrix(1,n,1,m);

	/* initialize */
	if (type != 2 && type != 3) type=1;
	if (type != 2)
		*order = 2;
	else
		if (*order != 2) *order = 1;
	switch ((type == 1) ? 1 : type+(*order)-1) {
		case 1:  for (i=0; i<=8; i++) lambda[i+1]=lbd1[i]; break;
		case 2:  for (i=0; i<=8; i++) lambda[i+1]=lbd2[i]; break;
		case 3:  for (i=0; i<=8; i++) lambda[i+1]=lbd3[i]; break;
		case 4:  for (i=0; i<=8; i++) lambda[i+1]=lbd4[i]; break;
	}
	sig = ((te == *t) ? 0 : ((te > *t) ? 1 : -1));
	last=0;
	do {
		tau=((*spr == 0.0) ? fabs(te-(*t)) :
					fabs(lambda[9]/(*spr)))*sig;
		ta = (*t)+tau >= te;
		tb = tau >= 0.0;
		if ((ta && tb) || (!(ta || tb))) {
			tau=te-(*t);
			last=1;
		}
		/* difference scheme */
		(*der)(m,n,*t,u,du);
		for (i=1; i<=8; i++) {
			mlt=lambda[i]*tau;
			dupmat(1,n,1,m,uh,u);
			for (l=1; l<=m; l++) elmcol(1,n,l,l,uh,du,mlt);
			(*der)(m,n,(*t)+mlt,uh,du);
		}
		for (l=1; l<=m; l++) elmcol(1,n,l,l,u,du,tau);
		*t = (last ? te : (*t)+tau);
		(*out)(*t,te,m,n,u,type,*order,spr);
	} while (!last);
	free_real_matrix(uh,1,n,1);
	free_real_matrix(du,1,n,1);
}
Esempio n. 21
0
int  Ti_Optimization::D2Circle_fitting(int m,				// number of points
				   double**g_pnt,		/*point array*/
				   double* const par)	/*array of unknown variables
										 Par[1--3], circle center 
										 Par[4--6], circle plane vector
										 Par[7], circle radius*/
{
	/*/begin parameter initialization*/
    int i;
	//initialize the center point
	par[1] = par[2] = par[3] = 0;
	for (int i=1; i <= m; i++)
	{
		par[1] += g_pnt[i][1];
		par[2] += g_pnt[i][2];

	}
	par[1] /= m;
	par[2] /= m;


	/*initialize the circle radius*/

	par[3] = sqrt((g_pnt[1][1] - par[1])*(g_pnt[1][1] - par[1]) +
				  (g_pnt[1][2] - par[2])*(g_pnt[1][2] - par[2]));	

/*	par[1] = 0.1;
	par[2] = 0;
	par[3] = 0;
*/
	// end initialization

	//Ti_Optimization algorithm;
	double temp = 0;
	double in[7],out[8],*rv,**jjinv;
	rv	  = allocate_real_vector(1,m);
	jjinv = allocate_real_matrix(1,3,1,3);//7 stand for the number of variables
	
	in[0]=1.0e-30; 
	in[3]=1.0e-10; 
	in[4]=1.0e-10;  
	in[5]=2000;
	in[6]=1.0e-6;

	marquardt(
		m,
		3,
		g_pnt,
		par,
		rv,
		jjinv,
		Evaluatefor2DCircle,
		Jacobianfor2DCircle,
		in,
		out);


	/*calculate the average errors*/
	double ave_error=0, temp_center[3];

	temp_center[0] = par[1];
	temp_center[1] = par[2];


	for (i=1; i <= m; i++)
		ave_error += sqrt((g_pnt[i][1] - par[1])*(g_pnt[i][1] - par[1]) +
						  (g_pnt[i][2] - par[2])*(g_pnt[i][2] - par[2])) - par[3];
	ave_error /= m;

	/*free the memory*/
    if (jjinv != NULL)
	{
		free_real_matrix(jjinv,1,3,1);///
		jjinv = NULL;
	}
	if( rv != NULL)
	{
		free_real_vector(rv,1);
		rv = NULL;
	}

	return 0;

}
Esempio n. 22
0
void praxis( int n, double *x, int *data, double (*funct)(double *, void *data), double *in, double *out) {

	int illc,i,j,k,k2,nl,maxf,nf,kl,kt,ktm,emergency;
	double s,sl,dn,dmin,fx,f1,lds,ldt,sf,df,qf1,qd0,qd1,qa,qb,qc,m2,m4,
			small,vsmall,large,vlarge,scbd,ldfac,t2,macheps,reltol,
			abstol,h,**v,*d,*y,*z,*q0,*q1,**a,em[8],l;

	/*
	 *  Seed random number generator
	 */
#ifdef MSWIN
	srand(34084320);
#else
	srand48(34084320);
#endif

//	for (i=0; i<8; ++i) x[i+1] = (double)data->x[i];
	d=allocate_real_vector(1,n);
	y=allocate_real_vector(1,n);
	z=allocate_real_vector(1,n);
	q0=allocate_real_vector(1,n);
	q1=allocate_real_vector(1,n);
	v=allocate_real_matrix(1,n,1,n);
	a=allocate_real_matrix(1,n,1,n);

    //  heuristic numbers:
    //
    //  If the axes may be badly scaled (which is to be avoided if
    //  possible), then set scbd = 10.  otherwise set scbd=1.
    //
    //  If the problem is known to be ill-conditioned, set ILLC = true.
    //
    //  KTM is the number of iterations without improvement before the
    //  algorithm terminates.  KTM = 4 is very cautious; usually KTM = 1
    //  is satisfactory.
    //

	macheps=in[0];
	reltol=in[1];
	abstol=in[2];
	maxf=in[5];
	h=in[6];
	scbd=in[7];
	ktm=in[8];
	illc = in[9] < 0.0;
	small=macheps*macheps;
	vsmall=small*small;
	large=1.0/small;
	vlarge=1.0/vsmall;
	m2=reltol;
	m4=sqrt(m2);
	srand(1);
	ldfac = (illc ? 0.1 : 0.01);
	kt=nl=0;
	nf=1;
	out[3]=qf1=fx=(*funct)(x, data);
	abstol=t2=small+fabs(abstol);
	dmin=small;
	if (h < abstol*100.0) h=abstol*100;
	ldt=h;
	inimat(1,n,1,n,v,0.0);
	for (i=1; i<=n; i++) v[i][i]=1.0;
	d[1]=qd0=qd1=0.0;
	dupvec(1,n,0,q1,x);
	inivec(1,n,q0,0.0);
	emergency=0;

	while (1) {
		sf=d[1];
		d[1]=s=0.0;
		praxismin(1,2,&(d[1]),&s,&fx,0,
					n,x,v,&qa,&qb,&qc,qd0,qd1,q0,q1,&nf,
					&nl,&fx,m2,m4,dmin,ldt,reltol,abstol,small,h,funct, data);
		if (s <= 0.0) mulcol(1,n,1,1,v,v,-1.0);
		if (sf <= 0.9*d[1] || 0.9*sf >= d[1]) inivec(2,n,d,0.0);
		for (k=2; k<=n; k++) {
			dupvec(1,n,0,y,x);
			sf=fx;
			illc = (illc || kt > 0);
			while (1) {
				kl=k;
				df=0.0;
				if (illc) {
					/* random stop to get off resulting valley */
					for (i=1; i<=n; i++) {
						s=z[i]=(0.1*ldt+t2*pow(10.0,kt))*
#ifdef MSWIN
									((double)(rand())/RAND_MAX-0.5);
#else
									(drand48()-0.5);
#endif
						elmveccol(1,n,i,x,v,s);
					}
					fx=(*funct)(x, data);
					nf++;
				}
				for (k2=k; k2<=n; k2++) {
					sl=fx;
					s=0.0;
					praxismin(k2,2,&(d[k2]),&s,&fx,0,
						n,x,v,&qa,&qb,&qc,qd0,qd1,q0,q1,&nf,
						&nl,&fx,m2,m4,dmin,ldt,reltol,abstol,small,h,funct, data);
					s = illc ? d[k2]*(s+z[k2])*(s+z[k2]) : sl-fx;
					if (df < s) {
						df=s;
						kl=k2;
					}
				}
				if (!illc && df < fabs(100.0*macheps*fx))
					illc=1;
				else
					break;
			}
			for (k2=1; k2<=k-1; k2++) {
				s=0.0;
				praxismin(k2,2,&(d[k2]),&s,&fx,0,
					n,x,v,&qa,&qb,&qc,qd0,qd1,q0,q1,&nf,
					&nl,&fx,m2,m4,dmin,ldt,reltol,abstol,small,h,funct, data);
			}
			f1=fx;
			fx=sf;
			lds=0.0;
			for (i=1; i<=n; i++) {
				sl=x[i];
				x[i]=y[i];
				y[i] = sl -= y[i];
				lds += sl*sl;
			}
			lds=sqrt(lds);
			if (lds > small) {
				for (i=kl-1; i>=k; i--) {
					for (j=1; j<=n; j++) v[j][i+1]=v[j][i];
					d[i+1]=d[i];
				}
				d[k]=0.0;
				dupcolvec(1,n,k,v,y);
				mulcol(1,n,k,k,v,v,1.0/lds);
				praxismin(k,4,&(d[k]),&lds,&f1,1,
					n,x,v,&qa,&qb,&qc,qd0,qd1,q0,q1,&nf,
					&nl,&fx,m2,m4,dmin,ldt,reltol,abstol,small,h,funct, data);
				if (lds <= 0.0) {
					lds = -lds;
					mulcol(1,n,k,k,v,v,-1.0);
				}
			}
			ldt *= ldfac;
			if (ldt < lds) ldt=lds;
			t2=m2*sqrt(vecvec(1,n,0,x,x))+abstol;
			kt = (ldt > 0.5*t2) ? 0 : kt+1;
			if (kt > ktm) {
				out[1]=0.0;
				emergency=1;
			}
		}
		if (emergency) break;
		/* quad */
		s=fx;
		fx=qf1;
		qf1=s;
		qd1=0.0;
		for (i=1; i<=n; i++) {
			s=x[i];
			x[i]=l=q1[i];
			q1[i]=s;
			qd1 += (s-l)*(s-l);
		}
		l=qd1=sqrt(qd1);
		s=0.0;
		if ((qd0*qd1 > DBL_MIN) && (nl >=3*n*n)) {
			praxismin(0,2,&s,&l,&qf1,1,
					n,x,v,&qa,&qb,&qc,qd0,qd1,q0,q1,&nf,
					&nl,&fx,m2,m4,dmin,ldt,reltol,abstol,small,h,funct, data);
			qa=l*(l-qd1)/(qd0*(qd0+qd1));
			qb=(l+qd0)*(qd1-l)/(qd0*qd1);
			qc=l*(l+qd0)/(qd1*(qd0+qd1));
		} else {
			fx=qf1;
			qa=qb=0.0;
			qc=1.0;
		}
		qd0=qd1;
		for (i=1; i<=n; i++) {
			s=q0[i];
			q0[i]=x[i];
			x[i]=qa*s+qb*x[i]+qc*q1[i];
		}
		/* end of quad */
		dn=0.0;
		for (i=1; i<=n; i++) {
			d[i]=1.0/sqrt(d[i]);
			if (dn < d[i]) dn=d[i];
		}
		for (j=1; j<=n; j++) {
			s=d[j]/dn;
			mulcol(1,n,j,j,v,v,s);
		}
		if (scbd > 1.0) {
			s=vlarge;
			for (i=1; i<=n; i++) {
				sl=z[i]=sqrt(mattam(1,n,i,i,v,v));
				if (sl < m4) z[i]=m4;
				if (s > sl) s=sl;
			}
			for (i=1; i<=n; i++) {
				sl=s/z[i];
				z[i]=1.0/sl;
				if (z[i] > scbd) {
					sl=1.0/scbd;
					z[i]=scbd;
				}
				mulrow(1,n,i,i,v,v,sl);
			}
		}
		for (i=1; i<=n; i++) ichrowcol(i+1,n,i,i,v);
		em[0]=em[2]=macheps;
		em[4]=10*n;
		em[6]=vsmall;
		dupmat(1,n,1,n,a,v);
		if (qrisngvaldec(a,n,n,d,v,em) != 0) {
			out[1]=2.0;
			emergency=1;
		}
		if (emergency) break;
		if (scbd > 1.0) {
			for (i=1; i<=n; i++) mulrow(1,n,i,i,v,v,z[i]);
			for (i=1; i<=n; i++) {
				s=sqrt(tammat(1,n,i,i,v,v));
				d[i] *= s;
				s=1.0/s;
				mulcol(1,n,i,i,v,v,s);
			}
		}
		for (i=1; i<=n; i++) {
			s=dn*d[i];
			d[i] = (s > large) ? vsmall :
						((s < small) ? vlarge : 1.0/(s*s));
		}
		/* sort */
		for (i=1; i<=n-1; i++) {
			k=i;
			s=d[i];
			for (j=i+1; j<=n; j++)
				if (d[j] > s) {
					k=j;
					s=d[j];
				}
			if (k > i) {
				d[k]=d[i];
				d[i]=s;
				for (j=1; j<=n; j++) {
					s=v[j][i];
					v[j][i]=v[j][k];
					v[j][k]=s;
				}
			}
		}
		/* end of sort */
		dmin=d[n];
		if (dmin < small) dmin=small;
		illc = (m2*d[1]) > dmin;
		if (nf >= maxf) {
			out[1]=1.0;
			break;
		}
	}
	out[2]=fx;
	out[4]=nf;
	out[5]=nl;
	out[6]=ldt;
	free_real_vector(d,1);
	free_real_vector(y,1);
	free_real_vector(z,1);
	free_real_vector(q0,1);
	free_real_vector(q1,1);
	free_real_matrix(v,1,n,1);
	free_real_matrix(a,1,n,1);

//	for (i=0; i<40; ++i) data->x[i] = (double)x[i+1];

}
Esempio n. 23
0
void strassen(double **a, double **b, double **c, int tam) {
 
    /*trivial case: when the matrix is 1 X 1:
	*/
	

	if (tam <= BREAK){
		if (tam == 1) {
        		c[0][0] = a[0][0] * b[0][0];
        		return;
    		}

		int i, j, k;
		for (i = 0; i < tam; i++) {
			for (k = 0; k < tam; k++) {
				for (j = 0; j < tam; j++) {
					c[i][j] += a[i][k] * b[k][j];
				}
			}
		}
        	return;
	}
 
    // other cases are treated here:
        int newTam = tam/2;
        double **a11, **a12, **a21, **a22;
        double **b11, **b12, **b21, **b22;
        double **c11, **c12, **c21, **c22;
        double **p1, **p2, **p3, **p4, **p5, **p6, **p7;
 
        // memory allocation:
        a11 = allocate_real_matrix(newTam, 0);
        a12 = allocate_real_matrix(newTam, 0);
        a21 = allocate_real_matrix(newTam, 0);
        a22 = allocate_real_matrix(newTam, 0);
                                           
        b11 = allocate_real_matrix(newTam, 0);
        b12 = allocate_real_matrix(newTam, 0);
        b21 = allocate_real_matrix(newTam, 0);
        b22 = allocate_real_matrix(newTam, 0);
                                           
        c11 = allocate_real_matrix(newTam, 0);
        c12 = allocate_real_matrix(newTam, 0);
        c21 = allocate_real_matrix(newTam, 0);
        c22 = allocate_real_matrix(newTam, 0);
 
        p1 = allocate_real_matrix(newTam, 0);
        p2 = allocate_real_matrix(newTam, 0);
        p3 = allocate_real_matrix(newTam, 0);
        p4 = allocate_real_matrix(newTam, 0);
        p5 = allocate_real_matrix(newTam, 0);
        p6 = allocate_real_matrix(newTam, 0);
        p7 = allocate_real_matrix(newTam, 0);
 
        double **aResult = allocate_real_matrix(newTam, 0);
        double **bResult = allocate_real_matrix(newTam, 0);
 
        int i, j;
 
        //dividing the matrices in 4 sub-matrices:
        for (i = 0; i < newTam; i++) {
            for (j = 0; j < newTam; j++) {
                a11[i][j] = a[i][j];
                a12[i][j] = a[i][j + newTam];
                a21[i][j] = a[i + newTam][j];
                a22[i][j] = a[i + newTam][j + newTam];
 
                b11[i][j] = b[i][j];
                b12[i][j] = b[i][j + newTam];
                b21[i][j] = b[i + newTam][j];
                b22[i][j] = b[i + newTam][j + newTam];
            }
        }
 
        // Calculating p1 to p7:
 
        sum(a11, a22, aResult, newTam); // a11 + a22
        sum(b11, b22, bResult, newTam); // b11 + b22
        strassen(aResult, bResult, p1, newTam); // p1 = (a11+a22) * (b11+b22)
 
        sum(a21, a22, aResult, newTam); // a21 + a22
        strassen(aResult, b11, p2, newTam); // p2 = (a21+a22) * (b11)
 
        subtract(b12, b22, bResult, newTam); // b12 - b22
        strassen(a11, bResult, p3, newTam); // p3 = (a11) * (b12 - b22)
 
        subtract(b21, b11, bResult, newTam); // b21 - b11
        strassen(a22, bResult, p4, newTam); // p4 = (a22) * (b21 - b11)
 
        sum(a11, a12, aResult, newTam); // a11 + a12
        strassen(aResult, b22, p5, newTam); // p5 = (a11+a12) * (b22)   
 
        subtract(a21, a11, aResult, newTam); // a21 - a11
        sum(b11, b12, bResult, newTam); // b11 + b12
        strassen(aResult, bResult, p6, newTam); // p6 = (a21-a11) * (b11+b12)
 
        subtract(a12, a22, aResult, newTam); // a12 - a22
        sum(b21, b22, bResult, newTam); // b21 + b22
        strassen(aResult, bResult, p7, newTam); // p7 = (a12-a22) * (b21+b22)
 
        // calculating c21, c21, c11 e c22:
 
        sum(p3, p5, c12, newTam); // c12 = p3 + p5
        sum(p2, p4, c21, newTam); // c21 = p2 + p4
 
        sum(p1, p4, aResult, newTam); // p1 + p4
        sum(aResult, p7, bResult, newTam); // p1 + p4 + p7
        subtract(bResult, p5, c11, newTam); // c11 = p1 + p4 - p5 + p7
 
        sum(p1, p3, aResult, newTam); // p1 + p3
        sum(aResult, p6, bResult, newTam); // p1 + p3 + p6
        subtract(bResult, p2, c22, newTam); // c22 = p1 + p3 - p2 + p6
 
        // Grouping the results obtained in a single matrix:
        for (i = 0; i < newTam ; i++) {
            for (j = 0 ; j < newTam ; j++) {
                c[i][j] = c11[i][j];
                c[i][j + newTam] = c12[i][j];
                c[i + newTam][j] = c21[i][j];
                c[i + newTam][j + newTam] = c22[i][j];
            }
        }
 
        // deallocating memory (free):
        a11 = free_real_matrix(a11, newTam);
        a12 = free_real_matrix(a12, newTam);
        a21 = free_real_matrix(a21, newTam);
        a22 = free_real_matrix(a22, newTam);
 
        b11 = free_real_matrix(b11, newTam);
        b12 = free_real_matrix(b12, newTam);
        b21 = free_real_matrix(b21, newTam);
        b22 = free_real_matrix(b22, newTam);
 
        c11 = free_real_matrix(c11, newTam);
        c12 = free_real_matrix(c12, newTam);
        c21 = free_real_matrix(c21, newTam);
        c22 = free_real_matrix(c22, newTam);
 
        p1 = free_real_matrix(p1, newTam);
        p2 = free_real_matrix(p2, newTam);
        p3 = free_real_matrix(p3, newTam);
        p4 = free_real_matrix(p4, newTam);
        p5 = free_real_matrix(p5, newTam);
        p6 = free_real_matrix(p6, newTam);
        p7 = free_real_matrix(p7, newTam);
        aResult = free_real_matrix(aResult, newTam);
        bResult = free_real_matrix(bResult, newTam);
 
} // end of Strassen function
Esempio n. 24
0
void gssnewton(int m, int n, real_t par[], real_t rv[], real_t **jjinv,
					int (*funct)(int, int, real_t[], real_t[]),
					void (*jacobian)(int, int, real_t[], real_t[], real_t **),
					real_t in[], real_t out[])
{
	int *allocate_integer_vector(int, int);
	real_t *allocate_real_vector(int, int);
	real_t **allocate_real_matrix(int, int, int, int);
	void free_integer_vector(int *, int);
	void free_real_vector(real_t *, int);
	void free_real_matrix(real_t **, int, int, int);
	real_t vecvec(int, int, int, real_t [], real_t []);
	void dupvec(int, int, int, real_t [], real_t []);
	void elmvec(int, int, int, real_t [], real_t [], real_t);
	void lsqortdec(real_t **, int, int, real_t [], real_t [], int []);
	void lsqsol(real_t **, int, int, real_t [], int [], real_t []);
	void lsqinv(real_t **, int, real_t [], int []);
	int i,j,inr,mit,text,it,itmax,inrmax,tim,feval,fevalmax,conv,
			testthf,dampingon,*ci,fail;
	real_t rho,res1,res2,rn,reltolpar,abstolpar,abstolres,stap,normx,
			**jac,*pr,*aid,*sol,*fu2,aux[6];

	ci=allocate_integer_vector(1,n);
	pr=allocate_real_vector(1,n);
	aid=allocate_real_vector(1,n);
	sol=allocate_real_vector(1,n);
	fu2=allocate_real_vector(1,m);
	jac=allocate_real_matrix(1,m+1,1,n);

	itmax=fevalmax=in[5];
	aux[2]=n*in[0];
	tim=in[7];
	reltolpar=in[1]*in[1];
	abstolpar=in[2]*in[2];
	abstolres=in[4]*in[4];
	inrmax=in[6];
	dupvec(1,n,0,pr,par);
	if (m < n)
		for (i=1; i<=n; i++) jac[m+1][i]=0.0;
	text=4;
	mit=0;
	testthf=1;
	res2=stap=out[5]=out[6]=out[7]=0.0;
	(*funct)(m,n,par,fu2);
	rn=vecvec(1,m,0,fu2,fu2);
	out[3]=sqrt(rn);
	feval=1;
	dampingon=0;
	fail=0;
	it=1;
	do {
		out[5]=it;
		(*jacobian)(m,n,par,fu2,jac);
		if (!testthf) {
			text=7;
			fail=1;
			break;
		}
		lsqortdec(jac,m,n,aux,aid,ci);
		if (aux[3] != n) {
			text=5;
			fail=1;
			break;
		}
		lsqsol(jac,m,n,aid,ci,fu2);
		dupvec(1,n,0,sol,fu2);
		stap=vecvec(1,n,0,sol,sol);
		rho=2.0;
		normx=vecvec(1,n,0,par,par);
		if (stap > reltolpar*normx+abstolpar || it == 1 && stap > 0.0) {
			inr=0;
			do {
				rho /= 2.0;
				if (inr > 0) {
					res1=res2;
					dupvec(1,m,0,rv,fu2);
					dampingon = inr > 1;
				}
				for (i=1; i<=n; i++) pr[i]=par[i]-sol[i]*rho;
				feval++;
				if (!(*funct)(m,n,pr,fu2)) {
					text=6;
					fail=1;
					break;
				}
				res2=vecvec(1,m,0,fu2,fu2);
				conv = inr >= inrmax;
				inr++;
			} while ((inr == 1) ? (dampingon || res2 >= rn) :
						(!conv && (rn <= res1 || res2 < res1)));
			if (fail) break;
			if (conv) {
				mit++;
				if (mit < tim) conv=0;
			} else
				mit=0;
			if (inr > 1) {
				rho *= 2.0;
				elmvec(1,n,0,par,sol,-rho);
				rn=res1;
				if (inr > 2) out[7]=it;
			} else {
				dupvec(1,n,0,par,pr);
				rn=res2;
				dupvec(1,m,0,rv,fu2);
			}
			if (rn <= abstolres) {
				text=1;
				itmax=it;
			} else
				if (conv && inrmax > 0) {
					text=3;
					itmax=it;
				} else
					dupvec(1,m,0,fu2,rv);
		} else {
			text=2;
			rho=1.0;
			itmax=it;
		}
		it++;
	} while (it <= itmax && feval < fevalmax);
	if (!fail) {
		lsqinv(jac,n,aid,ci);
		for (i=1; i<=n; i++) {
			jjinv[i][i]=jac[i][i];
			for (j=i+1; j<=n; j++) jjinv[i][j]=jjinv[j][i]=jac[i][j];
		}
	}
	out[6]=sqrt(stap)*rho;
	out[2]=sqrt(rn);
	out[4]=feval;
	out[1]=text;
	out[8]=aux[3];
	out[9]=aux[5];
	free_integer_vector(ci,1);
	free_real_vector(pr,1);
	free_real_vector(aid,1);
	free_real_vector(sol,1);
	free_real_vector(fu2,1);
	free_real_matrix(jac,1,m+1,1);
}
Esempio n. 25
0
/*-------------------------------------------------------------------------------
 calculate the least squares solution of an overdetermined system of nonlinear equations
 with Marquardt's method 

-------------------------------------------------------------------------------*/
void Ti_Optimization::MarquardtforCylinderFitting(
			   int m,
			   int n, 
			   double**g_pnt,
			   double* const par, 
			   double*& g, 
			   double**v,
			   int (*funct)(int m, int n, double* const par, double* g,double**g_pnt),
			   void (*jacobian)(int m, int n, double* const par, double*& g, double **jac,double**g_pnt),
			   double in[], 
			   double out[]
			   )
{
	int		maxfe,fe,it,i,j,err,emergency;
	double	vv,ww,w,mu,res,fpar,fparpres,lambda,lambdamin,p,pw,reltolres,
			abstolres,em[8],*val,*b,*bb,*parpres,**jac,temp;

	val		= allocate_real_vector(1,n);
	b		= allocate_real_vector(1,n);
	bb		= allocate_real_vector(1,n);
	parpres = allocate_real_vector(1,n);
	jac		= allocate_real_matrix(1,m,1,n);
	assert( (val != NULL) &&
		    (b   != NULL) &&
			(bb  != NULL) &&
			(parpres!= NULL)&&
			(jac != NULL)
			);
	vv      = 10.0;
	w		= 0.5;
	mu		= 0.01;
	ww		= (in[6] < 1.0e-7) ? 1.0e-8 : 1.0e-1*in[6];
	em[0] = em[2] = em[6] = in[0];
	em[4] = 10*n;
	reltolres =in[3];
	abstolres=in[4]*in[4];
	maxfe=(int)in[5];
	err=0;
	fe=it=1;
	p=fpar=res=0.0;
	pw = -log(ww*in[0])/2.30;
	if (!(*funct)(m,n,par,g,g_pnt))
	{
		err=3;
		out[4]=fe;
		out[5]=it-1;
		out[1]=err;
		free_real_vector(val,1);
		free_real_vector(b,1);
		free_real_vector(bb,1);
		free_real_vector(parpres,1);
		free_real_matrix(jac,1,m,1);
		return;
	}
	fpar=vecvec(1,m,0,g,g);// norm of residual vector
	out[3]=sqrt(fpar);
	emergency=0;
	it=1;
	do {
 		(*jacobian)(m,n,par,g,jac,g_pnt);
		i = qrisngvaldec(jac,m,n,val,v,em);
		if (it == 1)
			lambda = in[6]*vecvec(1,n,0,val,val);
		else
			if (p == 0.0)
				lambda *= w;
		for (i=1; i<=n; i++) 
			b[i] = val[i]*tamvec(1,m,i,jac,g);
		while (1)
		{
			for (i=1; i<=n; i++) 
				bb[i]=b[i]/(val[i]*val[i]+lambda);
			for (i=1; i<=n; i++)
				parpres[i]=par[i]-matvec(1,n,i,v,bb);

	     	//normalization ,this section only used for cylinder fitting, 
			//when it is used in other situations,it should be removed
			  temp = sqrt(parpres[4]*parpres[4]+parpres[5]*parpres[5]+parpres[6]*parpres[6]);
			  parpres[4] /= temp;
			  parpres[5] /= temp;
			  parpres[6] /= temp;
            //end normalization
			fe++;
			if (fe >= maxfe)
				err=1;
			else
				if (!(*funct)(m,n,parpres,g,g_pnt))
					err=2;
			if (err != 0) 
			{
				emergency = 1;
				break;
			}
			fparpres=vecvec(1,m,0,g,g);
			res=fpar-fparpres;
			if (res < mu*vecvec(1,n,0,b,bb)) 
			{
				p += 1.0;
				lambda *= vv;
				if (p == 1.0) 
				{
					lambdamin=ww*vecvec(1,n,0,val,val);
					if (lambda < lambdamin)
						lambda=lambdamin;
				}
				if (p >= pw)
				{
					err=4;
					emergency=1;
					break;
				}
			} // end if
			else 
			{

				dupvec(1,n,0,par,parpres);
				fpar=fparpres;
				break;
			} // end else
		} // end while
		if (emergency) 
			break;
		it++;
	} 
	while ( 
			(fpar > abstolres) &&   
		    (res > reltolres*fpar+abstolres)
		  );

	for (i=1; i<=n; i++) 
		mulcol(1,n,i,i,jac,v,1.0/(val[i]+in[0]));
	for (i=1; i<=n; i++)
	{
		for (j=1; j<=i; j++) 
			v[i][j]=v[j][i]=mattam(1,n,i,j,jac,jac);
		lambda=lambdamin=val[1];
	}
	for (i=2; i<=n; i++)
	{
		if (val[i] > lambda)
			lambda=val[i];
		else
		{
			if (val[i] < lambdamin) 
				lambdamin=val[i];
		}
	}
	temp=lambda/(lambdamin+in[0]);
	out[7]=temp*temp;
	out[2]=sqrt(fpar);
	out[6]=sqrt(res+fpar)-out[2];
	out[4]=fe;
	out[5]=it-1;
	out[1]=err;

    if(val != NULL)
	{
		free_real_vector(val,1);
		val = NULL;
	}
	if (b != NULL)
	{
		free_real_vector(b,1);
		b = NULL;
	}
	if(bb!=NULL)
	{
		free_real_vector(bb,1);
		bb  = NULL;
	}
	if(parpres != NULL)
	{
		free_real_vector(parpres,1);
		parpres = NULL;
	}
	if (jac != NULL)
	{
		free_real_matrix(jac,1,m,1);
		jac = NULL;
	}
}