void lincopy(struct dvec *ov, double *newscale, int newlen, struct dvec *oldscale) { struct dvec *v; double *nd; if (!isreal(ov)) { fprintf(cp_err, "Warning: %s is not real\n", ov->v_name); return; } if (ov->v_length < oldscale->v_length) { fprintf(cp_err, "Warning: %s is too short\n", ov->v_name); return; } v = alloc(struct dvec); v->v_name = copy(ov->v_name); v->v_type = ov->v_type; v->v_flags = ov->v_flags; v->v_flags |= VF_PERMANENT; v->v_length = newlen; nd = (double *) tmalloc(newlen * sizeof (double)); if (!ft_interpolate(ov->v_realdata, nd, oldscale->v_realdata, oldscale->v_length, newscale, newlen, 1)) { fprintf(cp_err, "Error: can't interpolate %s\n", ov->v_name); return; } v->v_realdata = nd; vec_new(v); return; }
int fourier(wordlist *wl, struct plot *current_plot) { struct dvec *time, *vec; struct pnode *pn, *names; double *ff, fundfreq, *data = NULL; int nfreqs, fourgridsize, polydegree; double *freq, *mag, *phase, *nmag, *nphase; /* Outputs from CKTfour */ double thd, *timescale = NULL; char *s; int i, err, fw; char xbuf[20]; int shift; int rv = 1; char newvecname[32]; struct dvec *n; int newveccount = 1; static int callstof = 1; if (!current_plot) return 1; sprintf(xbuf, "%1.1e", 0.0); shift = (int) strlen(xbuf) - 7; if (!current_plot || !current_plot->pl_scale) { fprintf(cp_err, "Error: no vectors loaded.\n"); return 1; } if (!cp_getvar("nfreqs", CP_NUM, &nfreqs) || nfreqs < 1) nfreqs = 10; if (!cp_getvar("polydegree", CP_NUM, &polydegree) || polydegree < 0) polydegree = 1; if (!cp_getvar("fourgridsize", CP_NUM, &fourgridsize) || fourgridsize < 1) fourgridsize = DEF_FOURGRIDSIZE; time = current_plot->pl_scale; if (!isreal(time)) { fprintf(cp_err, "Error: fourier needs real time scale\n"); return 1; } s = wl->wl_word; if ((ff = ft_numparse(&s, FALSE)) == NULL || (*ff <= 0.0)) { fprintf(cp_err, "Error: bad fund freq %s\n", wl->wl_word); return 1; } fundfreq = *ff; freq = TMALLOC(double, nfreqs); mag = TMALLOC(double, nfreqs); phase = TMALLOC(double, nfreqs); nmag = TMALLOC(double, nfreqs); nphase = TMALLOC(double, nfreqs); wl = wl->wl_next; names = ft_getpnames(wl, TRUE); for (pn = names; pn; pn = pn->pn_next) { vec = ft_evaluate(pn); for (; vec; vec = vec->v_link2) { if (vec->v_length != time->v_length) { fprintf(cp_err, "Error: lengths don't match: %d, %d\n", vec->v_length, time->v_length); continue; } if (!isreal(vec)) { fprintf(cp_err, "Error: %s isn't real!\n", vec->v_name); continue; } if (polydegree) { double *dp, d; /* Build the grid... */ timescale = TMALLOC(double, fourgridsize); data = TMALLOC(double, fourgridsize); dp = ft_minmax(time, TRUE); /* Now get the last fund freq... */ d = 1 / fundfreq; /* The wavelength... */ if (dp[1] - dp[0] < d) { fprintf(cp_err, "Error: wavelength longer than time span\n"); goto done; } else if (dp[1] - dp[0] > d) { dp[0] = dp[1] - d; } d = (dp[1] - dp[0]) / fourgridsize; for (i = 0; i < fourgridsize; i++) timescale[i] = dp[0] + i * d; /* Now interpolate the data... */ if (!ft_interpolate(vec->v_realdata, data, time->v_realdata, vec->v_length, timescale, fourgridsize, polydegree)) { fprintf(cp_err, "Error: can't interpolate\n"); goto done; } } else { fourgridsize = vec->v_length; data = vec->v_realdata; timescale = time->v_realdata; } err = CKTfour(fourgridsize, nfreqs, &thd, timescale, data, fundfreq, freq, mag, phase, nmag, nphase); if (err != OK) { ft_sperror(err, "fourier"); goto done; } fprintf(cp_out, "Fourier analysis for %s:\n", vec->v_name); fprintf(cp_out, " No. Harmonics: %d, THD: %g %%, Gridsize: %d, Interpolation Degree: %d\n\n", nfreqs, thd, fourgridsize, polydegree); /* Each field will have width cp_numdgt + 6 (or 7 * with HP-UX) + 1 if there is a - sign. */ fw = ((cp_numdgt > 0) ? cp_numdgt : 6) + 5 + shift; fprintf(cp_out, "Harmonic %-*s %-*s %-*s %-*s %-*s\n", fw, "Frequency", fw, "Magnitude", fw, "Phase", fw, "Norm. Mag", fw, "Norm. Phase"); fprintf(cp_out, "-------- %-*s %-*s %-*s %-*s %-*s\n", fw, "---------", fw, "---------", fw, "-----", fw, "---------", fw, "-----------"); for (i = 0; i < nfreqs; i++) { char *pnumfr, *pnumma, *pnumph, *pnumnm, *pnumnp; pnumfr = pnum(freq[i]); pnumma = pnum(mag[i]); pnumph = pnum(phase[i]); pnumnm = pnum(nmag[i]); pnumnp = pnum(nphase[i]); fprintf(cp_out, " %-4d %-*s %-*s %-*s %-*s %-*s\n", i, fw, pnumfr, fw, pnumma, fw, pnumph, fw, pnumnm, fw, pnumnp); tfree(pnumfr); tfree(pnumma); tfree(pnumph); tfree(pnumnm); tfree(pnumnp); } fputs("\n", cp_out); /* generate name for new vector, using vec->name */ sprintf(newvecname, "fourier%d%d", callstof, newveccount); /* create and assign a new vector n */ /* with size 3 * nfreqs in current plot */ n = alloc(struct dvec); ZERO(n, struct dvec); n->v_name = copy(newvecname); n->v_type = SV_NOTYPE; n->v_flags = (VF_REAL | VF_PERMANENT); n->v_length = 3 * nfreqs; n->v_numdims = 2; n->v_dims[0] = 3; n->v_dims[1] = nfreqs; n->v_realdata = TMALLOC(double, n->v_length); vec_new(n); /* store data in vector: freq, mag, phase */ for (i = 0; i < nfreqs; i++) { n->v_realdata[i] = freq[i]; n->v_realdata[i + nfreqs] = mag[i]; n->v_realdata[i + 2 * nfreqs] = phase[i]; } newveccount++; if (polydegree) { tfree(timescale); tfree(data); } timescale = NULL; data = NULL; } }
/* This is a strange function. What we do is fit a polynomial to the * curve, of degree $polydegree, and then evaluate it at the points * in the time scale. What we do is this: for every set of points that * we fit a polynomial to, fill in as much of the new vector as we can * (i.e, between the last value of the old scale we went from to this * one). At the ends we just use what we have... We have to detect * badness here too... * * Note that we pass arguments differently for this one cx_ function... */ void * cx_interpolate(void *data, short int type, int length, int *newlength, short int *newtype, struct plot *pl, struct plot *newpl, int grouping) { struct dvec *ns, *os; double *d; int degree; register int i, oincreasing = 1, nincreasing = 1; int base; if (grouping == 0) grouping = length; /* First do some sanity checks. */ if (!pl || !pl->pl_scale || !newpl || !newpl->pl_scale) { fprintf(cp_err, "Internal error: cx_interpolate: bad scale\n"); return (NULL); } ns = newpl->pl_scale; os = pl->pl_scale; if (iscomplex(ns)) { fprintf(cp_err, "Error: new scale has complex data\n"); return (NULL); } if (iscomplex(os)) { fprintf(cp_err, "Error: old scale has complex data\n"); return (NULL); } if (length != os->v_length) { fprintf(cp_err, "Error: lengths don't match\n"); return (NULL); } if (type != VF_REAL) { fprintf(cp_err, "Error: argument has complex data\n"); return (NULL); } /* Now make sure that either both scales are strictly increasing * or both are strictly decreasing. */ if (os->v_realdata[0] < os->v_realdata[1]) oincreasing = TRUE; else oincreasing = FALSE; for (i = 0; i < os->v_length - 1; i++) if ((os->v_realdata[i] < os->v_realdata[i + 1]) != oincreasing) { fprintf(cp_err, "Error: old scale not monotonic\n"); return (NULL); } if (ns->v_realdata[0] < ns->v_realdata[1]) nincreasing = TRUE; else nincreasing = FALSE; for (i = 0; i < ns->v_length - 1; i++) if ((ns->v_realdata[i] < ns->v_realdata[i + 1]) != nincreasing) { fprintf(cp_err, "Error: new scale not monotonic\n"); return (NULL); } *newtype = VF_REAL; *newlength = ns->v_length; d = alloc_d(ns->v_length); if (!cp_getvar("polydegree", VT_NUM, (void *) °ree)) degree = 1; for (base = 0; base < length; base += grouping) { if (!ft_interpolate((double *) data + base, d + base, os->v_realdata + base, grouping, ns->v_realdata + base, grouping, degree)) { tfree(d); return (NULL); } } return ((void *) d); }