extern "C" int scanhash_fugue256(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t start_nonce = pdata[19]++; unsigned int intensity = (device_sm[device_map[thr_id]] > 500) ? 22 : 19; uint32_t throughput = device_intensity(device_map[thr_id], __func__, 1 << intensity); // 256*256*8 throughput = min(throughput, max_nonce - start_nonce); if (opt_benchmark) ((uint32_t*)ptarget)[7] = 0xf; // init if(!init[thr_id]) { fugue256_cpu_init(thr_id, throughput); init[thr_id] = true; } // Endian Drehung ist notwendig uint32_t endiandata[20]; for (int kk=0; kk < 20; kk++) be32enc(&endiandata[kk], pdata[kk]); // Context mit dem Endian gedrehten Blockheader vorbereiten (Nonce wird später ersetzt) fugue256_cpu_setBlock(thr_id, endiandata, (void*)ptarget); do { // GPU uint32_t foundNounce = 0xFFFFFFFF; fugue256_cpu_hash(thr_id, throughput, pdata[19], NULL, &foundNounce); if(foundNounce < 0xffffffff) { uint32_t hash[8]; const uint32_t Htarg = ptarget[7]; endiandata[19] = SWAP32(foundNounce); sph_fugue256_context ctx_fugue; sph_fugue256_init(&ctx_fugue); sph_fugue256 (&ctx_fugue, endiandata, 80); sph_fugue256_close(&ctx_fugue, &hash); if (hash[7] <= Htarg && fulltest(hash, ptarget)) { pdata[19] = foundNounce; *hashes_done = foundNounce - start_nonce + 1; return 1; } else { applog(LOG_INFO, "GPU #%d: result for nonce $%08X does not validate on CPU!", thr_id, foundNounce); } } pdata[19] += throughput; } while (!work_restart[thr_id].restart && ((uint64_t)max_nonce > ((uint64_t)(pdata[19]) + (uint64_t)throughput))); *hashes_done = pdata[19] - start_nonce + 1; return 0; }
int scanhash_fugue256(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t _ALIGN(64) endiandata[20]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; uint32_t start_nonce = pdata[19]++; int intensity = (device_sm[device_map[thr_id]] > 500) ? 22 : 19; uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); if (init[thr_id]) throughput = min(throughput, max_nonce - start_nonce); if (opt_benchmark) ptarget[7] = 0xf; // init if(!init[thr_id]) { cudaSetDevice(device_map[thr_id]); fugue256_cpu_init(thr_id, throughput); init[thr_id] = true; } // Endian for (int kk=0; kk < 20; kk++) be32enc(&endiandata[kk], pdata[kk]); fugue256_cpu_setBlock(thr_id, endiandata, (void*)ptarget); do { // GPU uint32_t foundNounce = UINT32_MAX; fugue256_cpu_hash(thr_id, throughput, pdata[19], NULL, &foundNounce); *hashes_done = pdata[19] - start_nonce + throughput; if (foundNounce < UINT32_MAX && bench_algo < 0) { uint32_t vhash[8]; sph_fugue256_context ctx_fugue; endiandata[19] = SWAP32(foundNounce); sph_fugue256_init(&ctx_fugue); sph_fugue256 (&ctx_fugue, endiandata, 80); sph_fugue256_close(&ctx_fugue, &vhash); if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) { work_set_target_ratio(work, vhash); pdata[19] = foundNounce; return 1; } else { gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNounce); } } if ((uint64_t) throughput + pdata[19] >= max_nonce) { pdata[19] = max_nonce; break; } pdata[19] += throughput; } while (!work_restart[thr_id].restart); *hashes_done = pdata[19] - start_nonce; return 0; }