Esempio n. 1
0
static void
addface(			/* add a face to a cube */
	register CUBE  *cu,
	OBJECT	obj
)
{

	if (o_face(objptr(obj), cu) == O_MISS)
		return;

	if (istree(cu->cutree)) {
		CUBE  cukid;			/* do children */
		int  i, j;
		cukid.cusize = cu->cusize * 0.5;
		for (i = 0; i < 8; i++) {
			cukid.cutree = octkid(cu->cutree, i);
			for (j = 0; j < 3; j++) {
				cukid.cuorg[j] = cu->cuorg[j];
				if ((1<<j) & i)
					cukid.cuorg[j] += cukid.cusize;
			}
			addface(&cukid, obj);
			octkid(cu->cutree, i) = cukid.cutree;
		}
		return;
	}
	if (isempty(cu->cutree)) {
		OBJECT	oset[2];		/* singular set */
		oset[0] = 1; oset[1] = obj;
		cu->cutree = fullnode(oset);
		return;
	}
					/* add to full node */
	add2full(cu, obj);
}
// Driver program to test above functions
int main()
{
    struct node* root = NULL;
    struct Queue* queue = createQueue(SIZE);
    int i;

    for(i = 1; i <= 12; ++i)
        insert(&root,i, queue);
    printf("The tree elements are: ");
    levelOrder(root);
    printf("\nThe number of leaf nodes are %d",leafnode(root));
    printf("\nThe number of leaf nodes are %d",fullnode(root));
    return 0;
}
Esempio n. 3
0
static OCTREE
getfullnode()			/* get a set, return fullnode */
{
	OBJECT	set[MAXSET+1];
	register int  i;
	register long  m;

	if ((set[0] = ogetint(objsize)) > MAXSET)
		octerror(USER, "bad set in getfullnode");
	for (i = 1; i <= set[0]; i++) {
		m = ogetint(objsize) + objorig;
		if ((set[i] = m) != m)
			octerror(USER, "too many objects");
	}
	return(fullnode(set));
}	
Esempio n. 4
0
static void
add2full(			/* add object to full node */
	register CUBE  *cu,
	OBJECT	obj
)
{
	OCTREE	ot;
	OBJECT	oset[MAXSET+1];
	CUBE  cukid;
	register int  i, j;

	objset(oset, cu->cutree);
	cukid.cusize = cu->cusize * 0.5;

	if (oset[0] < objlim || cukid.cusize <
			(oset[0] < MAXSET ? mincusize : mincusize/256.0)) {
						/* add to set */
		if (oset[0] >= MAXSET) {
			sprintf(errmsg, "set overflow in addobject (%s)",
					objptr(obj)->oname);
			error(INTERNAL, errmsg);
		}
		insertelem(oset, obj);
		cu->cutree = fullnode(oset);
		return;
	}
					/* subdivide cube */
	if ((ot = octalloc()) == EMPTY)
		error(SYSTEM, "out of octree space");
					/* assign subcubes */
	for (i = 0; i < 8; i++) {
		cukid.cutree = EMPTY;
		for (j = 0; j < 3; j++) {
			cukid.cuorg[j] = cu->cuorg[j];
			if ((1<<j) & i)
				cukid.cuorg[j] += cukid.cusize;
		}
		for (j = 1; j <= oset[0]; j++)
			addface(&cukid, oset[j]);
		addface(&cukid, obj);
					/* returned node */
		octkid(ot, i) = cukid.cutree;
	}
	cu->cutree = ot;
}
Esempio n. 5
0
static void
addobject(			/* add an object to a cube */
	register CUBE  *cu,
	OBJECT	obj
)
{
	int  inc;

	inc = (*ofun[objptr(obj)->otype].funp)(objptr(obj), cu);

	if (inc == O_MISS)
		return;				/* no intersection */

	if (istree(cu->cutree)) {
		CUBE  cukid;			/* do children */
		int  i, j;
		cukid.cusize = cu->cusize * 0.5;
		for (i = 0; i < 8; i++) {
			cukid.cutree = octkid(cu->cutree, i);
			for (j = 0; j < 3; j++) {
				cukid.cuorg[j] = cu->cuorg[j];
				if ((1<<j) & i)
					cukid.cuorg[j] += cukid.cusize;
			}
			addobject(&cukid, obj);
			octkid(cu->cutree, i) = cukid.cutree;
		}
		return;
	}
	if (isempty(cu->cutree)) {
		OBJECT  oset[2];		/* singular set */
		oset[0] = 1; oset[1] = obj;
		cu->cutree = fullnode(oset);
		return;
	}
					/* add to full node */
	add2full(cu, obj, inc);
}
Esempio n. 6
0
static OCTREE
cvmeshoct(			/* convert triangles in subtree */
	OCTREE	ot
)
{
	int	i;

	if (isempty(ot))
		return(EMPTY);

	if (isfull(ot)) {
		OBJECT	oset1[MAXSET+1];
		OBJECT	oset2[MAXSET+1];
		objset(oset1, ot);
		oset2[0] = 0;
		for (i = oset1[0]; i > 0; i--)
			insertelem(oset2, cvmeshtri(oset1[i]));
		return(fullnode(oset2));
	}

	for (i = 8; i--; )
		octkid(ot, i) = cvmeshoct(octkid(ot, i));
	return(ot);
}
Esempio n. 7
0
static void
add2full(			/* add object to full node */
	register CUBE  *cu,
	OBJECT	obj,
	int  inc
)
{
	OCTREE	ot;
	OBJECT	oset[MAXSET+1];
	CUBE  cukid;
	unsigned char  inflg[(MAXSET+7)/8], volflg[(MAXSET+7)/8];
	register int  i, j;

	objset(oset, cu->cutree);
	cukid.cusize = cu->cusize * 0.5;

	if (inc==O_IN || oset[0] < objlim || cukid.cusize <
			(oset[0] < MAXSET ? mincusize : mincusize/256.0)) {
						/* add to set */
		if (oset[0] >= MAXSET) {
			sprintf(errmsg, "set overflow in addobject (%s)",
					objptr(obj)->oname);
			error(INTERNAL, errmsg);
		}
		insertelem(oset, obj);
		cu->cutree = fullnode(oset);
		return;
	}
					/* subdivide cube */
	if ((ot = octalloc()) == EMPTY)
		error(SYSTEM, "out of octree space");
					/* mark volumes */
	j = (oset[0]+7)>>3;
	while (j--)
		volflg[j] = inflg[j] = 0;
	for (j = 1; j <= oset[0]; j++)
		if (isvolume(objptr(oset[j])->otype)) {
			setbit(volflg,j-1);
			if ((*ofun[objptr(oset[j])->otype].funp)
					(objptr(oset[j]), cu) == O_IN)
				setbit(inflg,j-1);
		}
					/* assign subcubes */
	for (i = 0; i < 8; i++) {
		cukid.cutree = EMPTY;
		for (j = 0; j < 3; j++) {
			cukid.cuorg[j] = cu->cuorg[j];
			if ((1<<j) & i)
				cukid.cuorg[j] += cukid.cusize;
		}
					/* surfaces first */
		for (j = 1; j <= oset[0]; j++)
			if (!tstbit(volflg,j-1))
				addobject(&cukid, oset[j]);
					/* then this object */
		addobject(&cukid, obj);
					/* then partial volumes */
		for (j = 1; j <= oset[0]; j++)
			if (tstbit(volflg,j-1) &&
					!tstbit(inflg,j-1))
				addobject(&cukid, oset[j]);
					/* full volumes last */
		for (j = 1; j <= oset[0]; j++)
			if (tstbit(inflg,j-1))
				addobject(&cukid, oset[j]);
					/* returned node */
		octkid(ot, i) = cukid.cutree;
	}
	cu->cutree = ot;
}