Esempio n. 1
0
void Tr21Stokes :: computeLoadVector(FloatArray &answer, BodyLoad *load, CharType type, ValueModeType mode, TimeStep *tStep)
{
    if ( type != ExternalForcesVector ) {
        answer.clear();
        return;
    }

    FluidDynamicMaterial *mat = static_cast< FluidCrossSection * >( this->giveCrossSection() )->giveFluidMaterial();
    FloatArray N, gVector, temparray(12);

    load->computeComponentArrayAt(gVector, tStep, VM_Total);
    temparray.zero();
    if ( gVector.giveSize() ) {
        for ( GaussPoint *gp: *integrationRulesArray [ 0 ] ) {
            const FloatArray &lcoords = gp->giveNaturalCoordinates();

            double rho = mat->give('d', gp);
            double detJ = fabs( this->interpolation_quad.giveTransformationJacobian( lcoords, FEIElementGeometryWrapper(this) ) );
            double dA = detJ * gp->giveWeight();

            this->interpolation_quad.evalN( N, lcoords, FEIElementGeometryWrapper(this) );
            for ( int j = 0; j < 6; j++ ) {
                temparray(2 * j)     += N(j) * rho * gVector(0) * dA;
                temparray(2 * j + 1) += N(j) * rho * gVector(1) * dA;
            }
        }
    }

    answer.resize(15);
    answer.zero();
    answer.assemble(temparray, this->momentum_ordering);
}
Esempio n. 2
0
void Tr21Stokes :: computeBodyLoadVectorAt(FloatArray &answer, Load *load, TimeStep *tStep)
{
    IntegrationRule *iRule = this->integrationRulesArray [ 0 ];
    GaussPoint *gp;
    FloatArray N, gVector, *lcoords, temparray(15);
    double dA, detJ, rho;

    load->computeComponentArrayAt(gVector, tStep, VM_Total);
    temparray.zero();
    if ( gVector.giveSize() ) {
        for ( int k = 0; k < iRule->getNumberOfIntegrationPoints(); k++ ) {
            gp = iRule->getIntegrationPoint(k);
            lcoords = gp->giveCoordinates();

            rho = this->giveMaterial()->giveCharacteristicValue(MRM_Density, gp, tStep);
            detJ = fabs( this->interpolation_quad.giveTransformationJacobian(* lcoords, FEIElementGeometryWrapper(this)) );
            dA = detJ * gp->giveWeight();

            this->interpolation_quad.evalN(N, * lcoords, FEIElementGeometryWrapper(this));
            for ( int j = 0; j < 6; j++ ) {
                temparray(2 * j)     += N(j) * rho * gVector(0) * dA;
                temparray(2 * j + 1) += N(j) * rho * gVector(1) * dA;
            }
        }
    }

    answer.resize(15);
    answer.zero();
    answer.assemble( temparray, this->ordering );
}
Esempio n. 3
0
void
tet21ghostsolid :: computeLoadVector(FloatArray &answer, Load *load, CharType type, ValueModeType mode, TimeStep *tStep)
{

    answer.resize(64);
    answer.zero();

    if ( type != ExternalForcesVector ) {
        answer.resize(0);
        return;
    }

#ifdef __FM_MODULE
    FluidDynamicMaterial *mat = static_cast< FluidCrossSection * >( this->giveCrossSection() )->giveFluidMaterial();
#endif
    IntegrationRule *iRule = this->integrationRulesArray [ 0 ];
    FloatArray N, gVector, temparray(30), dNv, u, inc, u_prev, vload;
    FloatMatrix dNx, G;

    load->computeComponentArrayAt(gVector, tStep, VM_Total);
    temparray.zero();

    vload.resize(4);
    vload.zero();

    this->giveDisplacementsIncrementData(u_prev, u, inc, tStep);

    for ( int k = 0; k < iRule->giveNumberOfIntegrationPoints(); k++ ) {
        GaussPoint *gp = iRule->getIntegrationPoint(k);
        FloatArray *lcoords = gp->giveNaturalCoordinates();

        double detJ = fabs( this->interpolation.giveTransformationJacobian( * lcoords, FEIElementGeometryWrapper(this) ) );
        double dA = detJ * gp->giveWeight();

        // Body load
        if ( gVector.giveSize() ) {
#ifdef __FM_MODULE
            double rho = mat->give('d', gp);
#else
            OOFEM_ERROR("Missing FM module");
            double rho = 1.0;
#endif
            this->interpolation.evalN( N, * lcoords, FEIElementGeometryWrapper(this) );

            for ( int j = 0; j < N.giveSize(); j++ ) {
                temparray(3 * j + 0) += N(j) * rho * gVector(0) * dA;
                temparray(3 * j + 1) += N(j) * rho * gVector(1) * dA;
                temparray(3 * j + 2) += N(j) * rho * gVector(2) * dA;
            }
        }

        // "load" from previous step
        this->interpolation.evaldNdx( dNx, * gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(this) );
        this->interpolation_lin.evalN( N, * gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(this) );

        dNv.resize(30);
        for (int k = 0; k<dNx.giveNumberOfColumns(); k++) {
            dNv.at(k*3+1) = dNx.at(1,k+1);
            dNv.at(k*3+2) = dNx.at(2,k+1);
            dNv.at(k*3+3) = dNx.at(3,k+1);
        }

        G.plusDyadUnsym(N, dNv, dA);
        FloatMatrix GT;
        GT.beTranspositionOf(G);

        vload.plusProduct(GT, u_prev, -0.0 );
        //vload.printYourself();

    }

#if USEUNCOUPLED == 1
    // Totaly uncoupled
    answer.assemble(temparray, this->momentum_ordering);
#else
    answer.assemble(temparray, this->ghostdisplacement_ordering);
    answer.assemble(vload, this->conservation_ordering);
#endif



    // answer.printYourself();
}