/* Called after register allocation to add any instructions needed for the epilogue. Using an epilogue insn is favored compared to putting all of the instructions in output_function_epilogue(), since it allows the scheduler to intermix instructions with the restores of the caller saved registers. In some cases, it might be necessary to emit a barrier instruction as the first insn to prevent such scheduling. */ void fr30_expand_epilogue (void) { int regno; /* Perform the inversion operations of the prologue. */ gcc_assert (current_frame_info.initialised); /* Pop local variables and arguments off the stack. If frame_pointer_needed is TRUE then the frame pointer register has actually been used as a frame pointer, and we can recover the stack pointer from it, otherwise we must unwind the stack manually. */ if (current_frame_info.frame_size > 0) { if (current_frame_info.save_fp && frame_pointer_needed) { emit_insn (gen_leave_func ()); current_frame_info.save_fp = 0; } else if (current_frame_info.frame_size <= 508) emit_insn (gen_add_to_stack (GEN_INT (current_frame_info.frame_size))); else { rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM); emit_insn (gen_movsi (tmp, GEN_INT (current_frame_info.frame_size))); emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp)); } } if (current_frame_info.save_fp) emit_insn (gen_movsi_pop (frame_pointer_rtx)); /* Pop all the registers that were pushed. */ if (current_frame_info.save_rp) emit_insn (gen_movsi_pop (gen_rtx_REG (Pmode, RETURN_POINTER_REGNUM))); for (regno = 0; regno < STACK_POINTER_REGNUM; regno ++) if (current_frame_info.gmask & (1 << regno)) emit_insn (gen_movsi_pop (gen_rtx_REG (Pmode, regno))); if (current_frame_info.pretend_size) emit_insn (gen_add_to_stack (GEN_INT (current_frame_info.pretend_size))); /* Reset state info for each function. */ current_frame_info = zero_frame_info; emit_jump_insn (gen_return_from_func ()); }
void moxie_expand_epilogue (void) { int regno; rtx reg; if (cfun->machine->callee_saved_reg_size != 0) { reg = gen_rtx_REG (Pmode, MOXIE_R12); if (cfun->machine->callee_saved_reg_size <= 255) { emit_move_insn (reg, hard_frame_pointer_rtx); emit_insn (gen_subsi3 (reg, reg, GEN_INT (cfun->machine->callee_saved_reg_size))); } else { emit_move_insn (reg, GEN_INT (-cfun->machine->callee_saved_reg_size)); emit_insn (gen_addsi3 (reg, reg, hard_frame_pointer_rtx)); } for (regno = FIRST_PSEUDO_REGISTER; regno-- > 0; ) if (!fixed_regs[regno] && !call_used_regs[regno] && df_regs_ever_live_p (regno)) { rtx preg = gen_rtx_REG (Pmode, regno); emit_insn (gen_movsi_pop (reg, preg)); } } emit_jump_insn (gen_returner ()); }
rtx fr30_move_double (rtx * operands) { rtx src = operands[1]; rtx dest = operands[0]; enum rtx_code src_code = GET_CODE (src); enum rtx_code dest_code = GET_CODE (dest); enum machine_mode mode = GET_MODE (dest); rtx val; start_sequence (); if (dest_code == REG) { if (src_code == REG) { int reverse = (REGNO (dest) == REGNO (src) + 1); /* We normally copy the low-numbered register first. However, if the first register of operand 0 is the same as the second register of operand 1, we must copy in the opposite order. */ emit_insn (gen_rtx_SET (VOIDmode, operand_subword (dest, reverse, TRUE, mode), operand_subword (src, reverse, TRUE, mode))); emit_insn (gen_rtx_SET (VOIDmode, operand_subword (dest, !reverse, TRUE, mode), operand_subword (src, !reverse, TRUE, mode))); } else if (src_code == MEM) { rtx addr = XEXP (src, 0); int dregno = REGNO (dest); rtx dest0; rtx dest1; rtx new_mem; /* If the high-address word is used in the address, we must load it last. Otherwise, load it first. */ int reverse = (refers_to_regno_p (dregno, dregno + 1, addr, 0) != 0); gcc_assert (GET_CODE (addr) == REG); dest0 = operand_subword (dest, reverse, TRUE, mode); dest1 = operand_subword (dest, !reverse, TRUE, mode); if (reverse) { emit_insn (gen_rtx_SET (VOIDmode, dest1, adjust_address (src, SImode, 0))); emit_insn (gen_rtx_SET (SImode, dest0, gen_rtx_REG (SImode, REGNO (addr)))); emit_insn (gen_rtx_SET (SImode, dest0, plus_constant (dest0, UNITS_PER_WORD))); new_mem = gen_rtx_MEM (SImode, dest0); MEM_COPY_ATTRIBUTES (new_mem, src); emit_insn (gen_rtx_SET (VOIDmode, dest0, new_mem)); } else { emit_insn (gen_rtx_SET (VOIDmode, dest0, adjust_address (src, SImode, 0))); emit_insn (gen_rtx_SET (SImode, dest1, gen_rtx_REG (SImode, REGNO (addr)))); emit_insn (gen_rtx_SET (SImode, dest1, plus_constant (dest1, UNITS_PER_WORD))); new_mem = gen_rtx_MEM (SImode, dest1); MEM_COPY_ATTRIBUTES (new_mem, src); emit_insn (gen_rtx_SET (VOIDmode, dest1, new_mem)); } } else if (src_code == CONST_INT || src_code == CONST_DOUBLE) { rtx words[2]; split_double (src, &words[0], &words[1]); emit_insn (gen_rtx_SET (VOIDmode, operand_subword (dest, 0, TRUE, mode), words[0])); emit_insn (gen_rtx_SET (VOIDmode, operand_subword (dest, 1, TRUE, mode), words[1])); } } else if (src_code == REG && dest_code == MEM) { rtx addr = XEXP (dest, 0); rtx src0; rtx src1; gcc_assert (GET_CODE (addr) == REG); src0 = operand_subword (src, 0, TRUE, mode); src1 = operand_subword (src, 1, TRUE, mode); emit_insn (gen_rtx_SET (VOIDmode, adjust_address (dest, SImode, 0), src0)); if (REGNO (addr) == STACK_POINTER_REGNUM || REGNO (addr) == FRAME_POINTER_REGNUM) emit_insn (gen_rtx_SET (VOIDmode, adjust_address (dest, SImode, UNITS_PER_WORD), src1)); else { rtx new_mem; /* We need a scratch register to hold the value of 'address + 4'. We ought to allow gcc to find one for us, but for now, just push one of the source registers. */ emit_insn (gen_movsi_push (src0)); emit_insn (gen_movsi_internal (src0, addr)); emit_insn (gen_addsi_small_int (src0, src0, GEN_INT (UNITS_PER_WORD))); new_mem = gen_rtx_MEM (SImode, src0); MEM_COPY_ATTRIBUTES (new_mem, dest); emit_insn (gen_rtx_SET (VOIDmode, new_mem, src1)); emit_insn (gen_movsi_pop (src0)); } } else /* This should have been prevented by the constraints on movdi_insn. */ gcc_unreachable (); val = get_insns (); end_sequence (); return val; }