/* Generates a random mp_int. * max is a *mp_int specifying an upper bound. * rand must be an initialised *mp_int for the result. * the result rand satisfies: 0 < rand < max * */ void gen_random_mpint(mp_int *max, mp_int *rand) { unsigned char *randbuf = NULL; unsigned int len = 0; const unsigned char masks[] = {0xff, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f}; const int size_bits = mp_count_bits(max); len = size_bits / 8; if ((size_bits % 8) != 0) { len += 1; } randbuf = (unsigned char*)m_malloc(len); do { genrandom(randbuf, len); /* Mask out the unrequired bits - mp_read_unsigned_bin expects * MSB first.*/ randbuf[0] &= masks[size_bits % 8]; bytes_to_mp(rand, randbuf, len); /* keep regenerating until we get one satisfying * 0 < rand < max */ } while (!(mp_cmp(rand, max) == MP_LT && mp_cmp_d(rand, 0) == MP_GT)); m_burn(randbuf, len); m_free(randbuf); }
/* * create a change uid capability */ char* mkcap(char *from, char *to) { uchar rand[20]; char *cap; char *key; int nfrom, nto; uchar hash[SHA1dlen]; if(caphashfd < 0) return nil; /* create the capability */ nto = strlen(to); nfrom = strlen(from); cap = emalloc(nfrom+1+nto+1+sizeof(rand)*3+1); sprint(cap, "%s@%s", from, to); genrandom(rand, sizeof(rand)); key = cap+nfrom+1+nto+1; enc64(key, sizeof(rand)*3, rand, sizeof(rand)); /* hash the capability */ hmac_sha1((uchar*)cap, strlen(cap), (uchar*)key, strlen(key), hash, nil); /* give the kernel the hash */ key[-1] = '@'; if(write(caphashfd, hash, SHA1dlen) < 0){ free(cap); return nil; } return cap; }
/* * use the X917 random number generator to create random * numbers (faster than truerand() but not as random). */ ulong fastrand(void) { ulong x; genrandom((uchar*)&x, sizeof x); return x; }
static void getp(dss_key *key, unsigned int size) { DEF_MP_INT(tempX); DEF_MP_INT(tempC); DEF_MP_INT(tempP); DEF_MP_INT(temp2q); int result; unsigned char *buf; m_mp_init_multi(&tempX, &tempC, &tempP, &temp2q, NULL); /* 2*q */ if (mp_mul_d(key->q, 2, &temp2q) != MP_OKAY) { fprintf(stderr, "dss key generation failed\n"); exit(1); } buf = (unsigned char*)m_malloc(size); result = 0; do { genrandom(buf, size); buf[0] |= 0x80; /* set the top bit high */ /* X is a random mp_int */ bytes_to_mp(&tempX, buf, size); /* C = X mod 2q */ if (mp_mod(&tempX, &temp2q, &tempC) != MP_OKAY) { fprintf(stderr, "dss key generation failed\n"); exit(1); } /* P = X - (C - 1) = X - C + 1*/ if (mp_sub(&tempX, &tempC, &tempP) != MP_OKAY) { fprintf(stderr, "dss key generation failed\n"); exit(1); } if (mp_add_d(&tempP, 1, key->p) != MP_OKAY) { fprintf(stderr, "dss key generation failed\n"); exit(1); } /* now check for prime, 5 rounds is enough according to HAC */ /* result == 1 => p is prime */ if (mp_prime_is_prime(key->p, 5, &result) != MP_OKAY) { fprintf(stderr, "dss key generation failed\n"); exit(1); } } while (!result); mp_clear_multi(&tempX, &tempC, &tempP, &temp2q, NULL); m_burn(buf, size); m_free(buf); }
/* Send our list of algorithms we can use */ void send_msg_kexinit() { CHECKCLEARTOWRITE(); buf_putbyte(ses.writepayload, SSH_MSG_KEXINIT); /* cookie */ genrandom(buf_getwriteptr(ses.writepayload, 16), 16); buf_incrwritepos(ses.writepayload, 16); /* kex algos */ buf_put_algolist(ses.writepayload, sshkex); /* server_host_key_algorithms */ buf_put_algolist(ses.writepayload, sshhostkey); /* encryption_algorithms_client_to_server */ buf_put_algolist(ses.writepayload, sshciphers); /* encryption_algorithms_server_to_client */ buf_put_algolist(ses.writepayload, sshciphers); /* mac_algorithms_client_to_server */ buf_put_algolist(ses.writepayload, sshhashes); /* mac_algorithms_server_to_client */ buf_put_algolist(ses.writepayload, sshhashes); /* compression_algorithms_client_to_server */ buf_put_algolist(ses.writepayload, sshcompress); /* compression_algorithms_server_to_client */ buf_put_algolist(ses.writepayload, sshcompress); /* languages_client_to_server */ buf_putstring(ses.writepayload, "", 0); /* languages_server_to_client */ buf_putstring(ses.writepayload, "", 0); /* first_kex_packet_follows - unimplemented for now */ buf_putbyte(ses.writepayload, 0x00); /* reserved unit32 */ buf_putint(ses.writepayload, 0); /* set up transmitted kex packet buffer for hashing. * This is freed after the end of the kex */ ses.transkexinit = buf_newcopy(ses.writepayload); encrypt_packet(); ses.dataallowed = 0; /* don't send other packets during kex */ ses.kexstate.sentkexinit = 1; }
main ( int argc, char *argv[] ) { int a; char Volba; while ( ( Volba = Menu() ) != '5' ) { switch ( Volba ) { case '1': system ( "clear" ); printf ( "Generating please wait...\n\n" ); genrandom(); sort(); printrnd(); printall(); printf ( "\n1. Export results to file\n2. Continue\nType choice number: " ); scanf ( "%d", &a ); if ( a==1 ) { exptofile(); printf ( "Exported!" ); getchar(); getchar(); } break; case '2': system ( "clear" ); printf ( "How many lines do you want? " ); gennlines(); break; case '3': system ( "clear" ); compare(); break; case '4': clearfile(); printf ( "Done!" ); getchar(); getchar(); break; } } system ( "clear" ); return 0; }
static void write_urandom() { #ifndef DROPBEAR_PRNGD_SOCKET /* This is opportunistic, don't worry about failure */ unsigned char buf[INIT_SEED_SIZE]; FILE *f = fopen(DROPBEAR_URANDOM_DEV, "w"); if (!f) { return; } genrandom(buf, sizeof(buf)); fwrite(buf, sizeof(buf), 1, f); fclose(f); #endif }
gennlines () { char *Nazov; int a,count; scanf ( "%d",&count ); system ( "clear" ); for ( a=0; a<count; a++ ) { genrandom(); sort(); printrnd(); exptofile(); } printf ( "Done! Hit Enter to continue..." ); getchar(); getchar(); }
static void getq(dss_key *key) { char buf[QSIZE]; /* 160 bit prime */ genrandom(buf, QSIZE); buf[0] |= 0x80; /* top bit high */ buf[QSIZE-1] |= 0x01; /* bottom bit high */ bytes_to_mp(key->q, buf, QSIZE); /* 18 rounds are required according to HAC */ if (mp_prime_next_prime(key->q, 18, 0) != MP_OKAY) { fprintf(stderr, "dss key generation failed\n"); exit(1); } }
/* return a prime suitable for p or q */ static void getrsaprime(mp_int* prime, mp_int *primeminus, mp_int* rsa_e, unsigned int size_bytes) { unsigned char *buf; DEF_MP_INT(temp_gcd); buf = (unsigned char*)m_malloc(size_bytes); m_mp_init(&temp_gcd); do { /* generate a random odd number with MSB set, then find the the next prime above it */ genrandom(buf, size_bytes); buf[0] |= 0x80; bytes_to_mp(prime, buf, size_bytes); /* find the next integer which is prime, 8 round of miller-rabin */ if (mp_prime_next_prime(prime, 8, 0) != MP_OKAY) { fprintf(stderr, "RSA generation failed\n"); exit(1); } /* subtract one to get p-1 */ if (mp_sub_d(prime, 1, primeminus) != MP_OKAY) { fprintf(stderr, "RSA generation failed\n"); exit(1); } /* check relative primality to e */ if (mp_gcd(primeminus, rsa_e, &temp_gcd) != MP_OKAY) { fprintf(stderr, "RSA generation failed\n"); exit(1); } } while (mp_cmp_d(&temp_gcd, 1) != MP_EQ); /* while gcd(p-1, e) != 1 */ /* now we have a good value for result */ mp_clear(&temp_gcd); m_burn(buf, size_bytes); m_free(buf); }
// generate a probable prime. accuracy is the miller-rabin interations void genprime(mpint *p, int n, int accuracy) { mpdigit x; // generate n random bits with high and low bits set mpbits(p, n); genrandom((uint8_t*)p->p, (n+7)/8); p->top = (n+Dbits-1)/Dbits; x = 1; x <<= ((n-1)%Dbits); p->p[p->top-1] &= (x-1); p->p[p->top-1] |= x; p->p[0] |= 1; // keep icrementing till it looks prime for(;;){ if(probably_prime(p, accuracy)) break; mpadd(p, mptwo, p); } }
/* Generate our side of the diffie-hellman key exchange value (dh_f), and * calculate the session key using the diffie-hellman algorithm. Following * that, the session hash is calculated, and signed with RSA or DSS. The * result is sent to the client. * * See the ietf-secsh-transport draft, section 6, for details */ static void send_msg_kexdh_reply(mp_int *dh_e) { mp_int dh_p, dh_q, dh_g, dh_y, dh_f; unsigned char randbuf[DH_P_LEN]; int dh_q_len; hash_state hs; TRACE(("enter send_msg_kexdh_reply")); assert(ses.kexstate.recvkexinit); m_mp_init_multi(&dh_g, &dh_p, &dh_q, &dh_y, &dh_f, NULL); /* read the prime and generator*/ if (mp_read_unsigned_bin(&dh_p, (unsigned char*)dh_p_val, DH_P_LEN) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } if (mp_set_int(&dh_g, dh_g_val) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } /* calculate q = (p-1)/2 */ if (mp_sub_d(&dh_p, 1, &dh_y) != MP_OKAY) { /*dh_y is just a temp var here*/ dropbear_exit("Diffie-Hellman error"); } if (mp_div_2(&dh_y, &dh_q) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } dh_q_len = mp_unsigned_bin_size(&dh_q); /* calculate our random value dh_y */ do { assert((unsigned int)dh_q_len <= sizeof(randbuf)); genrandom(randbuf, dh_q_len); if (mp_read_unsigned_bin(&dh_y, randbuf, dh_q_len) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } } while (mp_cmp(&dh_y, &dh_q) == MP_GT || mp_cmp_d(&dh_y, 0) != MP_GT); /* f = g^y mod p */ if (mp_exptmod(&dh_g, &dh_y, &dh_p, &dh_f) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } mp_clear(&dh_g); /* K = e^y mod p */ ses.dh_K = (mp_int*)m_malloc(sizeof(mp_int)); m_mp_init(ses.dh_K); if (mp_exptmod(dh_e, &dh_y, &dh_p, ses.dh_K) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } /* clear no longer needed vars */ mp_clear_multi(&dh_y, &dh_p, &dh_q, NULL); /* Create the remainder of the hash buffer, to generate the exchange hash */ /* K_S, the host key */ buf_put_pub_key(ses.kexhashbuf, ses.opts->hostkey, ses.newkeys->algo_hostkey); /* e, exchange value sent by the client */ buf_putmpint(ses.kexhashbuf, dh_e); /* f, exchange value sent by the server */ buf_putmpint(ses.kexhashbuf, &dh_f); /* K, the shared secret */ buf_putmpint(ses.kexhashbuf, ses.dh_K); /* calculate the hash H to sign */ sha1_init(&hs); buf_setpos(ses.kexhashbuf, 0); sha1_process(&hs, buf_getptr(ses.kexhashbuf, ses.kexhashbuf->len), ses.kexhashbuf->len); sha1_done(&hs, ses.hash); buf_free(ses.kexhashbuf); ses.kexhashbuf = NULL; /* first time around, we set the session_id to H */ if (ses.session_id == NULL) { /* create the session_id, this never needs freeing */ ses.session_id = (unsigned char*)m_malloc(SHA1_HASH_SIZE); memcpy(ses.session_id, ses.hash, SHA1_HASH_SIZE); } /* we can start creating the kexdh_reply packet */ CHECKCLEARTOWRITE(); buf_putbyte(ses.writepayload, SSH_MSG_KEXDH_REPLY); buf_put_pub_key(ses.writepayload, ses.opts->hostkey, ses.newkeys->algo_hostkey); /* put f */ buf_putmpint(ses.writepayload, &dh_f); mp_clear(&dh_f); /* calc the signature */ buf_put_sign(ses.writepayload, ses.opts->hostkey, ses.newkeys->algo_hostkey, ses.hash, SHA1_HASH_SIZE); /* the SSH_MSG_KEXDH_REPLY is done */ encrypt_packet(); TRACE(("leave send_msg_kexdh_reply")); }
static long consread(Chan *c, void *va, long n, vlong offset) { int send; char buf[64], ch; if(c->qid.type & QTDIR) return devdirread(c, va, n, contab, nelem(contab), devgen); switch((ulong)c->qid.path) { default: error(Egreg); case Qsysctl: return readstr(offset, va, n, VERSION); case Qsysname: if(ossysname == nil) return 0; return readstr(offset, va, n, ossysname); case Qrandom: return randomread(va, n); case Qnotquiterandom: genrandom(va, n); return n; case Qhostowner: return readstr(offset, va, n, eve); case Qhoststdin: return read(0, va, n); /* should be pread */ case Quser: return readstr(offset, va, n, up->env->user); case Qjit: snprint(buf, sizeof(buf), "%d", cflag); return readstr(offset, va, n, buf); case Qtime: snprint(buf, sizeof(buf), "%.lld", timeoffset + osusectime()); return readstr(offset, va, n, buf); case Qdrivers: return devtabread(c, va, n, offset); case Qmemory: return poolread(va, n, offset); case Qnull: return 0; case Qmsec: return readnum(offset, va, n, osmillisec(), NUMSIZE); case Qcons: qlock(&kbd.q); if(waserror()){ qunlock(&kbd.q); nexterror(); } if(dflag) error(Enonexist); while(!qcanread(lineq)) { if(qread(kbdq, &ch, 1) == 0) continue; send = 0; if(ch == 0){ /* flush output on rawoff -> rawon */ if(kbd.x > 0) send = !qcanread(kbdq); }else if(kbd.raw){ kbd.line[kbd.x++] = ch; send = !qcanread(kbdq); }else{ switch(ch){ case '\b': if(kbd.x) kbd.x--; break; case 0x15: kbd.x = 0; break; case 0x04: send = 1; break; case '\n': send = 1; default: kbd.line[kbd.x++] = ch; break; } } if(send || kbd.x == sizeof kbd.line){ qwrite(lineq, kbd.line, kbd.x); kbd.x = 0; } } n = qread(lineq, va, n); qunlock(&kbd.q); poperror(); return n; case Qscancode: if(offset == 0) return readstr(0, va, n, gkscanid); return qread(gkscanq, va, n); case Qkeyboard: return qread(gkbdq, va, n); case Qkprint: rlock(&kprintq.l); if(waserror()){ runlock(&kprintq.l); nexterror(); } n = qread(kprintq.q, va, n); poperror(); runlock(&kprintq.l); return n; } }
static long consread(Chan *c, void *buf, long n, vlong offset) { int l; Osenv *o; int ch, eol, i; char *p, tmp[128]; char *cbuf = buf; if(n <= 0) return n; o = up->env; switch((ulong)c->qid.path){ case Qdir: return devdirread(c, buf, n, consdir, nelem(consdir), devgen); case Qsysctl: return readstr(offset, buf, n, VERSION); case Qcons: case Qkeyboard: qlock(&kbd); if(waserror()) { qunlock(&kbd); nexterror(); } if(kbd.raw || kbd.kbdr) { if(qcanread(lineq)) n = qread(lineq, buf, n); else { /* read as much as possible */ do { i = qread(kbdq, cbuf, n); cbuf += i; n -= i; } while(n>0 && qcanread(kbdq)); n = cbuf - (char*)buf; } } else { while(!qcanread(lineq)) { qread(kbdq, &kbd.line[kbd.x], 1); ch = kbd.line[kbd.x]; eol = 0; switch(ch){ case '\b': if(kbd.x) kbd.x--; break; case 0x15: kbd.x = 0; break; case '\n': case 0x04: eol = 1; default: kbd.line[kbd.x++] = ch; break; } if(kbd.x == sizeof(kbd.line) || eol) { if(ch == 0x04) kbd.x--; qwrite(lineq, kbd.line, kbd.x); kbd.x = 0; } } n = qread(lineq, buf, n); } qunlock(&kbd); poperror(); return n; case Qscancode: if(offset == 0) return readstr(0, buf, n, kscanid); else return qread(kscanq, buf, n); case Qtime: snprint(tmp, sizeof(tmp), "%.lld", (vlong)mseconds()*1000); return readstr(offset, buf, n, tmp); case Qhostowner: return readstr(offset, buf, n, eve); case Quser: return readstr(offset, buf, n, o->user); case Qjit: snprint(tmp, sizeof(tmp), "%d", cflag); return readstr(offset, buf, n, tmp); case Qnull: return 0; case Qmsec: return readnum(offset, buf, n, TK2MS(MACHP(0)->ticks), NUMSIZE); case Qsysname: if(sysname == nil) return 0; return readstr(offset, buf, n, sysname); case Qnotquiterandom: genrandom(buf, n); return n; case Qrandom: return randomread(buf, n); case Qmemory: return poolread(buf, n, offset); case Qdrivers: p = malloc(READSTR); if(p == nil) error(Enomem); l = 0; for(i = 0; devtab[i] != nil; i++) l += snprint(p+l, READSTR-l, "#%C %s\n", devtab[i]->dc, devtab[i]->name); if(waserror()){ free(p); nexterror(); } n = readstr(offset, buf, n, p); free(p); poperror(); return n; case Qklog: return qread(klogq, buf, n); case Qkprint: rlock(&kprintq); if(waserror()){ runlock(&kprintq); nexterror(); } n = qread(kprintq.q, buf, n); poperror(); runlock(&kprintq); return n; default: print("consread %llud\n", c->qid.path); error(Egreg); } return -1; /* never reached */ }
int convert(char **db, int len) { int i, nu, keydblen, keydboff, keydbaes; char *p = *db; keydblen = KEYDBLEN; keydboff = KEYDBOFF; keydbaes = len > 24 && memcmp(p, "AES KEYS", 8) == 0; if(keydbaes) { keydblen += AESKEYLEN; keydboff = 8+16; /* signature[8] + iv[16] */ } len -= keydboff; if(len % keydblen) { fprint(2, "%s: file odd length; not converting %d bytes\n", argv0, len % keydblen); len -= len % keydblen; } len += keydboff; if(keydbaes) { AESstate s; /* make sure we have aes key for decryption */ if(memcmp(okey.aes, zeros, AESKEYLEN) == 0) { fprint(2, "%s: no aes key in NVRAM\n", argv0); exits("no aes key"); } setupAESstate(&s, okey.aes, AESKEYLEN, zeros); aesCBCdecrypt((uchar*)p+8, len-8, &s); } else { DESstate s; uchar k[8]; des56to64((uchar*)okey.des, k); setupDESstate(&s, k, zeros); desCBCdecrypt((uchar*)p, len, &s); } nu = 0; for(i = keydboff; i < len; i += keydblen) { if (badname(&p[i])) { fprint(2, "%s: bad name %.30s... - aborting\n", argv0, &p[i]); exits("bad name"); } nu++; } if(verb) { for(i = keydboff; i < len; i += keydblen) print("%s\n", &p[i]); exits(nil); } if(convaes && !keydbaes) { char *s, *d; keydboff = 8+16; keydblen += AESKEYLEN; len = keydboff + keydblen*nu; p = realloc(p, len); if(p == nil) error("out of memory"); *db = p; s = p + KEYDBOFF + nu*KEYDBLEN; d = p + keydboff + nu*keydblen; for(i=0; i<nu; i++) { s -= KEYDBLEN; d -= keydblen; memmove(d, s, KEYDBLEN); memset(d + KEYDBLEN, 0, keydblen-KEYDBLEN); } keydbaes = 1; } genrandom((uchar*)p, keydboff); if(keydbaes) { AESstate s; memmove(p, "AES KEYS", 8); setupAESstate(&s, nkey.aes, AESKEYLEN, zeros); aesCBCencrypt((uchar*)p+8, len-8, &s); } else { DESstate s; uchar k[8]; des56to64((uchar*)nkey.des, k); setupDESstate(&s, k, zeros); desCBCencrypt((uchar*)p, len, &s); } return len; }
static long consread(Chan *c, void *va, long n, vlong offset) { int send; char *p, buf[64], ch; if(c->qid.type & QTDIR) return devdirread(c, va, n, contab, nelem(contab), devgen); switch((ulong)c->qid.path) { default: error(Egreg); case Qsysctl: return readstr(offset, va, n, VERSION); case Qsysname: if(ossysname == nil) return 0; return readstr(offset, va, n, ossysname); case Qrandom: return randomread(va, n); case Qnotquiterandom: genrandom(va, n); return n; case Qhostowner: return readstr(offset, va, n, eve); case Qhoststdin: return read(0, va, n); /* should be pread */ case Quser: return readstr(offset, va, n, up->env->user); case Qjit: snprint(buf, sizeof(buf), "%d", cflag); return readstr(offset, va, n, buf); case Qtime: snprint(buf, sizeof(buf), "%.lld", timeoffset + osusectime()); return readstr(offset, va, n, buf); case Qdrivers: return devtabread(c, va, n, offset); case Qmemory: return poolread(va, n, offset); case Qnull: return 0; case Qmsec: return readnum(offset, va, n, osmillisec(), NUMSIZE); case Qcons: qlock(&kbd.q); if(waserror()){ qunlock(&kbd.q); nexterror(); } if(dflag) error(Enonexist); /* register this proc's read interest in the channel */ /* this probably won't be done here. the read/readn requests * are going to be different watcher callbacks */ /* the following waits for a signal from the keyboard handler */ uv_mutex_lock(&line_lock); uv_cond_wait(&line_ready, &line_lock); n = qread(lineq, va, n); uv_mutex_unlock(&line_lock); qunlock(&kbd.q); poperror(); return n; case Qscancode: if(offset == 0) return readstr(0, va, n, gkscanid); return qread(gkscanq, va, n); case Qkeyboard: return qread(gkbdq, va, n); case Qkprint: rlock(&kprintq.l); if(waserror()){ runlock(&kprintq.l); nexterror(); } n = qread(kprintq.q, va, n); poperror(); runlock(&kprintq.l); return n; } }
int main(int argc, char **argv) { int encrypt = 0; /* 0=decrypt, 1=encrypt */ int n, nkey, pass_stdin = 0, pass_nvram = 0; char *pass; unsigned char key[AESmaxkey], key2[SHA1dlen]; unsigned char buf[BUF+SHA1dlen]; /* assumption: CHK <= SHA1dlen */ AESstate aes; DigestState *dstate; Nvrsafe nvr; ARGBEGIN{ case 'e': encrypt = 1; break; case 'i': pass_stdin = 1; break; case 'n': pass_nvram = 1; break; }ARGEND; if(argc!=0){ fprint(2,"usage: %s -d < cipher.aes > clear.txt\n", argv0); fprint(2," or: %s -e < clear.txt > cipher.aes\n", argv0); exits("usage"); } Binit(&bin, 0, OREAD); Binit(&bout, 1, OWRITE); if(pass_stdin){ n = readn(3, buf, (sizeof buf)-1); if(n < 1) exits("usage: echo password |[3=1] auth/aescbc -i ..."); buf[n] = 0; while(buf[n-1] == '\n') buf[--n] = 0; }else if(pass_nvram){ if(readnvram(&nvr, 0) < 0) exits("readnvram: %r"); strecpy((char*)buf, (char*)buf+sizeof buf, (char*)nvr.config); n = strlen((char*)buf); }else{ pass = getpassm("aescbc key:"); n = strlen(pass); if(n >= BUF) exits("key too long"); strcpy((char*)buf, pass); memset(pass, 0, n); free(pass); } if(n <= 0) sysfatal("no key"); dstate = sha1((unsigned char*)"aescbc file", 11, nil, nil); sha1(buf, n, key2, dstate); memcpy(key, key2, 16); nkey = 16; md5(key, nkey, key2, 0); /* so even if HMAC_SHA1 is broken, encryption key is protected */ if(encrypt){ safewrite(v2hdr, AESbsize); genrandom(buf,2*AESbsize); /* CBC is semantically secure if IV is unpredictable. */ setupAESstate(&aes, key, nkey, buf); /* use first AESbsize bytes as IV */ aesCBCencrypt(buf+AESbsize, AESbsize, &aes); /* use second AESbsize bytes as initial plaintext */ safewrite(buf, 2*AESbsize); dstate = hmac_sha1(buf+AESbsize, AESbsize, key2, MD5dlen, 0, 0); for(;;){ n = Bread(&bin, buf, BUF); if(n < 0) sysfatal("read error"); aesCBCencrypt(buf, n, &aes); safewrite(buf, n); dstate = hmac_sha1(buf, n, key2, MD5dlen, 0, dstate); if(n < BUF) break; /* EOF */ } hmac_sha1(0, 0, key2, MD5dlen, buf, dstate); safewrite(buf, SHA1dlen); }else{ /* decrypt */ saferead(buf, AESbsize); if(memcmp(buf, v2hdr, AESbsize) == 0){ saferead(buf, 2*AESbsize); /* read IV and random initial plaintext */ setupAESstate(&aes, key, nkey, buf); dstate = hmac_sha1(buf+AESbsize, AESbsize, key2, MD5dlen, 0, 0); aesCBCdecrypt(buf+AESbsize, AESbsize, &aes); saferead(buf, SHA1dlen); while((n = Bread(&bin, buf+SHA1dlen, BUF)) > 0){ dstate = hmac_sha1(buf, n, key2, MD5dlen, 0, dstate); aesCBCdecrypt(buf, n, &aes); safewrite(buf, n); memmove(buf, buf+n, SHA1dlen); /* these bytes are not yet decrypted */ } hmac_sha1(0, 0, key2, MD5dlen, buf+SHA1dlen, dstate); if(memcmp(buf, buf+SHA1dlen, SHA1dlen) != 0) sysfatal("decrypted file failed to authenticate"); }else{ /* compatibility with past mistake */ // if file was encrypted with bad aescbc use this: // memset(key, 0, AESmaxkey); // else assume we're decrypting secstore files setupAESstate(&aes, key, AESbsize, buf); saferead(buf, CHK); aesCBCdecrypt(buf, CHK, &aes); while((n = Bread(&bin, buf+CHK, BUF)) > 0){ aesCBCdecrypt(buf+CHK, n, &aes); safewrite(buf, n); memmove(buf, buf+n, CHK); } if(memcmp(buf, "XXXXXXXXXXXXXXXX", CHK) != 0) sysfatal("decrypted file failed to authenticate"); } } exits(""); return 1; /* keep other compilers happy */ }
static int ntv2_blob(uchar *blob, int len, char *windom) { int n; uvlong nttime; Rune r; char *d; uchar *p; enum { /* name types */ Beof, /* end of name list */ Bnetbios, /* Netbios machine name */ Bdomain, /* Windows Domain name (NT) */ Bdnsfqdn, /* DNS Fully Qualified Domain Name */ Bdnsname, /* DNS machine name (win2k) */ }; p = blob; *p++ = 1; /* response type */ *p++ = 1; /* max response type understood by client */ *p++ = 0; *p++ = 0; /* 2 bytes reserved */ *p++ = 0; *p++ = 0; *p++ = 0; *p++ = 0; /* 4 bytes unknown */ nttime = time(nil); /* nt time now */ nttime += 11644473600LL; nttime *= 10000000LL; *p++ = nttime; *p++ = nttime >> 8; *p++ = nttime >> 16; *p++ = nttime >> 24; *p++ = nttime >> 32; *p++ = nttime >> 40; *p++ = nttime >> 48; *p++ = nttime >> 56; genrandom(p, 8); p += 8; /* client nonce */ *p++ = 0x6f; *p++ = 0; *p++ = 0x6e; *p++ = 0; /* unknown data */ *p++ = Bdomain; *p++ = 0; /* name type */ n = utflen(windom) * 2; *p++ = n; *p++ = n >> 8; /* name length */ d = windom; while(*d && p-blob < (len-8)){ d += chartorune(&r, d); r = toupperrune(r); *p++ = r; *p++ = r >> 8; } *p++ = 0; *p++ = Beof; /* name type */ *p++ = 0; *p++ = 0; /* name length */ *p++ = 0x65; *p++ = 0; *p++ = 0; *p++ = 0; /* unknown data */ return p - blob; }
static Auth * auth_ntlmv2(char *windom, char *keyp, uchar *chal, int len) { int i, n; Rune r; char *p, *u; uchar v1hash[MD5dlen], blip[Bliplen], blob[1024], v2hash[MD5dlen]; uchar c, lm_hmac[MD5dlen], nt_hmac[MD5dlen], nt_sesskey[MD5dlen], lm_sesskey[MD5dlen]; DigestState *ds; UserPasswd *up; static Auth *ap; up = auth_getuserpasswd(auth_getkey, "windom=%s proto=pass service=cifs-ntlmv2 %s", windom, keyp); if(!up) sysfatal("cannot get key - %r"); ap = emalloc9p(sizeof(Auth)); memset(ap, 0, sizeof(ap)); /* Standard says unlimited length, experience says 128 max */ if((n = strlen(up->passwd)) > 128) n = 128; ds = md4(nil, 0, nil, nil); for(i=0, p=up->passwd; i < n; i++) { p += chartorune(&r, p); c = r; md4(&c, 1, nil, ds); c = r >> 8; md4(&c, 1, nil, ds); } md4(nil, 0, v1hash, ds); /* * Some documentation insists that the username must be forced to * uppercase, but the domain name should not be. Other shows both * being forced to uppercase. I am pretty sure this is irrevevant as the * domain name passed from the remote server always seems to be in * uppercase already. */ ds = hmac_t64(nil, 0, v1hash, MD5dlen, nil, nil); u = up->user; while(*u){ u += chartorune(&r, u); r = toupperrune(r); c = r; hmac_t64(&c, 1, v1hash, MD5dlen, nil, ds); c = r >> 8; hmac_t64(&c, 1, v1hash, MD5dlen, nil, ds); } u = windom; while(*u){ u += chartorune(&r, u); c = r; hmac_t64(&c, 1, v1hash, MD5dlen, nil, ds); c = r >> 8; hmac_t64(&c, 1, v1hash, MD5dlen, nil, ds); } hmac_t64(nil, 0, v1hash, MD5dlen, v2hash, ds); ap->user = estrdup9p(up->user); ap->windom = estrdup9p(windom); /* LM v2 */ genrandom(blip, Bliplen); ds = hmac_t64(chal, len, v2hash, MD5dlen, nil, nil); hmac_t64(blip, Bliplen, v2hash, MD5dlen, lm_hmac, ds); ap->len[0] = MD5dlen+Bliplen; ap->resp[0] = emalloc9p(ap->len[0]); memcpy(ap->resp[0], lm_hmac, MD5dlen); memcpy(ap->resp[0]+MD5dlen, blip, Bliplen); /* LM v2 session key */ hmac_t64(lm_hmac, MD5dlen, v2hash, MD5dlen, lm_sesskey, nil); /* LM v2 MAC key */ ap->mackey[0] = emalloc9p(MACkeylen); memcpy(ap->mackey[0], lm_sesskey, MD5dlen); memcpy(ap->mackey[0]+MD5dlen, ap->resp[0], MACkeylen-MD5dlen); /* NTLM v2 */ n = ntv2_blob(blob, sizeof(blob), windom); ds = hmac_t64(chal, len, v2hash, MD5dlen, nil, nil); hmac_t64(blob, n, v2hash, MD5dlen, nt_hmac, ds); ap->len[1] = MD5dlen+n; ap->resp[1] = emalloc9p(ap->len[1]); memcpy(ap->resp[1], nt_hmac, MD5dlen); memcpy(ap->resp[1]+MD5dlen, blob, n); /* * v2hash definitely OK by * the time we get here. */ /* NTLM v2 session key */ hmac_t64(nt_hmac, MD5dlen, v2hash, MD5dlen, nt_sesskey, nil); /* NTLM v2 MAC key */ ap->mackey[1] = emalloc9p(MACkeylen); memcpy(ap->mackey[1], nt_sesskey, MD5dlen); memcpy(ap->mackey[1]+MD5dlen, ap->resp[1], MACkeylen-MD5dlen); free(up); return ap; }
/* encrypt the writepayload, putting into writebuf, ready for write_packet() * to put on the wire */ void encrypt_packet() { unsigned char padlen; unsigned char blocksize, macsize; buffer * writebuf; /* the packet which will go on the wire */ buffer * clearwritebuf; /* unencrypted, possibly compressed */ TRACE(("enter encrypt_packet()")); TRACE(("encrypt_packet type is %d", ses.writepayload->data[0])); blocksize = ses.keys->trans_algo_crypt->blocksize; macsize = ses.keys->trans_algo_mac->hashsize; /* Encrypted packet len is payload+5, then worst case is if we are 3 away * from a blocksize multiple. In which case we need to pad to the * multiple, then add another blocksize (or MIN_PACKET_LEN) */ clearwritebuf = buf_new((ses.writepayload->len+4+1) + MIN_PACKET_LEN + 3 #ifndef DISABLE_ZLIB + ZLIB_COMPRESS_INCR /* bit of a kludge, but we can't know len*/ #endif ); buf_setlen(clearwritebuf, PACKET_PAYLOAD_OFF); buf_setpos(clearwritebuf, PACKET_PAYLOAD_OFF); buf_setpos(ses.writepayload, 0); #ifndef DISABLE_ZLIB /* compression */ if (ses.keys->trans_algo_comp == DROPBEAR_COMP_ZLIB) { buf_compress(clearwritebuf, ses.writepayload, ses.writepayload->len); } else #endif { memcpy(buf_getwriteptr(clearwritebuf, ses.writepayload->len), buf_getptr(ses.writepayload, ses.writepayload->len), ses.writepayload->len); buf_incrwritepos(clearwritebuf, ses.writepayload->len); } /* finished with payload */ buf_setpos(ses.writepayload, 0); buf_setlen(ses.writepayload, 0); /* length of padding - packet length must be a multiple of blocksize, * with a minimum of 4 bytes of padding */ padlen = blocksize - (clearwritebuf->len) % blocksize; if (padlen < 4) { padlen += blocksize; } /* check for min packet length */ if (clearwritebuf->len + padlen < MIN_PACKET_LEN) { padlen += blocksize; } buf_setpos(clearwritebuf, 0); /* packet length excluding the packetlength uint32 */ buf_putint(clearwritebuf, clearwritebuf->len + padlen - 4); /* padding len */ buf_putbyte(clearwritebuf, padlen); /* actual padding */ buf_setpos(clearwritebuf, clearwritebuf->len); buf_incrlen(clearwritebuf, padlen); genrandom(buf_getptr(clearwritebuf, padlen), padlen); /* do the actual encryption */ buf_setpos(clearwritebuf, 0); /* create a new writebuffer, this is freed when it has been put on the * wire by writepacket() */ writebuf = buf_new(clearwritebuf->len + macsize); if (ses.keys->trans_algo_crypt->cipherdesc == NULL) { /* copy it */ memcpy(buf_getwriteptr(writebuf, clearwritebuf->len), buf_getptr(clearwritebuf, clearwritebuf->len), clearwritebuf->len); buf_incrwritepos(writebuf, clearwritebuf->len); } else { /* encrypt it */ while (clearwritebuf->pos < clearwritebuf->len) { if (cbc_encrypt(buf_getptr(clearwritebuf, blocksize), buf_getwriteptr(writebuf, blocksize), &ses.keys->trans_symmetric_struct) != CRYPT_OK) { dropbear_exit("error encrypting"); } buf_incrpos(clearwritebuf, blocksize); buf_incrwritepos(writebuf, blocksize); } } /* now add a hmac and we're done */ writemac(writebuf, clearwritebuf); /* clearwritebuf is finished with */ buf_free(clearwritebuf); /* enqueue the packet for sending */ buf_setpos(writebuf, 0); enqueue(&ses.writequeue, (void*)writebuf); /* Update counts */ ses.kexstate.datatrans += writebuf->len; ses.transseq++; TRACE(("leave encrypt_packet()")); }
static long consread(Chan *c, void *va, long n, vlong offset) { int send; char *p, buf[64], ch; FILE * battery; FILE * brightness; int size; if(c->qid.type & QTDIR) return devdirread(c, va, n, contab, nelem(contab), devgen); switch((ulong)c->qid.path) { default: error(Egreg); case Qsysctl: return readstr(offset, va, n, VERSION); case Qsysname: if(ossysname == nil) return 0; return readstr(offset, va, n, ossysname); case Qrandom: return randomread(va, n); case Qnotquiterandom: genrandom(va, n); return n; case Qhostowner: return readstr(offset, va, n, eve); case Qhoststdin: return read(0, va, n); /* should be pread */ case Quser: return readstr(offset, va, n, up->env->user); case Qjit: snprint(buf, sizeof(buf), "%d", cflag); return readstr(offset, va, n, buf); case Qtime: snprint(buf, sizeof(buf), "%.lld", timeoffset + osusectime()); return readstr(offset, va, n, buf); case Qdrivers: return devtabread(c, va, n, offset); case Qmemory: return poolread(va, n, offset); case Qnull: return 0; case Qmsec: return readnum(offset, va, n, osmillisec(), NUMSIZE); case Qcons: qlock(&kbd.q); if(waserror()){ qunlock(&kbd.q); nexterror(); } if(dflag) error(Enonexist); while(!qcanread(lineq)) { if(qread(kbdq, &ch, 1) == 0) continue; send = 0; if(ch == 0){ /* flush output on rawoff -> rawon */ if(kbd.x > 0) send = !qcanread(kbdq); }else if(kbd.raw){ kbd.line[kbd.x++] = ch; send = !qcanread(kbdq); }else{ switch(ch){ case '\b': if(kbd.x) kbd.x--; break; case 0x15: kbd.x = 0; break; case 0x04: send = 1; break; case '\n': send = 1; default: kbd.line[kbd.x++] = ch; break; } } if(send || kbd.x == sizeof kbd.line){ qwrite(lineq, kbd.line, kbd.x); kbd.x = 0; } } n = qread(lineq, va, n); qunlock(&kbd.q); poperror(); return n; case Qscancode: if(offset == 0) return readstr(0, va, n, gkscanid); return qread(gkscanq, va, n); case Qkeyboard: return qread(gkbdq, va, n); case Qevents: return qread(c->aux, va, n); case Qkprint: rlock(&kprintq.l); if(waserror()){ runlock(&kprintq.l); nexterror(); } n = qread(kprintq.q, va, n); poperror(); runlock(&kprintq.l); return n; case Qbattery: if(type == 's') battery = fopen("/sys/class/power_supply/battery/capacity", "r"); else if(type == 'c') battery = fopen("/sys/class/power_supply/max17042-0/capacity", "r"); else battery = fopen("/sys/class/power_supply/battery/capacity", "r"); size = fread(buf, 1, sizeof(buf), battery); fclose(battery); buf[size - 1] = '\0'; return readstr(offset, va, n, buf); case Qtype: if(type == 's') strncpy(buf, "nexus s", sizeof(buf)); else if(type == 'c') strncpy(buf, "nook color", sizeof(buf)); else if(type == 'e') strncpy(buf, "emulator", sizeof(buf)); else strncpy(buf, "nexus s", sizeof(buf)); return readstr(offset, va, n, buf); case Qbrightness: if(type == 'c') brightness = fopen("/sys/devices/platform/omap_pwm_led/leds/lcd-backlight/brightness", "r"); else if(type == 'e') return; else brightness = fopen("/sys/class/backlight/s5p_bl/brightness", "r"); size = fread(buf, 1, sizeof(buf), brightness); fclose(brightness); buf[size - 1] = '\0'; return readstr(offset, va, n, buf); } }