void GCodeExport::resetExtrusionValue() { if (extrusion_amount != 0.0 && flavor != GCODE_FLAVOR_MAKERBOT && flavor != GCODE_FLAVOR_BFB) { *output_stream << "G92 " << extruderCharacter[current_extruder] << "0\n"; totalFilament[current_extruder] += getExtrusionAmountMM3(current_extruder); for (unsigned int i = 0; i < extrusion_amount_at_previous_n_retractions.size(); i++) extrusion_amount_at_previous_n_retractions[i] -= extrusion_amount; extrusion_amount = 0.0; } }
void GCodeExport::resetExtrusionValue() { if (extrusion_amount != 0.0 && flavor != EGCodeFlavor::MAKERBOT && flavor != EGCodeFlavor::BFB) { // TinyG G92: set origin offsets *output_stream << "G92 " << extruder_attr[current_extruder].extruderCharacter << "0\n"; extruder_attr[current_extruder].totalFilament += getExtrusionAmountMM3(current_extruder); for (unsigned int i = 0; i < extrusion_amount_at_previous_n_retractions.size(); i++) extrusion_amount_at_previous_n_retractions[i] -= extrusion_amount; extrusion_amount = 0.0; } }
void GCodeExport::writeMove(int x, int y, int z, double speed, double extrusion_mm3_per_mm) { if (currentPosition.x == x && currentPosition.y == y && currentPosition.z == z) return; assert(speed < 200 && speed > 1); // normal F values occurring in UM2 gcode (this code should not be compiled for release) assert((Point3(x,y,z) - currentPosition).vSize() < MM2INT(300)); // no crazy positions (this code should not be compiled for release) if (extrusion_mm3_per_mm < 0) logWarning("Warning! Negative extrusion move!"); double extrusion_per_mm = extrusion_mm3_per_mm; if (!is_volumatric) { extrusion_per_mm = extrusion_mm3_per_mm / getFilamentArea(current_extruder); } Point gcode_pos = getGcodePos(x,y, current_extruder); if (flavor == EGCodeFlavor::BFB) { //For Bits From Bytes machines, we need to handle this completely differently. As they do not use E values but RPM values. float fspeed = speed * 60; float rpm = extrusion_per_mm * speed * 60; const float mm_per_rpm = 4.0; //All BFB machines have 4mm per RPM extrusion. rpm /= mm_per_rpm; if (rpm > 0) { if (isRetracted) { if (currentSpeed != double(rpm)) { //fprintf(f, "; %f e-per-mm %d mm-width %d mm/s\n", extrusion_per_mm, lineWidth, speed); //fprintf(f, "M108 S%0.1f\r\n", rpm); *output_stream << "M108 S" << std::setprecision(1) << rpm << "\r\n"; currentSpeed = double(rpm); } //Add M101 or M201 to enable the proper extruder. *output_stream << "M" << int((current_extruder + 1) * 100 + 1) << "\r\n"; isRetracted = false; } //Fix the speed by the actual RPM we are asking, because of rounding errors we cannot get all RPM values, but we have a lot more resolution in the feedrate value. // (Trick copied from KISSlicer, thanks Jonathan) fspeed *= (rpm / (roundf(rpm * 100) / 100)); //Increase the extrusion amount to calculate the amount of filament used. Point3 diff = Point3(x,y,z) - getPosition(); extrusion_amount += extrusion_per_mm * diff.vSizeMM(); }else{ //If we are not extruding, check if we still need to disable the extruder. This causes a retraction due to auto-retraction. if (!isRetracted) { *output_stream << "M103\r\n"; isRetracted = true; } } *output_stream << std::setprecision(3) << "G1 X" << INT2MM(gcode_pos.X) << " Y" << INT2MM(gcode_pos.Y) << " Z" << INT2MM(z) << std::setprecision(1) << " F" << fspeed << "\r\n"; } else { //Normal E handling. if (extrusion_mm3_per_mm > 0.000001) { Point3 diff = Point3(x,y,z) - getPosition(); if (isZHopped > 0) { // TinyG G1: Straight feed *output_stream << std::setprecision(3) << "G1 Z" << INT2MM(currentPosition.z) << "\n"; isZHopped = 0; } extrusion_amount += (is_volumatric) ? last_coasted_amount_mm3 : last_coasted_amount_mm3 / getFilamentArea(current_extruder); if (isRetracted) { if (flavor == EGCodeFlavor::ULTIGCODE || flavor == EGCodeFlavor::REPRAP_VOLUMATRIC) { *output_stream << "G11\n"; //TODO try this code and see what happens //Assume default UM2 retraction settings. if (last_coasted_amount_mm3 > 0) { *output_stream << "G1 F" << (retractionPrimeSpeed * 60) << " " << extruder_attr[current_extruder].extruderCharacter << std::setprecision(5) << extrusion_amount << "\n"; } estimateCalculator.plan(TimeEstimateCalculator::Position(INT2MM(currentPosition.x), INT2MM(currentPosition.y), INT2MM(currentPosition.z), extrusion_amount), 25.0); }else{ // TinyG checked *output_stream << "G1 F" << (retractionPrimeSpeed * 60) << " " << extruder_attr[current_extruder].extruderCharacter << std::setprecision(5) << extrusion_amount << "\n"; currentSpeed = retractionPrimeSpeed; estimateCalculator.plan(TimeEstimateCalculator::Position(INT2MM(currentPosition.x), INT2MM(currentPosition.y), INT2MM(currentPosition.z), extrusion_amount), currentSpeed); } if (getExtrusionAmountMM3(current_extruder) > 10000.0) //According to https://github.com/Ultimaker/CuraEngine/issues/14 having more then 21m of extrusion causes inaccuracies. So reset it every 10m, just to be sure. resetExtrusionValue(); isRetracted = false; } else { if (last_coasted_amount_mm3 > 0) { *output_stream << "G1 F" << (retractionPrimeSpeed * 60) << " " << extruder_attr[current_extruder].extruderCharacter << std::setprecision(5) << extrusion_amount << "\n"; estimateCalculator.plan(TimeEstimateCalculator::Position(INT2MM(currentPosition.x), INT2MM(currentPosition.y), INT2MM(currentPosition.z), extrusion_amount), currentSpeed); } } last_coasted_amount_mm3 = 0; extrusion_amount += extrusion_per_mm * diff.vSizeMM(); // TinyG TODO: add one axis *output_stream << "G1"; }else{ *output_stream << "G0"; if (commandSocket) { // we should send this travel as a non-retraction move cura::Polygons travelPoly; PolygonRef travel = travelPoly.newPoly(); travel.add(Point(currentPosition.x, currentPosition.y)); travel.add(Point(x, y)); commandSocket->sendPolygons(isRetracted ? MoveRetractionType : MoveCombingType, layer_nr, travelPoly, isRetracted ? MM2INT(0.2) : MM2INT(0.1)); } } if (currentSpeed != speed) { *output_stream << " F" << (speed * 60); currentSpeed = speed; } *output_stream << std::setprecision(3) << " X" << INT2MM(gcode_pos.X) << " Y" << INT2MM(gcode_pos.Y); if (z != currentPosition.z) *output_stream << " Z" << INT2MM(z + isZHopped); if (extrusion_mm3_per_mm > 0.000001) *output_stream << " " << extruder_attr[current_extruder].extruderCharacter << std::setprecision(5) << extrusion_amount; *output_stream << "\n"; } currentPosition = Point3(x, y, z); startPosition = currentPosition; estimateCalculator.plan(TimeEstimateCalculator::Position(INT2MM(currentPosition.x), INT2MM(currentPosition.y), INT2MM(currentPosition.z), extrusion_amount), speed); }
double GCodeExport::getTotalFilamentUsed(int e) { if (e == current_extruder) return extruder_attr[e].totalFilament + getExtrusionAmountMM3(e); return extruder_attr[e].totalFilament; }
void GCodeExport::writeMove(int x, int y, int z, double speed, double extrusion_mm3_per_mm) { if (currentPosition.x == x && currentPosition.y == y && currentPosition.z == z) return; double extrusion_per_mm = extrusion_mm3_per_mm; if (!is_volumatric) { extrusion_per_mm = extrusion_mm3_per_mm / getFilamentArea(current_extruder); } if (flavor == GCODE_FLAVOR_BFB) { //For Bits From Bytes machines, we need to handle this completely differently. As they do not use E values but RPM values. float fspeed = speed * 60; float rpm = extrusion_per_mm * speed * 60; const float mm_per_rpm = 4.0; //All BFB machines have 4mm per RPM extrusion. rpm /= mm_per_rpm; if (rpm > 0) { if (isRetracted) { if (currentSpeed != double(rpm)) { //fprintf(f, "; %f e-per-mm %d mm-width %d mm/s\n", extrusion_per_mm, lineWidth, speed); //fprintf(f, "M108 S%0.1f\r\n", rpm); *output_stream << "M108 S" << std::setprecision(1) << rpm << "\r\n"; currentSpeed = double(rpm); } //Add M101 or M201 to enable the proper extruder. *output_stream << "M" << int((current_extruder + 1) * 100 + 1) << "\r\n"; isRetracted = false; } //Fix the speed by the actual RPM we are asking, because of rounding errors we cannot get all RPM values, but we have a lot more resolution in the feedrate value. // (Trick copied from KISSlicer, thanks Jonathan) fspeed *= (rpm / (roundf(rpm * 100) / 100)); //Increase the extrusion amount to calculate the amount of filament used. Point3 diff = Point3(x,y,z) - getPosition(); extrusion_amount += extrusion_per_mm * diff.vSizeMM(); }else{ //If we are not extruding, check if we still need to disable the extruder. This causes a retraction due to auto-retraction. if (!isRetracted) { *output_stream << "M103\r\n"; isRetracted = true; } } *output_stream << std::setprecision(3) << "G1 X" << INT2MM(x - getExtruderOffset(current_extruder).X) << " Y" << INT2MM(y - getExtruderOffset(current_extruder).Y) << " Z" << INT2MM(z) << std::setprecision(1) << " F" << fspeed << "\r\n"; }else{ //Normal E handling. if (extrusion_mm3_per_mm > 0.000001) { Point3 diff = Point3(x,y,z) - getPosition(); if (isZHopped > 0) { *output_stream << std::setprecision(3) << "G1 Z" << INT2MM(currentPosition.z) << "\n"; isZHopped = false; } extrusion_amount += (is_volumatric) ? last_coasted_amount_mm3 : last_coasted_amount_mm3 / getFilamentArea(current_extruder); if (isRetracted) { if (flavor == GCODE_FLAVOR_ULTIGCODE || flavor == GCODE_FLAVOR_REPRAP_VOLUMATRIC) { *output_stream << "G11\n"; //Assume default UM2 retraction settings. if (last_coasted_amount_mm3 > 0) { *output_stream << "G1 F" << (retractionPrimeSpeed * 60) << " " << extruderCharacter[current_extruder] << std::setprecision(5) << extrusion_amount << "\n"; } estimateCalculator.plan(TimeEstimateCalculator::Position(INT2MM(currentPosition.x), INT2MM(currentPosition.y), INT2MM(currentPosition.z), extrusion_amount), 25.0); }else{ *output_stream << "G1 F" << (retractionPrimeSpeed * 60) << " " << extruderCharacter[current_extruder] << std::setprecision(5) << extrusion_amount << "\n"; currentSpeed = retractionPrimeSpeed; estimateCalculator.plan(TimeEstimateCalculator::Position(INT2MM(currentPosition.x), INT2MM(currentPosition.y), INT2MM(currentPosition.z), extrusion_amount), currentSpeed); } if (getExtrusionAmountMM3(current_extruder) > 10000.0) //According to https://github.com/Ultimaker/CuraEngine/issues/14 having more then 21m of extrusion causes inaccuracies. So reset it every 10m, just to be sure. resetExtrusionValue(); isRetracted = false; } else { if (last_coasted_amount_mm3 > 0) { *output_stream << "G1 F" << (retractionPrimeSpeed * 60) << " " << extruderCharacter[current_extruder] << std::setprecision(5) << extrusion_amount << "\n"; estimateCalculator.plan(TimeEstimateCalculator::Position(INT2MM(currentPosition.x), INT2MM(currentPosition.y), INT2MM(currentPosition.z), extrusion_amount), currentSpeed); } } last_coasted_amount_mm3 = 0; extrusion_amount += extrusion_per_mm * diff.vSizeMM(); *output_stream << "G1"; }else{ *output_stream << "G0"; } if (currentSpeed != speed) { *output_stream << " F" << (speed * 60); currentSpeed = speed; } *output_stream << std::setprecision(3) << " X" << INT2MM(x - getExtruderOffset(current_extruder).X) << " Y" << INT2MM(y - getExtruderOffset(current_extruder).Y); if (z != currentPosition.z) *output_stream << " Z" << INT2MM(z); if (extrusion_mm3_per_mm > 0.000001) *output_stream << " " << extruderCharacter[current_extruder] << std::setprecision(5) << extrusion_amount; *output_stream << "\n"; } currentPosition = Point3(x, y, z); startPosition = currentPosition; estimateCalculator.plan(TimeEstimateCalculator::Position(INT2MM(currentPosition.x), INT2MM(currentPosition.y), INT2MM(currentPosition.z), extrusion_amount), speed); }