Vec3 Constraint::LineOnLineContact::
findForceOnBodyBInG(const State& s) const {
    const LineOnLineContactImpl& impl = getImpl();
    if (impl.isDisabled(s))
        return Vec3(0);

    const Transform X_GC = findContactFrameInG(s);

    const Vec3 f_C = -getMultipliers(s); // watch sign convention
    return X_GC.R()*f_C;
}
Esempio n. 2
0
File: fft.cpp Progetto: 93sam/opencv
/*
// 1-dimensional FFT
//
// API
// int fft(float *x_in, float *x_out, int n, int shift);
// INPUT
// x_in              - input signal
// n                 - number of elements for searching Fourier image
// shift             - shift between input elements
// OUTPUT
// x_out             - output signal (contains 2n elements in order
                       Re(x_in[0]), Im(x_in[0]), Re(x_in[1]), Im(x_in[1]) and etc.)
// RESULT
// Error status
*/
int fft(float *x_in, float *x_out, int n, int shift)
{
    int n1, n2, res, k1, k2, m1, m2, index, idx;
    float alpha, beta, gamma, angle, cosAngle, sinAngle;
    float tmpGamma, tmpAlpha, tmpBeta;
    float tmpRe, tmpIm, phaseRe, phaseIm;
    res = getMultipliers(n, &n1, &n2);
    if (res == FFT_OK)
    {
        fft(x_in, x_out, n1, shift);
        fft(x_in, x_out, n2, shift);
    }
    alpha = (float)(2.0 * PI / ((float)n));
    beta = (float)(2.0 * PI / ((float)n1));
    gamma = (float)(2.0 * PI / ((float)n2));
    for (k1 = 0; k1 < n1; k1++)
    {
        tmpBeta = beta * k1;
        for (k2 = 0; k2 < n2; k2++)
        {
            idx = shift * (n2 * k1 + k2);
            x_out[idx] = 0.0;
            x_out[idx + 1] = 0.0;
            tmpGamma = gamma * k2;
            tmpAlpha = alpha * k2;
            for (m1 = 0; m1 < n1; m1++)
            {
                tmpRe = 0.0;
                tmpIm = 0.0;
                for (m2 = 0; m2 < n2; m2++)
                {
                    angle = tmpGamma * m2;
                    index = shift * (n1 * m2 + m1);
                    cosAngle = cosf(angle);
                    sinAngle = sinf(angle);
                    tmpRe += x_in[index] * cosAngle + x_in[index + 1] * sinAngle;
                    tmpIm += x_in[index + 1] * cosAngle - x_in[index] * sinAngle;
                }
                angle = tmpAlpha * m1;
                cosAngle = cosf(angle);
                sinAngle = sinf(angle);
                phaseRe = cosAngle * tmpRe + sinAngle * tmpIm;
                phaseIm = cosAngle * tmpIm - sinAngle * tmpRe;
                angle = tmpBeta * m1;
                cosAngle = cosf(angle);
                sinAngle = sinf(angle);
                x_out[idx] += (cosAngle * phaseRe + sinAngle * phaseIm);
                x_out[idx + 1] += (cosAngle * phaseIm - sinAngle * phaseRe);
            }
        }
    }
    return FFT_OK;
}
Vec3 Constraint::SphereOnPlaneContact::
findForceOnSphereInG(const State& state) const {
    const SphereOnPlaneContactImpl& impl = getImpl();
    if (impl.isDisabled(state))
        return Vec3(0);

    const Rotation& R_FP = impl.getParameters(state).m_X_FP.R();
    const MobilizedBody& bodyF =
        impl.getMobilizedBodyFromConstrainedBody(impl.m_planeBody_F);
    const Rotation& R_GF = bodyF.getBodyRotation(state);
    const Rotation R_GP = R_GF * R_FP; // orientation of P frame in G

    const Vec3 f_PC = -getMultipliers(state); // watch sign convention
    return R_GP * f_PC; // return f_GC
}