vector<Eigen::Matrix4f> CollarLinesRegistrationPipeline::runRegistrationEffective(
    const PolarGridOfClouds::Ptr &target_grid_cloud) {

  assert(!history.empty());
  stopwatch.restart();

  Eigen::Matrix4f transformation = getPrediction();
  vector<Eigen::Matrix4f> results;
  int iterations = 0;
  for(int i = 0; i < history.size(); i++) {
    int current_iterations;
    float error;
    transformation = registerTwoGrids(*(history[i].getGridCloud()), *target_grid_cloud,
                                      transformation, current_iterations, error);
    iterations += current_iterations;
    printInfo(stopwatch.elapsed(), iterations, transformation, error);
    results.push_back(transformation);

    Eigen::Matrix4f edge_trasform = history[i].getTransformation() * transformation;
    PoseGraphEdge edge(history[i].getIndex(), pose_index, edge_trasform);
    graph_file << edge << endl;
  }

  return results;
}
Esempio n. 2
0
// serial implementation of accuracy test
// computes true positive rate, false positive rate and error rate, then adds
// these values to variables passed through pointers
double computeErrorRate(
    DataSet data_set,
    double* cumulative_true_positive_rate,
    double* cumulative_false_positive_rate,
    double* cumulative_error){

    size_t true_positives = 0, true_negatives = 0, false_positives = 0, false_negatives = 0;
    for (size_t i = 0; i < data_set.num_data_points; i++) {
        LabelType prediction = getPrediction(data_set.parameter_vector, &data_set.data_points[i * data_set.num_features], data_set.num_features);
        if (prediction != data_set.labels[i]){
            if (prediction == POSITIVE_LABEL)
                false_positives++;
            else
                false_negatives++;
        } else {
            if (prediction == POSITIVE_LABEL)
                true_positives++;
            else
                true_negatives++;
        }
    }
    double error_rate = (double)(false_positives + false_negatives) / data_set.num_data_points;
    if (cumulative_true_positive_rate != NULL) *cumulative_true_positive_rate += (double)true_positives / (true_positives + false_negatives);
    if (cumulative_false_positive_rate != NULL) *cumulative_false_positive_rate += (double)false_positives / (false_positives + true_negatives);
    if (cumulative_error != NULL) *cumulative_error += error_rate;

    return error_rate;
}
Esempio n. 3
0
void ComplementaryFilter::updateImpl(
		double gx, double gy, double gz,
		double ax, double ay, double az,
	    double dt)
{
  if (!initialized_)
  {
    // First time - ignore prediction:
    getMeasurement(ax, ay, az,
                   q0_, q1_, q2_, q3_);
    initialized_ = true;
    return;
  }

  if(dt <= 0.0)
  {
    UERROR("dt=%f <=0.0, orientation will not be updated!", dt);
    return;
  }

  // Bias estimation.
  if (do_bias_estimation_)
    updateBiases(ax, ay, az, gx, gy, gz);

  // Prediction.
  double q0_pred, q1_pred, q2_pred, q3_pred;
  getPrediction(gx, gy, gz, dt,
                q0_pred, q1_pred, q2_pred, q3_pred);

  // Correction (from acc):
  // q_ = q_pred * [(1-gain) * qI + gain * dq_acc]
  // where qI = identity quaternion
  double dq0_acc, dq1_acc, dq2_acc, dq3_acc;
  getAccCorrection(ax, ay, az,
                   q0_pred, q1_pred, q2_pred, q3_pred,
                   dq0_acc, dq1_acc, dq2_acc, dq3_acc);

  double gain;
  if (do_adaptive_gain_)
  {
    gain = getAdaptiveGain(gain_acc_, ax, ay, az);

  }
  else
  {
    gain = gain_acc_;

  }

  scaleQuaternion(gain, dq0_acc, dq1_acc, dq2_acc, dq3_acc);

  quaternionMultiplication(q0_pred, q1_pred, q2_pred, q3_pred,
                           dq0_acc, dq1_acc, dq2_acc, dq3_acc,
                           q0_, q1_, q2_, q3_);

  normalizeQuaternion(q0_, q1_, q2_, q3_);
}
Esempio n. 4
0
/* ************************************************************************
 * Recursive function to grow trees. Compute a splitting rule and make the partition
 * for the current node. finally make a call to itself with every child node created.
 * param :
 * 		node : the current node to be split
 * 		sortedInd : a 2D array of sorted index of instances.
 */
int 	RndTree::growSubTree(Node * node, u_int ** sortedInd)
{

    DataHandler * data = node->getDataSet();
    Rule * rule;
    // launch the random feature selection process and create the splitting rule with the chosen feature.
    //if(rndFeatSel)
    rule = randomFeatSelection(node,sortedInd);
    //else
    //	rule = featSelection(node,sortedInd);
    // if no rule has been created, the branch induction is stopped.
    // (It means that no feature has managed to produce a split)

    if (rule == NULL)
    {
        // the node is transform into a leaf
        int predic = getPrediction(data);
        node->makeLeaf(predic);

        //delete data;
    }
    else
    {
        u_int *** subsets = NULL;

        node->setRule(rule);
        subsets = partitionNode(node,rule,sortedInd);

//system("pause");
        for(u_int j=0; j<node->getNbChildren(); j++) {
            Node * n = node->getChild(j);
            if(!(n->is_leaf())) {

                growSubTree(n,subsets[j]);

            }

            for(u_int k=0; k<data->dim(); k++)
                if(k != data->getClassInd()) delete[] subsets[j][k];
            delete[] subsets[j];
        }


        delete[] subsets;

    }

    return 0;
}
Esempio n. 5
0
void GraphLearner::sendTreeTransforms(KinematicGraphType graph) {
	if (graph.size() == 0)
		return;

	double latestTimestamp = stampedMarker.rbegin()->first;

	PoseMap observation = getObservation(latestTimestamp);
	PoseMap prediction = getPrediction(intersectionOfStamps().back(), graph,
			observation);

	// send transform for root node
	static tf::TransformBroadcaster br;
	const PoseStamped &latestPose =
			stampedMarker[latestTimestamp].begin()->second->pose;
	for (auto it = prediction.begin(); it != prediction.end(); it++) {
		br.sendTransform(tf::StampedTransform(poseToTransform(it->second),
				latestPose.header.stamp, "/camera", boost::str(boost::format(
						"/pred/%1%") % it->first)));
	}
}
Esempio n. 6
0
File: cart.cpp Progetto: ngoix/OCRF
/* ************************************************************************
 * launch the tree induction process.
 */
DTree * 	Cart::growTree(DataHandler * set)
{
    trainSet = set;

    if(trainSet == NULL)
    {
        if(disp)
        {
            string tmp = "\n\nERREUR : RndTree::growTree()";
            tmp += "\n\t Vous n'avez désigné aucune base de données pour l'apprentissage";
            Utils::print(tmp);
        }
        return NULL;
    }

    // grow an empty tree, i.e. with a single node (the root node)
    DTree * p_tree = new DTree(trainSet);

    // If the trainSet contains only data from one class, the root is transform into a leaf
    if(is_leaf(trainSet,0))
    {
        // the root node is transform into a leaf
        int predic = getPrediction(trainSet);
        p_tree->getRoot()->rootToLeaf(predic);
        p_tree->stat_setTimeTrain(0.0);
        return p_tree;
    }

    // initialization :
    // Have a 2D array to sort data indices according to each attribute
    u_int ** sortedInd = new u_int*[trainSet->dim()];
    for(u_int i=0; i<trainSet->dim(); i++)
    {
        if(i != trainSet->getClassInd())
        {
            vector<double> vals;
            for(v_inst_it it=trainSet->begin(); it!=trainSet->end(); it++)
                vals.push_back((*it)->at(i));

            sortedInd[i] = Utils::sort(vals);
        }
    }

    double _time = ((double) clock());

    // launch tree growing from the tree root.
    int ret = growSubTree(p_tree->getRoot(),sortedInd);
    if(ret == -1)
    {
        string tmp = "\n\nERREUR : RndTree::growSubTree()";
        Utils::print(tmp);
    }

    _time = (((double) clock()) - _time) /CLOCKS_PER_SEC;
    if(_time>=0) p_tree->stat_setTimeTrain(_time);
    else p_tree->stat_setTimeTrain(0.0);

    for(u_int i=0; i<trainSet->dim(); i++)
        if(i != trainSet->getClassInd()) delete[] sortedInd[i];
    delete[] sortedInd;

    return p_tree;
}
double Sample::getError(const Feature &feature) const {
    return (getPrediction(feature) != isMale()) * getWeight();
}
Esempio n. 8
0
void LaserScanMatcher::processScan(LDP& curr_ldp_scan, const ros::Time& time)
{
  ros::WallTime start = ros::WallTime::now();

  // CSM is used in the following way:
  // The scans are always in the laser frame
  // The reference scan (prevLDPcan_) has a pose of [0, 0, 0]
  // The new scan (currLDPScan) has a pose equal to the movement
  // of the laser in the laser frame since the last scan 
  // The computed correction is then propagated using the tf machinery

  prev_ldp_scan_->odometry[0] = 0.0;
  prev_ldp_scan_->odometry[1] = 0.0;
  prev_ldp_scan_->odometry[2] = 0.0;

  prev_ldp_scan_->estimate[0] = 0.0;
  prev_ldp_scan_->estimate[1] = 0.0;
  prev_ldp_scan_->estimate[2] = 0.0;

  prev_ldp_scan_->true_pose[0] = 0.0;
  prev_ldp_scan_->true_pose[1] = 0.0;
  prev_ldp_scan_->true_pose[2] = 0.0;

  input_.laser_ref  = prev_ldp_scan_;
  input_.laser_sens = curr_ldp_scan;

  // **** estimated change since last scan

  double dt = (time - last_icp_time_).toSec();
  double pr_ch_x, pr_ch_y, pr_ch_a;
  getPrediction(pr_ch_x, pr_ch_y, pr_ch_a, dt);

  // the predicted change of the laser's position, in the fixed frame  

  tf::Transform pr_ch;
  createTfFromXYTheta(pr_ch_x, pr_ch_y, pr_ch_a, pr_ch);

  // account for the change since the last kf, in the fixed frame

  pr_ch = pr_ch * (f2b_ * f2b_kf_.inverse());

  // the predicted change of the laser's position, in the laser frame

  tf::Transform pr_ch_l;
  pr_ch_l = laser_to_base_ * f2b_.inverse() * pr_ch * f2b_ * base_to_laser_ ;
  
  input_.first_guess[0] = pr_ch_l.getOrigin().getX();
  input_.first_guess[1] = pr_ch_l.getOrigin().getY();
  input_.first_guess[2] = tf::getYaw(pr_ch_l.getRotation());

  // *** scan match - using point to line icp from CSM

  sm_icp(&input_, &output_);
  tf::Transform corr_ch;

  if (output_.valid) 
  {
    // the correction of the laser's position, in the laser frame
    tf::Transform corr_ch_l;
    createTfFromXYTheta(output_.x[0], output_.x[1], output_.x[2], corr_ch_l);

    // the correction of the base's position, in the base frame
    corr_ch = base_to_laser_ * corr_ch_l * laser_to_base_;

    // update the pose in the world frame
    f2b_ = f2b_kf_ * corr_ch;

    // **** publish

    if (publish_pose_) 
    {
      // unstamped Pose2D message
      geometry_msgs::Pose2D::Ptr pose_msg;
      pose_msg = boost::make_shared<geometry_msgs::Pose2D>();
      pose_msg->x = f2b_.getOrigin().getX();
      pose_msg->y = f2b_.getOrigin().getY();
      pose_msg->theta = tf::getYaw(f2b_.getRotation());
      pose_publisher_.publish(pose_msg);
    }
    if (publish_pose_stamped_)
    {
      // stamped Pose message
      geometry_msgs::PoseStamped::Ptr pose_stamped_msg;
      pose_stamped_msg = boost::make_shared<geometry_msgs::PoseStamped>();

      pose_stamped_msg->header.stamp    = time;
      pose_stamped_msg->header.frame_id = fixed_frame_;     
            
      tf::poseTFToMsg(f2b_, pose_stamped_msg->pose);

      pose_stamped_publisher_.publish(pose_stamped_msg);
    }
    if (publish_tf_)
    {
      tf::StampedTransform transform_msg (f2b_, time, fixed_frame_, base_frame_);
      tf_broadcaster_.sendTransform (transform_msg);
    }
  }
  else
  {
    corr_ch.setIdentity();
    ROS_WARN("Error in scan matching");
  }

  // **** swap old and new

  if (newKeyframeNeeded(corr_ch))
  {
    // generate a keyframe
    ld_free(prev_ldp_scan_);
    prev_ldp_scan_ = curr_ldp_scan;
    f2b_kf_ = f2b_;
  }
  else
  {
    ld_free(curr_ldp_scan);
  }

  last_icp_time_ = time;

  // **** statistics

  double dur = (ros::WallTime::now() - start).toSec() * 1e3;
  ROS_DEBUG("Scan matcher total duration: %.1f ms", dur);
}
main()
{
      int weeks,i,c,j,w=0,g=0,t1,t2,num1,num2,team_index1,team_index2,score1,score2,week_counter,a,hold; 
      int games_played[]={0,0,0,0,0,0};
      int total_points[]={0,0,0,0,0,0};
      int points_against[]={0,0,0,0,0,0};
	  int team_index[]={0,1,2,3,4,5};
	  int team_order[]={0,0,0,0,0,0};
	  double win_percentage[]={0,0,0,0,0,0};
      printf("How many weeks total? (up to 10)  ");
      scanf("%i", &weeks);
      int team_number[]={0,0,0,0,0,0};
      int points_ordered[]={0,0,0,0,0,0};
      int points[]={0,0,0,0,0,0};											   
      int team_win[]={0,0,0,0,0,0};
	  int team_tied[]={0,0,0,0,0,0};
	  int team_loss[]={0,0,0,0,0,0};													  
	  // Note: That if is equal to else then pi is equal to life
      if(weeks > 10)
               printf("Error: Only up to 10 weeks can be entered.");
      else
      {
               for(i=0;i<weeks;i++) 	//runs for each week
               {
                     ++g;
                     ++w;              
                     if(g>=4){
                             w=1;
                             g=1;
                     }
                     for(j=0;j<3;j++){				//runs for each game
                     	week_counter= j+1;
                      	printf("\n---Week %i Game %i---\n", w, week_counter);
                     	printf("Enter the two teams and their scores: ");
                     	scanf("%i%i%i%i",&num1,&num2,&score1,&score2);
                     	games_played[num1]+=1;
                     	games_played[num2]+=1;
                     	total_points[num1]+=score1;
                     	total_points[num2]+=score2;
                     	points_against[num1]+=score2;
                     	points_against[num2]+=score1;
                     	if(score1<score2){
						 	team_win[num2]+=1;
							team_loss[num1]+=1;
						}
						else if(score2<score1){
							team_win[num1]+=1;
							team_loss[num2]+=1;                     	
                     	}
                     	else if(score1==score2){
                     		team_tied[num1]+=1;
                     		team_tied[num2]+=1;
						 }	
					 }   
               }
               for(i=0;i<6;i++){
            		team_index[i]=points[i];
			   }
               //Points
                for(j=0;j<6;j++){
            		points[j]= (team_win[j]*2) + (team_tied[j]*1);
			    }
                printf("\n----------------------------------------\n\nLeague Standings after %i weeks\n\n",weeks);
				printf("\t         W  T  L\n");
				for(j=0;j<6;j++){
					printf("\tTeam %i:  %i  %i  %i\n",j,team_win[j],team_tied[j],team_loss[j]);
				}
				for(i=0;i<6;i++){
					win_percentage[i]=(float)team_win[i]/(float)games_played[i];
					printf("\nTeam %i winning percentage: %.2f\n",i,win_percentage[i]);
				}
				printf("\n----------------------------------------\nTotal Points For:\n");
				//'Modify to compute and print for each team the total points scored for and against'
				for(i=0;i<6;i++){
					printf("Team %i: %i\n",i,total_points[i]);
				}
				printf("\n\nTotal Points Against\n");
				for(i=0;i<6;i++){
					printf("Team %i: %i\n",i,points_against[i]);
				}
				printf("\n\n----------------------------------------\n");
				int newOrder[6];
				for(i=0;i<6;i++){
                    newOrder[i] = points[i];
                    }
				int order = getOrder(newOrder);
				//Next block of code calls a test for a new prediction algorithm function written below
				int prediction = getPrediction(total_points,games_played);	 
		}
        getch();    
}