/*===========================================================================* * do_srv_fork * *===========================================================================*/ int do_srv_fork() { /* The process pointed to by 'mp' has forked. Create a child process. */ register struct mproc *rmp; /* pointer to parent */ register struct mproc *rmc; /* pointer to child */ int s; pid_t new_pid; static int next_child; int i, n = 0; endpoint_t child_ep; message m; /* Only RS is allowed to use srv_fork. */ if (mp->mp_endpoint != RS_PROC_NR) return EPERM; /* If tables might fill up during FORK, don't even start since recovery half * way through is such a nuisance. */ rmp = mp; if ((procs_in_use == NR_PROCS) || (procs_in_use >= NR_PROCS-LAST_FEW && rmp->mp_effuid != 0)) { printf("PM: warning, process table is full!\n"); return(EAGAIN); } /* Find a slot in 'mproc' for the child process. A slot must exist. */ do { next_child = (next_child+1) % NR_PROCS; n++; } while((mproc[next_child].mp_flags & IN_USE) && n <= NR_PROCS); if(n > NR_PROCS) panic("do_fork can't find child slot"); if(next_child < 0 || next_child >= NR_PROCS || (mproc[next_child].mp_flags & IN_USE)) panic("do_fork finds wrong child slot: %d", next_child); if((s=vm_fork(rmp->mp_endpoint, next_child, &child_ep)) != OK) { printf("PM: vm_fork failed: %d\n", s); return s; } rmc = &mproc[next_child]; /* Set up the child and its memory map; copy its 'mproc' slot from parent. */ procs_in_use++; *rmc = *rmp; /* copy parent's process slot to child's */ rmc->mp_parent = who_p; /* record child's parent */ if (!(rmc->mp_trace_flags & TO_TRACEFORK)) { rmc->mp_tracer = NO_TRACER; /* no tracer attached */ rmc->mp_trace_flags = 0; (void) sigemptyset(&rmc->mp_sigtrace); } /* inherit only these flags */ rmc->mp_flags &= (IN_USE|PRIV_PROC|DELAY_CALL); rmc->mp_child_utime = 0; /* reset administration */ rmc->mp_child_stime = 0; /* reset administration */ rmc->mp_exitstatus = 0; rmc->mp_sigstatus = 0; rmc->mp_endpoint = child_ep; /* passed back by VM */ rmc->mp_realuid = (uid_t) m_in.m1_i1; rmc->mp_effuid = (uid_t) m_in.m1_i1; rmc->mp_realgid = (uid_t) m_in.m1_i2; rmc->mp_effgid = (uid_t) m_in.m1_i2; for (i = 0; i < NR_ITIMERS; i++) rmc->mp_interval[i] = 0; /* reset timer intervals */ /* Find a free pid for the child and put it in the table. */ new_pid = get_free_pid(); rmc->mp_pid = new_pid; /* assign pid to child */ m.m_type = PM_SRV_FORK; m.PM_PROC = rmc->mp_endpoint; m.PM_PPROC = rmp->mp_endpoint; m.PM_CPID = rmc->mp_pid; m.PM_REUID = m_in.m1_i1; m.PM_REGID = m_in.m1_i2; tell_vfs(rmc, &m); #if USE_TRACE /* Tell the tracer, if any, about the new child */ if (rmc->mp_tracer != NO_TRACER) sig_proc(rmc, SIGSTOP, TRUE /*trace*/, FALSE /* ksig */); #endif /* USE_TRACE */ /* Wakeup the newly created process */ setreply(rmc-mproc, OK); return rmc->mp_pid; }
/*===========================================================================* * sef_cb_init_fresh * *===========================================================================*/ PRIVATE int sef_cb_init_fresh(int type, sef_init_info_t *info) { /* Initialize the process manager. * Memory use info is collected from the boot monitor, the kernel, and * all processes compiled into the system image. Initially this information * is put into an array mem_chunks. Elements of mem_chunks are struct memory, * and hold base, size pairs in units of clicks. This array is small, there * should be no more than 8 chunks. After the array of chunks has been built * the contents are used to initialize the hole list. Space for the hole list * is reserved as an array with twice as many elements as the maximum number * of processes allowed. It is managed as a linked list, and elements of the * array are struct hole, which, in addition to storage for a base and size in * click units also contain space for a link, a pointer to another element. */ int s; static struct boot_image image[NR_BOOT_PROCS]; register struct boot_image *ip; static char core_sigs[] = { SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGEMT, SIGFPE, SIGBUS, SIGSEGV }; static char ign_sigs[] = { SIGCHLD, SIGWINCH, SIGCONT }; static char noign_sigs[] = { SIGILL, SIGTRAP, SIGEMT, SIGFPE, SIGBUS, SIGSEGV }; register struct mproc *rmp; register char *sig_ptr; message mess; /* Initialize process table, including timers. */ for (rmp=&mproc[0]; rmp<&mproc[NR_PROCS]; rmp++) { tmr_inittimer(&rmp->mp_timer); } /* Build the set of signals which cause core dumps, and the set of signals * that are by default ignored. */ sigemptyset(&core_sset); for (sig_ptr = core_sigs; sig_ptr < core_sigs+sizeof(core_sigs); sig_ptr++) sigaddset(&core_sset, *sig_ptr); sigemptyset(&ign_sset); for (sig_ptr = ign_sigs; sig_ptr < ign_sigs+sizeof(ign_sigs); sig_ptr++) sigaddset(&ign_sset, *sig_ptr); sigemptyset(&noign_sset); for (sig_ptr = noign_sigs; sig_ptr < noign_sigs+sizeof(noign_sigs); sig_ptr++) sigaddset(&noign_sset, *sig_ptr); /* Obtain a copy of the boot monitor parameters and the kernel info struct. * Parse the list of free memory chunks. This list is what the boot monitor * reported, but it must be corrected for the kernel and system processes. */ if ((s=sys_getmonparams(monitor_params, sizeof(monitor_params))) != OK) panic("get monitor params failed: %d", s); if ((s=sys_getkinfo(&kinfo)) != OK) panic("get kernel info failed: %d", s); /* Initialize PM's process table. Request a copy of the system image table * that is defined at the kernel level to see which slots to fill in. */ if (OK != (s=sys_getimage(image))) panic("couldn't get image table: %d", s); procs_in_use = 0; /* start populating table */ for (ip = &image[0]; ip < &image[NR_BOOT_PROCS]; ip++) { if (ip->proc_nr >= 0) { /* task have negative nrs */ procs_in_use += 1; /* found user process */ /* Set process details found in the image table. */ rmp = &mproc[ip->proc_nr]; strncpy(rmp->mp_name, ip->proc_name, PROC_NAME_LEN); rmp->mp_nice = get_nice_value(ip->priority); sigemptyset(&rmp->mp_ignore); sigemptyset(&rmp->mp_sigmask); sigemptyset(&rmp->mp_catch); if (ip->proc_nr == INIT_PROC_NR) { /* user process */ /* INIT is root, we make it father of itself. This is * not really OK, INIT should have no father, i.e. * a father with pid NO_PID. But PM currently assumes * that mp_parent always points to a valid slot number. */ rmp->mp_parent = INIT_PROC_NR; rmp->mp_procgrp = rmp->mp_pid = INIT_PID; rmp->mp_flags |= IN_USE; } else { /* system process */ if(ip->proc_nr == RS_PROC_NR) { rmp->mp_parent = INIT_PROC_NR; } else { rmp->mp_parent = RS_PROC_NR; } rmp->mp_pid = get_free_pid(); rmp->mp_flags |= IN_USE | PRIV_PROC; } /* Get kernel endpoint identifier. */ rmp->mp_endpoint = ip->endpoint; /* Set scheduling info */ rmp->mp_scheduler = KERNEL; /* Tell FS about this system process. */ mess.m_type = PM_INIT; mess.PM_SLOT = ip->proc_nr; mess.PM_PID = rmp->mp_pid; mess.PM_PROC = rmp->mp_endpoint; if (OK != (s=send(FS_PROC_NR, &mess))) panic("can't sync up with FS: %d", s); } } /* Tell FS that no more system processes follow and synchronize. */ mess.PR_ENDPT = NONE; if (sendrec(FS_PROC_NR, &mess) != OK || mess.m_type != OK) panic("can't sync up with FS"); #if (CHIP == INTEL) uts_val.machine[0] = 'i'; strcpy(uts_val.machine + 1, itoa(getprocessor())); #endif system_hz = sys_hz(); /* Map out our own text and data. This is normally done in crtso.o * but PM is an exception - we don't get to talk to VM so early on. * That's why we override munmap() and munmap_text() in utility.c. * * _minix_unmapzero() is the same code in crtso.o that normally does * it on startup. It's best that it's there as crtso.o knows exactly * what the ranges are of the filler data. */ unmap_ok = 1; _minix_unmapzero(); return(OK); }