Esempio n. 1
0
File: test.cpp Progetto: kgori/pllpy
int main(int argc, char const *argv[])
{
    std::string FILE="/homes/kgori/scratch/basic_pll/GGPS1.phy";
    std::string PART="/homes/kgori/scratch/basic_pll/GGPS1.partitions.txt";
    std::string TREE="/homes/kgori/scratch/basic_pll/GGPS1.tree";

    auto inst = make_unique<pll>(FILE, PART, TREE, 1, 123);
    std::cout << inst->get_likelihood() << std::endl;
    std::cout << inst->get_partition_name(0) << std::endl;
    std::cout << inst->get_model_name(0) << std::endl;
    std::cout << inst->get_epsilon() << std::endl;
    std::cout << inst->get_alpha(0) << std::endl;
    std::cout << inst->get_number_of_partitions() << std::endl;
    std::cout << inst->get_tree() << std::endl;
    std::cout << inst->get_frac_change() << std::endl;
    inst->set_tree("((Ptro:0.00147084048849247711,Ppan:0.00106294370976534763):0.00444598321816729036,(Cjac:0.05157798212603657839,(Csab:0.00440006365327790666,(Mmul:0.00652936575529242547,Panu:0.00101047194512476272):0.00381049900890796569):0.01359968787254225639):0.01375788728353777995,Hsap:0.00674547067186638278):0.0;");
    inst->set_epsilon(0.001);
    inst->set_alpha(2, 0, true);
    auto ef = inst->get_empirical_frequencies();

    inst->optimise(true, true, true, true);
    inst->optimise_tree_search(true);
    std::cout << inst->get_likelihood() << std::endl;
    std::cout << inst->get_tree() << std::endl;
    return 0;
}
BOOL write_to_nand(u8* data, u32 length, u32 img_total_len)
{
	static u64 partition_size = 0;
	int next_flip = 0;
	u32 index;
	static int img_type = UNKOWN_IMG;
	s8* p_type;
	u32 w_length =0;
	//u32 pre_chksum = 0;
	//u32 post_chksum = 0;
	int r;

	if(sto_info.first_run)
	{
		r = get_partition_name(data, length, sto_info.partition_name);
		if(r < 0)
		{
			display_info("\nGet_partition_name() Fail");
			return FALSE;
		}

		index = partition_get_index(sto_info.partition_name);  //
		if(index == -1)
		{
			display_info("\nBrick phone??");
			return FALSE;
		}

		if(!is_support_flash(index))
		{
			display_info("\nDont support partition.");
			return FALSE;
		}

		partition_size = partition_get_size(index);
		dprintf(DBG_LV, "[index:%d]-[partitionSize:%lld]-[downSize:%d]\n", index, partition_size, sto_info.to_write_data_len);

		if (ROUND_TO_PAGE(sto_info.to_write_data_len,511) > partition_size)
		{
			display_info("size too large, space small.");
			dprintf(DBG_LV, "size too large, space small.");
			return FALSE;
		}

		{
			char i_type[20] = {0};
			get_image_type(data,length,(char *)i_type);
					
			partition_get_type(index,&p_type);
			
			if(strcmp(i_type,p_type)){
					display_info("[warning]image type is not match with partition type\n");
					dprintf(DBG_LV, "[warning]image type'%s' is not match with partition type'%s'",i_type,p_type);
			}
			printf("image type %s\n",i_type);

			if(!strcmp(i_type,"raw data")){
				img_type = RAW_DATA_IMG;	
			}else if(!strcmp(i_type,"yaffs2")){
				img_type = YFFS2_IMG;	
			}else if(!strcmp(i_type,"ubifs")){
				img_type = UBIFS_IMG;	
			}else{
					dprintf(DBG_LV, "image type '%s' unkown\n",i_type);
					display_info("\nimage type unkown");
					return FALSE;
			}
		}		
		sto_info.image_base_addr = partition_get_offset(index);

		//NAND has no sparse image.
		//sto_info.unsparse_status.image_base_addr = sto_info.image_base_addr;
		//sto_info.is_sparse_image = is_sparse_image(data, length);
		sto_info.first_run = 0;
	}
#if defined(MTK_MLC_NAND_SUPPORT)
	if (0 != nand_write_img_ex((u64)(sto_info.image_base_addr+sto_info.bulk_image_offset), (void*)data, length,img_total_len?(u64)(img_total_len):(u64)(sto_info.to_write_data_len), &w_length, (u64)(sto_info.image_base_addr),(u64)partition_size, img_type))
#else
	if (0 != nand_write_img_ex((u32)(sto_info.image_base_addr+sto_info.bulk_image_offset), (void*)data, length,img_total_len?(u32)(img_total_len):(u32)(sto_info.to_write_data_len), &w_length, (u32)(sto_info.image_base_addr),(u32)partition_size, img_type))
#endif
	{
		dprintf(DBG_LV, "nand_write_img() Failed.\n");
		display_info("Error in write bulk in NAND.");
		return FALSE;
	}
	if(sto_info.checksum_enabled)
	{
		//NAND do not support read() now.
	}

	sto_info.bulk_image_offset += w_length;

	return TRUE;
}
BOOL write_to_emmc(u8* data, u32 length)
{
	u64 paritition_size = 0;
	u64 size_wrote = 0;
	int next_flip = 0;
	u32 index;
	u32 pre_chksum = 0;
	u32 post_chksum = 0;
	int r;

	while(sto_info.first_run)
	{
		r = get_partition_name(data, length, sto_info.partition_name);
		if(r < 0)
		{
			display_info("\nget_partition_name() Fail");
			return FALSE;
		}

		if((!strncmp((char*)sto_info.partition_name, (char*)"signatureFile", 16))
			|| (!strncmp((char*)sto_info.partition_name, (char*)"boot", 8)))
		{
			//this do not need subsequent codes for normal partition.
			ctx.boot_like_info.is_boot_like_image = TRUE;
			ctx.boot_like_info.offset = 0;
			sto_info.first_run = 0;
			break;
		}

		index = partition_get_index((char*)sto_info.partition_name);
		if(index == (u32)(-1))
		{
			display_info("\nBrick phone??");
			return FALSE;
		}

		if(!is_support_flash(index))
		{
			display_info((char*)sto_info.partition_name);
			display_info("\nDont support partition");
			return FALSE;
		}

		paritition_size = partition_get_size(index);
		dprintf(DBG_LV, "[index:%d]-[downSize:%d]\n", index,  sto_info.to_write_data_len);

		if (ROUND_TO_PAGE(sto_info.to_write_data_len,511) > paritition_size)
		{
			display_info("\nsize too large, space small.");
			dprintf(DBG_LV, "size too large, space small.");
			return FALSE;
		}

#ifdef MTK_NEW_COMBO_EMMC_SUPPORT
		sto_info.part_id = partition_get_region(index);
		sto_info.unsparse_status.part_id = sto_info.part_id;
#endif
		sto_info.image_base_addr = partition_get_offset(index);
		sto_info.unsparse_status.image_base_addr = sto_info.image_base_addr;
		sto_info.is_sparse_image = is_sparse_image(data, length);
		sto_info.first_run = 0;
	}

	//boot like image do not need write to image at this function. it is in flash function.
	if(ctx.boot_like_info.is_boot_like_image)
	{
		dprintf(DBG_LV, "boot like img: len: %d\n", length);
		dprintf(DBG_LV, "data: %08X\n", (u32)data);
		//dprintf(DBG_LV, "ctx.boot_like_info.boot_like_image_address: %08X, ctx.boot_like_info.offset %u, \n", ctx.boot_like_info.boot_like_image_address , ctx.boot_like_info.offset);

		memcpy(ctx.boot_like_info.boot_like_image_address + ctx.boot_like_info.offset, data, length);
		ctx.boot_like_info.offset += length;
		return TRUE;
	}

	if(sto_info.is_sparse_image)
	{
		next_flip = cache_shift(ctx.flipIdxR);

		sto_info.unsparse_status.buf = data;
		sto_info.unsparse_status.size = length;
		mmc_write_sparse_data(&sto_info.unsparse_status);

		if(sto_info.unsparse_status.handle_status == S_DA_SDMMC_SPARSE_INCOMPLETE)
		{
			ctx.dual_cache[next_flip].padding_length = sto_info.unsparse_status.size;
			memcpy(ctx.dual_cache[next_flip].padding_buf +(CACHE_PADDING_SIZE-sto_info.unsparse_status.size)
				, sto_info.unsparse_status.buf
				, sto_info.unsparse_status.size);
		}
		else if (sto_info.unsparse_status.handle_status== S_DONE)
		{
			ctx.dual_cache[next_flip].padding_length = 0;
		}
		else
		{
			//some error
			dprintf(DBG_LV, "write_to_emmc() Failed. handle_status(%d)\n", sto_info.unsparse_status.handle_status);
			display_info("\nError in write sparse image in EMMC.");
			return FALSE;
		}
	}
	else
	{
#ifdef MTK_NEW_COMBO_EMMC_SUPPORT
		size_wrote = emmc_write(sto_info.part_id, sto_info.image_base_addr+sto_info.bulk_image_offset , (void*)data, length);
#else
		size_wrote = emmc_write(sto_info.image_base_addr+sto_info.bulk_image_offset , (void*)data, length);
#endif
		if (size_wrote  != length)
		{
			dprintf(DBG_LV, "write_to_emmc() Failed. act(%d) != want(%d)\n", (u32)size_wrote, length);
			display_info("\nError in write bulk in EMMC.");
			return FALSE;
		}
		if(sto_info.checksum_enabled)
		{
			pre_chksum = calc_checksum(data, (u32)length);
#ifdef MTK_NEW_COMBO_EMMC_SUPPORT
			if(length != emmc_read(sto_info.part_id, sto_info.image_base_addr+sto_info.bulk_image_offset, data,  length))
#else
			if(length != emmc_read(sto_info.image_base_addr+sto_info.bulk_image_offset, data,  length))
#endif
			{
				dprintf(DBG_LV, "emmc_read() Failed.\n");
				display_info("\nError in Read bulk EMMC.");
				return FALSE;
			}

			post_chksum = calc_checksum(data, (u32)length);

			if(post_chksum != pre_chksum)
			{
				dprintf(DBG_LV, "write_to_emmc() Failed. checksum error\n");
				display_info("\nWrite bulk in EMMC. Checksum Error");
				return FALSE;
			}
		}

		sto_info.bulk_image_offset += size_wrote;
	}
	return TRUE;
}
BOOL write_to_nand(u8* data, u32 length)
{
	u64 paritition_size = 0;
	int next_flip = 0;
	u32 index;
	BOOL partition_type;
	s8* p_type;
	//u32 pre_chksum = 0;
	//u32 post_chksum = 0;
	int r;

	if(sto_info.first_run)
	{
		r = get_partition_name(data, length, sto_info.partition_name);
		if(r < 0)
		{
			display_info("ASSERT!! get_partition_name() Fail");
			return FALSE;
		}

		index = partition_get_index(sto_info.partition_name);  //
		if(index == -1)
		{
			display_info("ASSERT!! Brick phone??");
			return FALSE;
		}

		if(!is_support_flash(index))
		{
			display_info("ASSERT!! Dont support system??");
			return FALSE;
		}
		//verify boot partition.
		if (!strcmp(sto_info.partition_name, "boot") || !strcmp(sto_info.partition_name, "recovery"))
		{
			if (memcmp((void *)data, BOOT_MAGIC, strlen(BOOT_MAGIC)))
			{
				display_info("image is not a boot image");
				return FALSE;
			}
		}

		paritition_size = partition_get_size(index);
		dprintf(DBG_LV, "[index:%d]-[partitionSize:%lld]-[downSize:%d]\n", index, paritition_size, sto_info.to_write_data_len);

		if (ROUND_TO_PAGE(sto_info.to_write_data_len,511) > paritition_size)
		{
			display_info("size too large, space small.");
			dprintf(DBG_LV, "size too large, space small.");
			return FALSE;
		}

		partition_get_type(index,&p_type);
		partition_type = (!strcmp(p_type,"yaffs2")) ? TRUE : FALSE;

		sto_info.image_base_addr = partition_get_offset(index);
		//NAND has no sparse image.
		//sto_info.unsparse_status.image_base_addr = sto_info.image_base_addr;
		//sto_info.is_sparse_image = is_sparse_image(data, length);
		sto_info.first_run = 0;
	}

	if (0 != nand_write_img((u32)(sto_info.image_base_addr+sto_info.bulk_image_offset), (void*)data, length,(u32)paritition_size, partition_type))
	{
		dprintf(DBG_LV, "nand_write_img() Failed.\n");
		display_info("Error in write bulk in NAND.");
		return FALSE;
	}
	if(sto_info.checksum_enabled)
	{
		//NAND do not support read() now.
	}

	sto_info.bulk_image_offset += length;

	return TRUE;
}
BOOL write_to_emmc(u8* data, u32 length)
{
	u64 paritition_size = 0;
	u64 size_wrote = 0;
	int next_flip = 0;
	u32 index;
	u32 pre_chksum = 0;
	u32 post_chksum = 0;
	int r;

	if(sto_info.first_run)
	{
		r = get_partition_name(data, length, sto_info.partition_name);
		if(r < 0)
		{
			display_info("\nASSERT!! get_partition_name() Fail");
			return FALSE;
		}
		if(!strncmp(sto_info.partition_name, "boot", 8))
		{
			ctx.boot_info.is_boot_image = TRUE;
			ctx.boot_info.offset = 0;
		}
		index = partition_get_index(sto_info.partition_name);
		if(index == -1)
		{
			display_info("\nASSERT!! Brick phone??");
			return FALSE;
		}

		if(!is_support_flash(index))
		{
			display_info(sto_info.partition_name);
			display_info("\nASSERT!! Dont support system??");
			return FALSE;
		}

		paritition_size = partition_get_size(index);
		dprintf(DBG_LV, "[index:%d]-[partitionSize:%lld]-[downSize:%lld]\n", index, paritition_size, sto_info.to_write_data_len);

		if (ROUND_TO_PAGE(sto_info.to_write_data_len,511) > paritition_size)
		{
			display_info("\nsize too large, space small.");
			dprintf(DBG_LV, "size too large, space small.");
			return FALSE;
		}

		sto_info.image_base_addr = partition_get_offset(index);
		sto_info.unsparse_status.image_base_addr = sto_info.image_base_addr;
		sto_info.is_sparse_image = is_sparse_image(data, length);
		sto_info.first_run = 0;
	}

	//boot image do not need write to image at this function. it is in flash function.
	if(ctx.boot_info.is_boot_image)
	{
		dprintf(DBG_LV, "boot img: len: %d\n", length);
		dprintf(DBG_LV, "data: %08X\n", data);
		dprintf(DBG_LV, "ctx.boot_info.boot_image_address: %08X, ctx.boot_info.offset %u, \n", ctx.boot_info.boot_image_address , ctx.boot_info.offset);

		memcpy(ctx.boot_info.boot_image_address + ctx.boot_info.offset, data, length);
		ctx.boot_info.offset += length;
		return TRUE;
	}

	if(sto_info.is_sparse_image)
	{
		next_flip = cache_shift(ctx.flipIdxR);

		sto_info.unsparse_status.buf = data;
		sto_info.unsparse_status.size = length;
		mmc_write_sparse_data(&sto_info.unsparse_status);

		if(sto_info.unsparse_status.handle_status == S_DA_SDMMC_SPARSE_INCOMPLETE)
		{
			ctx.dual_cache[next_flip].padding_length = sto_info.unsparse_status.size;
			memcpy(ctx.dual_cache[next_flip].padding_buf +(CACHE_PADDING_SIZE-sto_info.unsparse_status.size)
				, sto_info.unsparse_status.buf
				, sto_info.unsparse_status.size);
		}
		else if (sto_info.unsparse_status.handle_status== S_DONE)
		{
			ctx.dual_cache[next_flip].padding_length = 0;
		}
		else
		{
			//some error
			dprintf(DBG_LV, "write_to_emmc() Failed. handle_status(%d)\n", sto_info.unsparse_status.handle_status);
			display_info("\nError in write sparse image in EMMC.");
			return FALSE;
		}
	}
	else
	{
		size_wrote = emmc_write(sto_info.image_base_addr+sto_info.bulk_image_offset , (void*)data, length);
		if (size_wrote  != length)
		{
			dprintf(DBG_LV, "write_to_emmc() Failed. act(%lld) != want(%lld)\n", size_wrote, length);
			display_info("\nError in write bulk in EMMC.");
			return FALSE;
		}
		if(sto_info.checksum_enabled)
		{
			pre_chksum = calc_checksum(data, (u32)length);
			if(length != emmc_read(sto_info.image_base_addr+sto_info.bulk_image_offset, data,  length))
			{
				dprintf(DBG_LV, "emmc_read() Failed.\n");
				display_info("\nError in Read bulk EMMC.");
				return FALSE;
			}

			post_chksum = calc_checksum(data, (u32)length);

			if(post_chksum != pre_chksum)
			{
				dprintf(DBG_LV, "write_to_emmc() Failed. checksum error\n");
				display_info("\nWrite bulk in EMMC. Checksum Error");
				return FALSE;
			}
		}

		sto_info.bulk_image_offset += size_wrote;
	}
	return TRUE;
}