Esempio n. 1
0
int ecCheck (const ecPoint *p)
	/* confirm that y^2 + x*y = x^3 + EC_B for point p */
{
	gfPoint t1, t2, t3, b;

	b[0] = 1; b[1] = EC_B;
	gfSquare (t1, p->y);
	gfMultiply (t2, p->x, p->y);
	gfAdd (t1, t1, t2);	/* t1 := y^2 + x*y */
	gfSquare (t2, p->x);
	gfMultiply (t3, t2, p->x);
	gfAdd (t2, t3, b);	/*/ t2 := x^3 + EC_B */
	return gfEqual (t1, t2);
} /* ecCheck */
Esempio n. 2
0
void ecDouble (ecPoint *p)
	/* sets p := 2*p */
{
	gfPoint lambda, t1, t2;

	/* evaluate lambda = x + y/x: */
	gfInvert (t1, p->x);
	gfMultiply (lambda, p->y, t1);
	gfAdd (lambda, lambda, p->x);
	/* evaluate x3 = lambda^2 + lambda: */
	gfSquare (t1, lambda);
	gfAdd (t1, t1, lambda); /* now t1 = x3 */
	/* evaluate y3 = x^2 + lambda*x3 + x3: */
	gfSquare (p->y, p->x);
	gfMultiply (t2, lambda, t1);
	gfAdd (p->y, p->y, t2);
	gfAdd (p->y, p->y, t1);
	/* deposit the value of x3: */
	gfCopy (p->x, t1);
} /* ecDouble */
Esempio n. 3
0
void gfSquareRoot (gfPoint p, lunit b)
	/* sets p := sqrt(b) = b^(2^(GF_M-1)) */
{
	int i;
	gfPoint q;

	assert (logt != NULL && expt != NULL);
	assert (p != NULL);
	q[0] = 1; q[1] = b;
	if ((GF_M - 1) & 1) {
		/* GF_M - 1 is odd */
		gfSquare (p, q);
		i = GF_M - 2;
	} else {
		/* GF_M - 1 is even */
		gfCopy (p, q);
		i = GF_M - 1;
	}
	while (i) {
		gfSquare (p, p);
		gfSquare (p, p);
		i -= 2;
	}
} /* gfSquareRoot */
Esempio n. 4
0
static int gfSlowTrace (const gfPoint p)
	/* slowly evaluates to the trace of p (or an error code) */
{
	int i;
	gfPoint t;

	assert (logt != NULL && expt != NULL);
	assert (p != NULL);
	gfCopy (t, p);
	for (i = 1; i < GF_M; i++) {
		gfSquare (t, t);
		gfAdd (t, t, p);
	}
	return t[0] != 0;
} /* gfSlowTrace */
Esempio n. 5
0
void ecAdd (ecPoint *p, const ecPoint *q)
	/* sets p := p + q */
{
	gfPoint lambda, t, tx, ty, x3;

	/* first check if there is indeed work to do (q != 0): */
	if (q->x[0] != 0 || q->y[0] != 0) {
		if (p->x[0] != 0 || p->y[0] != 0) {
			/* p != 0 and q != 0 */
			if (gfEqual (p->x, q->x)) {
				/* either p == q or p == -q: */
				if (gfEqual (p->y, q->y)) {
					/* points are equal; double p: */
					ecDouble (p);
				} else {
					/* must be inverse: result is zero */
					/* (should assert that q->y = p->x + p->y) */
					p->x[0] = p->y[0] = 0;
				}
			} else {
				/* p != 0, q != 0, p != q, p != -q */
				/* evaluate lambda = (y1 + y2)/(x1 + x2): */
				gfAdd (ty, p->y, q->y);
				gfAdd (tx, p->x, q->x);
				gfInvert (t, tx);
				gfMultiply (lambda, ty, t);
				/* evaluate x3 = lambda^2 + lambda + x1 + x2: */
				gfSquare (x3, lambda);
				gfAdd (x3, x3, lambda);
				gfAdd (x3, x3, tx);
				/* evaluate y3 = lambda*(x1 + x3) + x3 + y1: */
				gfAdd (tx, p->x, x3);
				gfMultiply (t, lambda, tx);
				gfAdd (t, t, x3);
				gfAdd (p->y, t, p->y);
				/* deposit the value of x3: */
				gfCopy (p->x, x3);
			}
		} else {
			/* just copy q into p: */
			gfCopy (p->x, q->x);
			gfCopy (p->y, q->y);
		}
	}
} /* ecAdd */
Esempio n. 6
0
int ecCalcY (ecPoint *p, int ybit)
	/* given the x coordinate of p, evaluate y such that y^2 + x*y = x^3 + EC_B */
{
	gfPoint a, b, t;

	b[0] = 1; b[1] = EC_B;
	if (p->x[0] == 0) {
		/* elliptic equation reduces to y^2 = EC_B: */
		gfSquareRoot (p->y, EC_B);
		return 1;
	}
	/* evaluate alpha = x^3 + b = (x^2)*x + EC_B: */
	gfSquare (t, p->x); /* keep t = x^2 for beta evaluation */
	gfMultiply (a, t, p->x);
	gfAdd (a, a, b); /* now a == alpha */
	if (a[0] == 0) {
		p->y[0] = 0;
		/* destroy potentially sensitive data: */
		gfClear (a); gfClear (t);
		return 1;
	}
	/* evaluate beta = alpha/x^2 = x + EC_B/x^2 */
	gfSmallDiv (t, EC_B);
	gfInvert (a, t);
	gfAdd (a, p->x, a); /* now a == beta */
	/* check if a solution exists: */
	if (gfTrace (a) != 0) {
		/* destroy potentially sensitive data: */
		gfClear (a); gfClear (t);
		return 0; /* no solution */
	}
	/* solve equation t^2 + t + beta = 0 so that gfYbit(t) == ybit: */
	gfQuadSolve (t, a);
	if (gfYbit (t) != ybit) {
		t[1] ^= 1;
	}
	/* compute y = x*t: */
	gfMultiply (p->y, p->x, t);
	/* destroy potentially sensitive data: */
	gfClear (a); gfClear (t);
	return 1;
} /* ecCalcY */