Esempio n. 1
0
double MLFitterGSL::iteration(){
  //do one itteration
  //lock the model so user can not add or remove components during itteration
  modelptr->setlocked(true);
  //if the model has changed (a new or removed component eg.) create a new solver
  if (modelptr->has_changed()){
      createmodelinfo();     //this automaticaly calls initfitter() via created_modelinfo()
  }
  //do an itteration step  
  try{
    const int status=gsl_multifit_fdfsolver_iterate(solver);
    #ifdef FITTER_DEBUG
    std::cout <<"solver status: "<<gsl_strerror(status)<<"\n";
    std::cout <<"chi square/dof: "<<gsl_blas_dnrm2(solver->f)<<"\n";
    #endif
    this->setstatus(gsl_strerror(status)); //update status info of fitter
    convertxtoparam(solver->x);
    
    
    
  }
  catch(...){
    Saysomething mysay(0,"Error","Problem with call to gsl_multifit_fdfsolver_iterate, exit MLFitterGSL",true);
    delete(this);
  }
 //unlock the model so user can add or remove components
  modelptr->setlocked(false);
  //put the goodness in the goodnessqueue to check for convergence
  const double newgoodness= goodness_of_fit();
  addgoodness(newgoodness);
  return newgoodness;
}
Esempio n. 2
0
std::string WLSQFitter::goodness_of_fit_string()const{
  //returns a string which says how good the fit is
  char s[256];
  double chisq=goodness_of_fit();
  sprintf(s,"Normalized Weighted Chi square: %e",chisq/(modelptr->getnpoints()));
  std::string f=s;
  return f;
}
Esempio n. 3
0
void fit_halo_profile(struct halo *HALO)
{
	double c=0, r=0, rho0, rho0_halo, rs, chi, gof, per; 
	double *x, *y, *e, *R, *y_th, *x_bin, *y_bin, *e_bin, rMin, rMax; 
	int bins, skip, N, j=0;

		r = HALO->Rvir;
		c = HALO->c; 
		bins = HALO->n_bins;
		skip = HALO->neg_r_bins;

		N = bins - skip;

		rho0 = HALO->rho0;
		rs = HALO->r2;

		x = (double*) calloc(N, sizeof(double));
		y = (double*) calloc(N, sizeof(double));
		e = (double*) calloc(N, sizeof(double));
		R = (double*) calloc(N, sizeof(double));
		
		for(j=0; j<N; j++)
		{
			x[j] = HALO->radius[j+skip];
			y[j] = HALO->rho[j+skip];
			e[j] = HALO->err[j+skip];
			R[j] = HALO->radius[j+skip]/r;
		}

			best_fit_nfw(rho0, rs, N, x, y, e);

			HALO->fit_nfw.rho0 = rho0;
			HALO->fit_nfw.rs = rs;
			HALO->fit_nfw.c = HALO->Rvir/rs;

			y_th = (double*) calloc(bins-skip,sizeof(double));

		for(j=skip; j<bins; j++)
		{
			y_th[j-skip] = nfw(HALO->radius[j], HALO->fit_nfw.rs, HALO->fit_nfw.rho0);
			//fprintf(stderr, "%d) R=%e, %e %e  %e\n", j, R[j-skip], rho0, y[j-skip], y_th[j-skip]);
		}

	// Various estimators for the goodness of fit
	chi = chi_square(y_th, y, e, N);
	gof = goodness_of_fit(y_th, y, N);
	per = percentage_error(y_th, y, N);
	
	chi /= (double) (bins-skip);

	HALO->fit_nfw.chi = chi;
	HALO->fit_nfw.gof = gof;
	HALO->fit_nfw.per = per;

		x_bin = (double*) calloc(BIN_PROFILE+1, sizeof(double));
		y_bin = (double*) calloc(BIN_PROFILE, sizeof(double));
		e_bin = (double*) calloc(BIN_PROFILE, sizeof(double));

		rMin = 2 * Rvir_frac_min;
		rMax = F_MAX * 1.01; //HALO->radius[bins-1]/r;
		x_bin = log_stepper(rMin, rMax, BIN_PROFILE+1);

		average_bin(R, y, x_bin, y_bin, e_bin, BIN_PROFILE+1, N);

	for(j=0; j<BIN_PROFILE; j++)
	{
		HALO->nfw.x[j] = 0.5 * (x_bin[j] + x_bin[j+1]);
		HALO->nfw.y[j] = y_bin[j];
		//fprintf(stderr, "%d  %e  %e\n", j, x_bin[j+1], y_bin[j]);
	}

	free(x);
	free(y);
	free(R);
	free(y_th);
	free(e);
//	fprintf(stderr, "ThisTask=%d, skip=%d, bins=%d, rho=%f, rs=%f, ChiSquare=%lf, Red=%lf\n", 
//		ThisTask, skip, bins, rho0, rs, chi_sq, chi_sq/(bins-skip));
}