void MultiBodyVehicleSetup::initPhysics(GraphicsPhysicsBridge& gfxBridge) { int upAxis = 1; btVector4 colors[4] = { btVector4(1,0,0,1), btVector4(0,1,0,1), btVector4(0,1,1,1), btVector4(1,1,0,1), }; int curColor = 0; gfxBridge.setUpAxis(upAxis); this->createEmptyDynamicsWorld(); gfxBridge.createPhysicsDebugDrawer(m_dynamicsWorld); m_dynamicsWorld->getDebugDrawer()->setDebugMode( //btIDebugDraw::DBG_DrawConstraints +btIDebugDraw::DBG_DrawWireframe +btIDebugDraw::DBG_DrawContactPoints +btIDebugDraw::DBG_DrawAabb );//+btIDebugDraw::DBG_DrawConstraintLimits); createMultiBodyVehicle(); if (1) { btVector3 groundHalfExtents(20,20,20); groundHalfExtents[upAxis]=1.f; btBoxShape* box = new btBoxShape(groundHalfExtents); box->initializePolyhedralFeatures(); gfxBridge.createCollisionShapeGraphicsObject(box); btTransform start; start.setIdentity(); btVector3 groundOrigin(0,0,0); groundOrigin[upAxis]=-1.5; start.setOrigin(groundOrigin); btRigidBody* body = createRigidBody(0,start,box); btVector4 color = colors[curColor]; curColor++; curColor&=3; gfxBridge.createRigidBodyGraphicsObject(body,color); } }
void ImportUrdfSetup::initPhysics() { m_guiHelper->setUpAxis(m_upAxis); this->createEmptyDynamicsWorld(); //m_dynamicsWorld->getSolverInfo().m_numIterations = 100; m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); m_dynamicsWorld->getDebugDrawer()->setDebugMode( btIDebugDraw::DBG_DrawConstraints +btIDebugDraw::DBG_DrawContactPoints +btIDebugDraw::DBG_DrawAabb );//+btIDebugDraw::DBG_DrawConstraintLimits); if (m_guiHelper->getParameterInterface()) { SliderParams slider("Gravity", &m_grav); slider.m_minVal = -10; slider.m_maxVal = 10; m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider); } BulletURDFImporter u2b(m_guiHelper, 0); bool loadOk = u2b.loadURDF(m_fileName); #ifdef TEST_MULTIBODY_SERIALIZATION //test to serialize a multibody to disk or shared memory, with base, link and joint names btSerializer* s = new btDefaultSerializer; #endif //TEST_MULTIBODY_SERIALIZATION if (loadOk) { //printTree(u2b,u2b.getRootLinkIndex()); //u2b.printTree(); btTransform identityTrans; identityTrans.setIdentity(); { //todo: move these internal API called inside the 'ConvertURDF2Bullet' call, hidden from the user //int rootLinkIndex = u2b.getRootLinkIndex(); //b3Printf("urdf root link index = %d\n",rootLinkIndex); MyMultiBodyCreator creation(m_guiHelper); ConvertURDF2Bullet(u2b,creation, identityTrans,m_dynamicsWorld,m_useMultiBody,u2b.getPathPrefix()); m_data->m_rb = creation.getRigidBody(); m_data->m_mb = creation.getBulletMultiBody(); btMultiBody* mb = m_data->m_mb; for (int i = 0; i < u2b.getNumAllocatedCollisionShapes(); i++) { m_collisionShapes.push_back(u2b.getAllocatedCollisionShape(i)); } if (m_useMultiBody && mb ) { std::string* name = new std::string(u2b.getLinkName(u2b.getRootLinkIndex())); m_nameMemory.push_back(name); #ifdef TEST_MULTIBODY_SERIALIZATION s->registerNameForPointer(name->c_str(),name->c_str()); #endif//TEST_MULTIBODY_SERIALIZATION mb->setBaseName(name->c_str()); //create motors for each btMultiBody joint int numLinks = mb->getNumLinks(); for (int i=0;i<numLinks;i++) { int mbLinkIndex = i; int urdfLinkIndex = creation.m_mb2urdfLink[mbLinkIndex]; std::string* jointName = new std::string(u2b.getJointName(urdfLinkIndex)); std::string* linkName = new std::string(u2b.getLinkName(urdfLinkIndex).c_str()); #ifdef TEST_MULTIBODY_SERIALIZATION s->registerNameForPointer(jointName->c_str(),jointName->c_str()); s->registerNameForPointer(linkName->c_str(),linkName->c_str()); #endif//TEST_MULTIBODY_SERIALIZATION m_nameMemory.push_back(jointName); m_nameMemory.push_back(linkName); mb->getLink(i).m_linkName = linkName->c_str(); mb->getLink(i).m_jointName = jointName->c_str(); if (mb->getLink(mbLinkIndex).m_jointType==btMultibodyLink::eRevolute ||mb->getLink(mbLinkIndex).m_jointType==btMultibodyLink::ePrismatic ) { if (m_data->m_numMotors<MAX_NUM_MOTORS) { char motorName[1024]; sprintf(motorName,"%s q'", jointName->c_str()); btScalar* motorVel = &m_data->m_motorTargetVelocities[m_data->m_numMotors]; *motorVel = 0.f; SliderParams slider(motorName,motorVel); slider.m_minVal=-4; slider.m_maxVal=4; m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider); float maxMotorImpulse = 10.1f; btMultiBodyJointMotor* motor = new btMultiBodyJointMotor(mb,mbLinkIndex,0,0,maxMotorImpulse); //motor->setMaxAppliedImpulse(0); m_data->m_jointMotors[m_data->m_numMotors]=motor; m_dynamicsWorld->addMultiBodyConstraint(motor); m_data->m_numMotors++; } } } } else { if (1) { //create motors for each generic joint int num6Dof = creation.getNum6DofConstraints(); for (int i=0;i<num6Dof;i++) { btGeneric6DofSpring2Constraint* c = creation.get6DofConstraint(i); if (c->getUserConstraintPtr()) { GenericConstraintUserInfo* jointInfo = (GenericConstraintUserInfo*)c->getUserConstraintPtr(); if ((jointInfo->m_urdfJointType ==URDFRevoluteJoint) || (jointInfo->m_urdfJointType ==URDFPrismaticJoint) || (jointInfo->m_urdfJointType ==URDFContinuousJoint)) { int urdfLinkIndex = jointInfo->m_urdfIndex; std::string jointName = u2b.getJointName(urdfLinkIndex); char motorName[1024]; sprintf(motorName,"%s q'", jointName.c_str()); btScalar* motorVel = &m_data->m_motorTargetVelocities[m_data->m_numMotors]; *motorVel = 0.f; SliderParams slider(motorName,motorVel); slider.m_minVal=-4; slider.m_maxVal=4; m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider); m_data->m_generic6DofJointMotors[m_data->m_numMotors]=c; bool motorOn = true; c->enableMotor(jointInfo->m_jointAxisIndex,motorOn); c->setMaxMotorForce(jointInfo->m_jointAxisIndex,10000); c->setTargetVelocity(jointInfo->m_jointAxisIndex,0); m_data->m_numMotors++; } } } } } } //the btMultiBody support is work-in-progress :-) for (int i=0;i<m_dynamicsWorld->getNumMultiBodyConstraints();i++) { m_dynamicsWorld->getMultiBodyConstraint(i)->finalizeMultiDof(); } bool createGround=true; if (createGround) { btVector3 groundHalfExtents(20,20,20); groundHalfExtents[m_upAxis]=1.f; btBoxShape* box = new btBoxShape(groundHalfExtents); m_collisionShapes.push_back(box); box->initializePolyhedralFeatures(); m_guiHelper->createCollisionShapeGraphicsObject(box); btTransform start; start.setIdentity(); btVector3 groundOrigin(0,0,0); groundOrigin[m_upAxis]=-2.5; start.setOrigin(groundOrigin); btRigidBody* body = createRigidBody(0,start,box); //m_dynamicsWorld->removeRigidBody(body); // m_dynamicsWorld->addRigidBody(body,2,1); btVector3 color(0.5,0.5,0.5); m_guiHelper->createRigidBodyGraphicsObject(body,color); } } #ifdef TEST_MULTIBODY_SERIALIZATION m_dynamicsWorld->serialize(s); b3ResourcePath p; char resourcePath[1024]; if (p.findResourcePath("r2d2_multibody.bullet",resourcePath,1024)) { FILE* f = fopen(resourcePath,"wb"); fwrite(s->getBufferPointer(),s->getCurrentBufferSize(),1,f); fclose(f); } #endif//TEST_MULTIBODY_SERIALIZATION }
void TestJointTorqueSetup::initPhysics() { int upAxis = 1; gJointFeedbackInWorldSpace = true; gJointFeedbackInJointFrame = true; m_guiHelper->setUpAxis(upAxis); btVector4 colors[4] = { btVector4(1,0,0,1), btVector4(0,1,0,1), btVector4(0,1,1,1), btVector4(1,1,0,1), }; int curColor = 0; this->createEmptyDynamicsWorld(); m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); m_dynamicsWorld->getDebugDrawer()->setDebugMode( //btIDebugDraw::DBG_DrawConstraints +btIDebugDraw::DBG_DrawWireframe +btIDebugDraw::DBG_DrawContactPoints +btIDebugDraw::DBG_DrawAabb );//+btIDebugDraw::DBG_DrawConstraintLimits); //create a static ground object if (1) { btVector3 groundHalfExtents(1,1,0.2); groundHalfExtents[upAxis]=1.f; btBoxShape* box = new btBoxShape(groundHalfExtents); box->initializePolyhedralFeatures(); m_guiHelper->createCollisionShapeGraphicsObject(box); btTransform start; start.setIdentity(); btVector3 groundOrigin(-0.4f, 3.f, 0.f); groundOrigin[upAxis] -=.5; groundOrigin[2]-=0.6; start.setOrigin(groundOrigin); btQuaternion groundOrn(btVector3(0,1,0),0.25*SIMD_PI); // start.setRotation(groundOrn); btRigidBody* body = createRigidBody(0,start,box); body->setFriction(0); btVector4 color = colors[curColor]; curColor++; curColor&=3; m_guiHelper->createRigidBodyGraphicsObject(body,color); } { bool floating = false; bool damping = false; bool gyro = false; int numLinks = 2; bool spherical = false; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals bool canSleep = false; bool selfCollide = false; btVector3 linkHalfExtents(0.05, 0.37, 0.1); btVector3 baseHalfExtents(0.05, 0.37, 0.1); btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f); //mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm //init the base btVector3 baseInertiaDiag(0.f, 0.f, 0.f); float baseMass = 1.f; if(baseMass) { //btCollisionShape *shape = new btSphereShape(baseHalfExtents[0]);// btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2])); btCollisionShape *shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2])); shape->calculateLocalInertia(baseMass, baseInertiaDiag); delete shape; } bool isMultiDof = true; btMultiBody *pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep, isMultiDof); m_multiBody = pMultiBody; btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f); // baseOriQuat.setEulerZYX(-.25*SIMD_PI,0,-1.75*SIMD_PI); pMultiBody->setBasePos(basePosition); pMultiBody->setWorldToBaseRot(baseOriQuat); btVector3 vel(0, 0, 0); // pMultiBody->setBaseVel(vel); //init the links btVector3 hingeJointAxis(1, 0, 0); //y-axis assumed up btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset ////// btScalar q0 = 0.f * SIMD_PI/ 180.f; btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0); quat0.normalize(); ///// for(int i = 0; i < numLinks; ++i) { float linkMass = 1.f; //if (i==3 || i==2) // linkMass= 1000; btVector3 linkInertiaDiag(0.f, 0.f, 0.f); btCollisionShape* shape = 0; if (i==0) { shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));// } else { shape = new btSphereShape(radius); } shape->calculateLocalInertia(linkMass, linkInertiaDiag); delete shape; if(!spherical) { //pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false); if (i==0) { pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false); } else { btVector3 parentComToCurrentCom(0, -radius * 2.f, 0); //par body's COM to cur body's COM offset btVector3 currentPivotToCurrentCom(0, -radius, 0); //cur body's COM to cur body's PIV offset btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset pMultiBody->setupFixed(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false); } //pMultiBody->setupFixed(i,linkMass,linkInertiaDiag,i-1,btQuaternion(0,0,0,1),parentComToCurrentPivot,currentPivotToCurrentCom,false); } else { //pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false); pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false); } } pMultiBody->finalizeMultiDof(); //for (int i=pMultiBody->getNumLinks()-1;i>=0;i--)// for (int i=0;i<pMultiBody->getNumLinks();i++) { btMultiBodyJointFeedback* fb = new btMultiBodyJointFeedback(); pMultiBody->getLink(i).m_jointFeedback = fb; m_jointFeedbacks.push_back(fb); //break; } btMultiBodyDynamicsWorld* world = m_dynamicsWorld; /// world->addMultiBody(pMultiBody); btMultiBody* mbC = pMultiBody; mbC->setCanSleep(canSleep); mbC->setHasSelfCollision(selfCollide); mbC->setUseGyroTerm(gyro); // if(!damping) { mbC->setLinearDamping(0.f); mbC->setAngularDamping(0.f); }else { mbC->setLinearDamping(0.1f); mbC->setAngularDamping(0.9f); } // m_dynamicsWorld->setGravity(btVector3(0,0,-10)); ////////////////////////////////////////////// if(0)//numLinks > 0) { btScalar q0 = 45.f * SIMD_PI/ 180.f; if(!spherical) if(mbC->isMultiDof()) mbC->setJointPosMultiDof(0, &q0); else mbC->setJointPos(0, q0); else { btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0); quat0.normalize(); mbC->setJointPosMultiDof(0, quat0); } } /// btAlignedObjectArray<btQuaternion> world_to_local; world_to_local.resize(pMultiBody->getNumLinks() + 1); btAlignedObjectArray<btVector3> local_origin; local_origin.resize(pMultiBody->getNumLinks() + 1); world_to_local[0] = pMultiBody->getWorldToBaseRot(); local_origin[0] = pMultiBody->getBasePos(); // double friction = 1; { // float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1}; // btScalar quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()}; if (1) { btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0],baseHalfExtents[1],baseHalfExtents[2]));//new btSphereShape(baseHalfExtents[0]); m_guiHelper->createCollisionShapeGraphicsObject(shape); btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(pMultiBody, -1); col->setCollisionShape(shape); btTransform tr; tr.setIdentity(); //if we don't set the initial pose of the btCollisionObject, the simulator will do this //when syncing the btMultiBody link transforms to the btMultiBodyLinkCollider tr.setOrigin(local_origin[0]); btQuaternion orn(btVector3(0,0,1),0.25*3.1415926538); tr.setRotation(orn); col->setWorldTransform(tr); bool isDynamic = (baseMass > 0 && floating); short collisionFilterGroup = isDynamic? short(btBroadphaseProxy::DefaultFilter) : short(btBroadphaseProxy::StaticFilter); short collisionFilterMask = isDynamic? short(btBroadphaseProxy::AllFilter) : short(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter); world->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//, 2,1+2); btVector3 color(0.0,0.0,0.5); m_guiHelper->createCollisionObjectGraphicsObject(col,color); // col->setFriction(friction); pMultiBody->setBaseCollider(col); } } for (int i=0; i < pMultiBody->getNumLinks(); ++i) { const int parent = pMultiBody->getParent(i); world_to_local[i+1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent+1]; local_origin[i+1] = local_origin[parent+1] + (quatRotate(world_to_local[i+1].inverse() , pMultiBody->getRVector(i))); } for (int i=0; i < pMultiBody->getNumLinks(); ++i) { btVector3 posr = local_origin[i+1]; // float pos[4]={posr.x(),posr.y(),posr.z(),1}; btScalar quat[4]={-world_to_local[i+1].x(),-world_to_local[i+1].y(),-world_to_local[i+1].z(),world_to_local[i+1].w()}; btCollisionShape* shape =0; if (i==0) { shape = new btBoxShape(btVector3(linkHalfExtents[0],linkHalfExtents[1],linkHalfExtents[2]));//btSphereShape(linkHalfExtents[0]); } else { shape = new btSphereShape(radius); } m_guiHelper->createCollisionShapeGraphicsObject(shape); btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i); col->setCollisionShape(shape); btTransform tr; tr.setIdentity(); tr.setOrigin(posr); tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3])); col->setWorldTransform(tr); // col->setFriction(friction); bool isDynamic = 1;//(linkMass > 0); short collisionFilterGroup = isDynamic? short(btBroadphaseProxy::DefaultFilter) : short(btBroadphaseProxy::StaticFilter); short collisionFilterMask = isDynamic? short(btBroadphaseProxy::AllFilter) : short(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter); //if (i==0||i>numLinks-2) { world->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//,2,1+2); btVector4 color = colors[curColor]; curColor++; curColor&=3; m_guiHelper->createCollisionObjectGraphicsObject(col,color); pMultiBody->getLink(i).m_collider=col; } } } btSerializer* s = new btDefaultSerializer; m_dynamicsWorld->serialize(s); b3ResourcePath p; char resourcePath[1024]; if (p.findResourcePath("multibody.bullet",resourcePath,1024)) { FILE* f = fopen(resourcePath,"wb"); fwrite(s->getBufferPointer(),s->getCurrentBufferSize(),1,f); fclose(f); } }
void ImportSDFSetup::initPhysics() { int upAxis = 2; m_guiHelper->setUpAxis(upAxis); this->createEmptyDynamicsWorld(); //m_dynamicsWorld->getSolverInfo().m_numIterations = 100; m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); m_dynamicsWorld->getDebugDrawer()->setDebugMode( btIDebugDraw::DBG_DrawConstraints +btIDebugDraw::DBG_DrawContactPoints +btIDebugDraw::DBG_DrawAabb );//+btIDebugDraw::DBG_DrawConstraintLimits); btVector3 gravity(0,0,0); gravity[upAxis]=-9.8; m_dynamicsWorld->setGravity(gravity); BulletURDFImporter u2b(m_guiHelper); bool loadOk = u2b.loadSDF(m_fileName); if (loadOk) { //printTree(u2b,u2b.getRootLinkIndex()); //u2b.printTree(); btTransform identityTrans; identityTrans.setIdentity(); for (int m =0; m<u2b.getNumModels();m++) { u2b.activateModel(m); btMultiBody* mb = 0; //todo: move these internal API called inside the 'ConvertURDF2Bullet' call, hidden from the user int rootLinkIndex = u2b.getRootLinkIndex(); b3Printf("urdf root link index = %d\n",rootLinkIndex); MyMultiBodyCreator creation(m_guiHelper); ConvertURDF2Bullet(u2b,creation, identityTrans,m_dynamicsWorld,m_useMultiBody,u2b.getPathPrefix()); mb = creation.getBulletMultiBody(); } for (int i=0;i<m_dynamicsWorld->getNumMultiBodyConstraints();i++) { m_dynamicsWorld->getMultiBodyConstraint(i)->finalizeMultiDof(); } bool createGround=true; if (createGround) { btVector3 groundHalfExtents(20,20,20); groundHalfExtents[upAxis]=1.f; btBoxShape* box = new btBoxShape(groundHalfExtents); box->initializePolyhedralFeatures(); m_guiHelper->createCollisionShapeGraphicsObject(box); btTransform start; start.setIdentity(); btVector3 groundOrigin(0,0,0); groundOrigin[upAxis]=-2.5; start.setOrigin(groundOrigin); btRigidBody* body = createRigidBody(0,start,box); //m_dynamicsWorld->removeRigidBody(body); // m_dynamicsWorld->addRigidBody(body,2,1); btVector3 color(0.5,0.5,0.5); m_guiHelper->createRigidBodyGraphicsObject(body,color); } ///this extra stepSimulation call makes sure that all the btMultibody transforms are properly propagates. m_dynamicsWorld->stepSimulation(1. / 240., 0);// 1., 10, 1. / 240.); } }
void MultiDofDemo::initPhysics() { m_guiHelper->setUpAxis(1); if(g_firstInit) { m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraDistance(btScalar(10.*scaling)); m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraPitch(50); g_firstInit = false; } ///collision configuration contains default setup for memory, collision setup m_collisionConfiguration = new btDefaultCollisionConfiguration(); ///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded) m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration); m_broadphase = new btDbvtBroadphase(); //Use the btMultiBodyConstraintSolver for Featherstone btMultiBody support btMultiBodyConstraintSolver* sol = new btMultiBodyConstraintSolver; m_solver = sol; //use btMultiBodyDynamicsWorld for Featherstone btMultiBody support btMultiBodyDynamicsWorld* world = new btMultiBodyDynamicsWorld(m_dispatcher,m_broadphase,sol,m_collisionConfiguration); m_dynamicsWorld = world; // m_dynamicsWorld->setDebugDrawer(&gDebugDraw); m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); m_dynamicsWorld->setGravity(btVector3(0,-10,0)); ///create a few basic rigid bodies btVector3 groundHalfExtents(50,50,50); btCollisionShape* groundShape = new btBoxShape(groundHalfExtents); //groundShape->initializePolyhedralFeatures(); // btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50); m_collisionShapes.push_back(groundShape); btTransform groundTransform; groundTransform.setIdentity(); groundTransform.setOrigin(btVector3(0,-50,00)); ///////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////// bool damping = true; bool gyro = true; int numLinks = 5; bool spherical = true; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals bool multibodyOnly = false; bool canSleep = true; bool selfCollide = true; bool multibodyConstraint = false; btVector3 linkHalfExtents(0.05, 0.37, 0.1); btVector3 baseHalfExtents(0.05, 0.37, 0.1); btMultiBody* mbC = createFeatherstoneMultiBody_testMultiDof(world, numLinks, btVector3(-0.4f, 3.f, 0.f), linkHalfExtents, baseHalfExtents, spherical, g_floatingBase); //mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm g_floatingBase = ! g_floatingBase; mbC->setCanSleep(canSleep); mbC->setHasSelfCollision(selfCollide); mbC->setUseGyroTerm(gyro); // if(!damping) { mbC->setLinearDamping(0.f); mbC->setAngularDamping(0.f); }else { mbC->setLinearDamping(0.1f); mbC->setAngularDamping(0.9f); } // m_dynamicsWorld->setGravity(btVector3(0, -9.81 ,0)); //m_dynamicsWorld->getSolverInfo().m_numIterations = 100; ////////////////////////////////////////////// if(numLinks > 0) { btScalar q0 = 45.f * SIMD_PI/ 180.f; if(!spherical) { mbC->setJointPosMultiDof(0, &q0); } else { btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0); quat0.normalize(); mbC->setJointPosMultiDof(0, quat0); } } /// addColliders_testMultiDof(mbC, world, baseHalfExtents, linkHalfExtents); ///////////////////////////////////////////////////////////////// btScalar groundHeight = -51.55; if (!multibodyOnly) { btScalar mass(0.); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) groundShape->calculateLocalInertia(mass,localInertia); //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects groundTransform.setIdentity(); groundTransform.setOrigin(btVector3(0,groundHeight,0)); btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia); btRigidBody* body = new btRigidBody(rbInfo); //add the body to the dynamics world m_dynamicsWorld->addRigidBody(body,1,1+2);//,1,1+2); } ///////////////////////////////////////////////////////////////// if(!multibodyOnly) { btVector3 halfExtents(.5,.5,.5); btBoxShape* colShape = new btBoxShape(halfExtents); //btCollisionShape* colShape = new btSphereShape(btScalar(1.)); m_collisionShapes.push_back(colShape); /// Create Dynamic Objects btTransform startTransform; startTransform.setIdentity(); btScalar mass(1.f); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) colShape->calculateLocalInertia(mass,localInertia); startTransform.setOrigin(btVector3( btScalar(0.0), 0.0, btScalar(0.0))); //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia); btRigidBody* body = new btRigidBody(rbInfo); m_dynamicsWorld->addRigidBody(body);//,1,1+2); if (multibodyConstraint) { btVector3 pointInA = -linkHalfExtents; // btVector3 pointInB = halfExtents; btMatrix3x3 frameInA; btMatrix3x3 frameInB; frameInA.setIdentity(); frameInB.setIdentity(); btVector3 jointAxis(1.0,0.0,0.0); //btMultiBodySliderConstraint* p2p = new btMultiBodySliderConstraint(mbC,numLinks-1,body,pointInA,pointInB,frameInA,frameInB,jointAxis); btMultiBodyFixedConstraint* p2p = new btMultiBodyFixedConstraint(mbC,numLinks-1,mbC,numLinks-4,pointInA,pointInA,frameInA,frameInB); p2p->setMaxAppliedImpulse(2.0); m_dynamicsWorld->addMultiBodyConstraint(p2p); } } m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld); ///////////////////////////////////////////////////////////////// }
void ImportSDFSetup::initPhysics() { int upAxis = 2; m_guiHelper->setUpAxis(upAxis); this->createEmptyDynamicsWorld(); //m_dynamicsWorld->getSolverInfo().m_numIterations = 100; m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); m_dynamicsWorld->getDebugDrawer()->setDebugMode( btIDebugDraw::DBG_DrawConstraints + btIDebugDraw::DBG_DrawContactPoints + btIDebugDraw::DBG_DrawAabb); //+btIDebugDraw::DBG_DrawConstraintLimits); btVector3 gravity(0, 0, 0); gravity[upAxis] = -9.8; m_dynamicsWorld->setGravity(gravity); BulletURDFImporter u2b(m_guiHelper, 0, 0, 1, 0); bool loadOk = u2b.loadSDF(m_fileName); if (loadOk) { //printTree(u2b,u2b.getRootLinkIndex()); //u2b.printTree(); btTransform rootTrans; rootTrans.setIdentity(); for (int m = 0; m < u2b.getNumModels(); m++) { u2b.activateModel(m); btMultiBody* mb = 0; //todo: move these internal API called inside the 'ConvertURDF2Bullet' call, hidden from the user //int rootLinkIndex = u2b.getRootLinkIndex(); //b3Printf("urdf root link index = %d\n",rootLinkIndex); MyMultiBodyCreator creation(m_guiHelper); u2b.getRootTransformInWorld(rootTrans); ConvertURDF2Bullet(u2b, creation, rootTrans, m_dynamicsWorld, m_useMultiBody, u2b.getPathPrefix(), CUF_USE_SDF); mb = creation.getBulletMultiBody(); if (m_useMultiBody && mb) { std::string* name = new std::string(u2b.getLinkName(u2b.getRootLinkIndex())); m_nameMemory.push_back(name); #ifdef TEST_MULTIBODY_SERIALIZATION s->registerNameForPointer(name->c_str(), name->c_str()); #endif //TEST_MULTIBODY_SERIALIZATION mb->setBaseName(name->c_str()); //create motors for each btMultiBody joint int numLinks = mb->getNumLinks(); for (int i = 0; i < numLinks; i++) { int mbLinkIndex = i; int urdfLinkIndex = creation.m_mb2urdfLink[mbLinkIndex]; std::string* jointName = new std::string(u2b.getJointName(urdfLinkIndex)); std::string* linkName = new std::string(u2b.getLinkName(urdfLinkIndex).c_str()); #ifdef TEST_MULTIBODY_SERIALIZATION s->registerNameForPointer(jointName->c_str(), jointName->c_str()); s->registerNameForPointer(linkName->c_str(), linkName->c_str()); #endif //TEST_MULTIBODY_SERIALIZATION m_nameMemory.push_back(jointName); m_nameMemory.push_back(linkName); mb->getLink(i).m_linkName = linkName->c_str(); mb->getLink(i).m_jointName = jointName->c_str(); if (mb->getLink(mbLinkIndex).m_jointType == btMultibodyLink::eRevolute || mb->getLink(mbLinkIndex).m_jointType == btMultibodyLink::ePrismatic) { if (m_data->m_numMotors < MAX_NUM_MOTORS) { char motorName[1024]; sprintf(motorName, "%s q'", jointName->c_str()); btScalar* motorVel = &m_data->m_motorTargetVelocities[m_data->m_numMotors]; *motorVel = 0.f; SliderParams slider(motorName, motorVel); slider.m_minVal = -4; slider.m_maxVal = 4; m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider); float maxMotorImpulse = 10.1f; btMultiBodyJointMotor* motor = new btMultiBodyJointMotor(mb, mbLinkIndex, 0, 0, maxMotorImpulse); //motor->setMaxAppliedImpulse(0); m_data->m_jointMotors[m_data->m_numMotors] = motor; m_dynamicsWorld->addMultiBodyConstraint(motor); m_data->m_numMotors++; } } } } } for (int i = 0; i < m_dynamicsWorld->getNumMultiBodyConstraints(); i++) { m_dynamicsWorld->getMultiBodyConstraint(i)->finalizeMultiDof(); } bool createGround = true; if (createGround) { btVector3 groundHalfExtents(20, 20, 20); groundHalfExtents[upAxis] = 1.f; btBoxShape* box = new btBoxShape(groundHalfExtents); box->initializePolyhedralFeatures(); m_guiHelper->createCollisionShapeGraphicsObject(box); btTransform start; start.setIdentity(); btVector3 groundOrigin(0, 0, 0); groundOrigin[upAxis] = -2.5; start.setOrigin(groundOrigin); btRigidBody* body = createRigidBody(0, start, box); //m_dynamicsWorld->removeRigidBody(body); // m_dynamicsWorld->addRigidBody(body,2,1); btVector3 color(0.5, 0.5, 0.5); m_guiHelper->createRigidBodyGraphicsObject(body, color); } ///this extra stepSimulation call makes sure that all the btMultibody transforms are properly propagates. m_dynamicsWorld->stepSimulation(1. / 240., 0); // 1., 10, 1. / 240.); } }
void MultiBodySoftContact::initPhysics() { int upAxis = 2; m_guiHelper->setUpAxis(upAxis); btVector4 colors[4] = { btVector4(1,0,0,1), btVector4(0,1,0,1), btVector4(0,1,1,1), btVector4(1,1,0,1), }; int curColor = 0; this->createEmptyDynamicsWorld(); m_dynamicsWorld->setGravity(btVector3(0,0,-10)); m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); m_dynamicsWorld->getDebugDrawer()->setDebugMode( //btIDebugDraw::DBG_DrawConstraints +btIDebugDraw::DBG_DrawWireframe +btIDebugDraw::DBG_DrawContactPoints +btIDebugDraw::DBG_DrawAabb );//+btIDebugDraw::DBG_DrawConstraintLimits); //create a static ground object if (1) { btVector3 groundHalfExtents(50,50,50); btBoxShape* box = new btBoxShape(groundHalfExtents); box->initializePolyhedralFeatures(); m_guiHelper->createCollisionShapeGraphicsObject(box); btTransform start; start.setIdentity(); btVector3 groundOrigin(0,0,-50.5); start.setOrigin(groundOrigin); // start.setRotation(groundOrn); btRigidBody* body = createRigidBody(0,start,box); //setContactStiffnessAndDamping will enable compliant rigid body contact body->setContactStiffnessAndDamping(300,10); btVector4 color = colors[curColor]; curColor++; curColor&=3; m_guiHelper->createRigidBodyGraphicsObject(body,color); } { btCollisionShape* childShape = new btSphereShape(btScalar(0.5)); m_guiHelper->createCollisionShapeGraphicsObject(childShape); btScalar mass = 1; btVector3 baseInertiaDiag; bool isFixed = (mass == 0); childShape->calculateLocalInertia(mass,baseInertiaDiag); btMultiBody *pMultiBody = new btMultiBody(0, 1, baseInertiaDiag, false, false); btTransform startTrans; startTrans.setIdentity(); startTrans.setOrigin(btVector3(0,0,3)); pMultiBody->setBaseWorldTransform(startTrans); btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(pMultiBody, -1); col->setCollisionShape(childShape); pMultiBody->setBaseCollider(col); bool isDynamic = (mass > 0 && !isFixed); int collisionFilterGroup = isDynamic? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter); int collisionFilterMask = isDynamic? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter); m_dynamicsWorld->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//, 2,1+2); pMultiBody->finalizeMultiDof(); m_dynamicsWorld->addMultiBody(pMultiBody); btAlignedObjectArray<btQuaternion> scratch_q; btAlignedObjectArray<btVector3> scratch_m; pMultiBody->forwardKinematics(scratch_q,scratch_m); btAlignedObjectArray<btQuaternion> world_to_local; btAlignedObjectArray<btVector3> local_origin; pMultiBody->updateCollisionObjectWorldTransforms(world_to_local,local_origin); } m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld); }
void TestJointTorqueSetup::initPhysics() { int upAxis = 2; m_guiHelper->setUpAxis(upAxis); btVector4 colors[4] = { btVector4(1,0,0,1), btVector4(0,1,0,1), btVector4(0,1,1,1), btVector4(1,1,0,1), }; int curColor = 0; this->createEmptyDynamicsWorld(); m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); m_dynamicsWorld->getDebugDrawer()->setDebugMode( //btIDebugDraw::DBG_DrawConstraints +btIDebugDraw::DBG_DrawWireframe +btIDebugDraw::DBG_DrawContactPoints +btIDebugDraw::DBG_DrawAabb );//+btIDebugDraw::DBG_DrawConstraintLimits); //create a static ground object if (0) { btVector3 groundHalfExtents(20,20,20); groundHalfExtents[upAxis]=1.f; btBoxShape* box = new btBoxShape(groundHalfExtents); box->initializePolyhedralFeatures(); m_guiHelper->createCollisionShapeGraphicsObject(box); btTransform start; start.setIdentity(); btVector3 groundOrigin(0,0,0); groundOrigin[upAxis]=-1.5; start.setOrigin(groundOrigin); btRigidBody* body = createRigidBody(0,start,box); btVector4 color = colors[curColor]; curColor++; curColor&=3; m_guiHelper->createRigidBodyGraphicsObject(body,color); } { bool floating = false; bool damping = true; bool gyro = true; int numLinks = 5; bool spherical = false; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals bool canSleep = false; bool selfCollide = false; btVector3 linkHalfExtents(0.05, 0.37, 0.1); btVector3 baseHalfExtents(0.05, 0.37, 0.1); btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f); //mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm //init the base btVector3 baseInertiaDiag(0.f, 0.f, 0.f); float baseMass = 1.f; if(baseMass) { btCollisionShape *pTempBox = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2])); pTempBox->calculateLocalInertia(baseMass, baseInertiaDiag); delete pTempBox; } bool isMultiDof = false; btMultiBody *pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep, isMultiDof); m_multiBody = pMultiBody; btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f); pMultiBody->setBasePos(basePosition); pMultiBody->setWorldToBaseRot(baseOriQuat); btVector3 vel(0, 0, 0); // pMultiBody->setBaseVel(vel); //init the links btVector3 hingeJointAxis(1, 0, 0); float linkMass = 1.f; btVector3 linkInertiaDiag(0.f, 0.f, 0.f); btCollisionShape *pTempBox = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2])); pTempBox->calculateLocalInertia(linkMass, linkInertiaDiag); delete pTempBox; //y-axis assumed up btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset ////// btScalar q0 = 0.f * SIMD_PI/ 180.f; btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0); quat0.normalize(); ///// for(int i = 0; i < numLinks; ++i) { if(!spherical) pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false); else //pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false); pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false); } //pMultiBody->finalizeMultiDof(); btMultiBodyDynamicsWorld* world = m_dynamicsWorld; /// world->addMultiBody(pMultiBody); btMultiBody* mbC = pMultiBody; mbC->setCanSleep(canSleep); mbC->setHasSelfCollision(selfCollide); mbC->setUseGyroTerm(gyro); // if(!damping) { mbC->setLinearDamping(0.f); mbC->setAngularDamping(0.f); }else { mbC->setLinearDamping(0.1f); mbC->setAngularDamping(0.9f); } // btVector3 gravity(0,0,0); //gravity[upAxis] = -9.81; m_dynamicsWorld->setGravity(gravity); ////////////////////////////////////////////// if(numLinks > 0) { btScalar q0 = 45.f * SIMD_PI/ 180.f; if(!spherical) if(mbC->isMultiDof()) mbC->setJointPosMultiDof(0, &q0); else mbC->setJointPos(0, q0); else { btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0); quat0.normalize(); mbC->setJointPosMultiDof(0, quat0); } } /// btAlignedObjectArray<btQuaternion> world_to_local; world_to_local.resize(pMultiBody->getNumLinks() + 1); btAlignedObjectArray<btVector3> local_origin; local_origin.resize(pMultiBody->getNumLinks() + 1); world_to_local[0] = pMultiBody->getWorldToBaseRot(); local_origin[0] = pMultiBody->getBasePos(); double friction = 1; { // float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1}; float quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()}; if (1) { btCollisionShape* box = new btBoxShape(baseHalfExtents); m_guiHelper->createCollisionShapeGraphicsObject(box); btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(pMultiBody, -1); col->setCollisionShape(box); btTransform tr; tr.setIdentity(); //if we don't set the initial pose of the btCollisionObject, the simulator will do this //when syncing the btMultiBody link transforms to the btMultiBodyLinkCollider tr.setOrigin(local_origin[0]); tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3])); col->setWorldTransform(tr); world->addCollisionObject(col, 2,1+2); btVector3 color(0.0,0.0,0.5); m_guiHelper->createCollisionObjectGraphicsObject(col,color); col->setFriction(friction); pMultiBody->setBaseCollider(col); } } for (int i=0; i < pMultiBody->getNumLinks(); ++i) { const int parent = pMultiBody->getParent(i); world_to_local[i+1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent+1]; local_origin[i+1] = local_origin[parent+1] + (quatRotate(world_to_local[i+1].inverse() , pMultiBody->getRVector(i))); } for (int i=0; i < pMultiBody->getNumLinks(); ++i) { btVector3 posr = local_origin[i+1]; // float pos[4]={posr.x(),posr.y(),posr.z(),1}; float quat[4]={-world_to_local[i+1].x(),-world_to_local[i+1].y(),-world_to_local[i+1].z(),world_to_local[i+1].w()}; btCollisionShape* box = new btBoxShape(linkHalfExtents); m_guiHelper->createCollisionShapeGraphicsObject(box); btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i); col->setCollisionShape(box); btTransform tr; tr.setIdentity(); tr.setOrigin(posr); tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3])); col->setWorldTransform(tr); col->setFriction(friction); world->addCollisionObject(col,2,1+2); btVector4 color = colors[curColor]; curColor++; curColor&=3; m_guiHelper->createCollisionObjectGraphicsObject(col,color); pMultiBody->getLink(i).m_collider=col; } } }
void TestHingeTorque::initPhysics() { int upAxis = 1; m_guiHelper->setUpAxis(upAxis); createEmptyDynamicsWorld(); m_dynamicsWorld->getSolverInfo().m_splitImpulse = false; m_dynamicsWorld->setGravity(btVector3(0,0,-10)); m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); int mode = btIDebugDraw::DBG_DrawWireframe +btIDebugDraw::DBG_DrawConstraints +btIDebugDraw::DBG_DrawConstraintLimits; m_dynamicsWorld->getDebugDrawer()->setDebugMode(mode); { // create a door using hinge constraint attached to the world int numLinks = 2; bool spherical = false; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals bool canSleep = false; bool selfCollide = false; btVector3 linkHalfExtents(0.05, 0.37, 0.1); btVector3 baseHalfExtents(0.05, 0.37, 0.1); btBoxShape* baseBox = new btBoxShape(baseHalfExtents); btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f); btTransform baseWorldTrans; baseWorldTrans.setIdentity(); baseWorldTrans.setOrigin(basePosition); //mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm //init the base btVector3 baseInertiaDiag(0.f, 0.f, 0.f); float baseMass = 0.f; float linkMass = 1.f; btRigidBody* base = createRigidBody(baseMass,baseWorldTrans,baseBox); m_dynamicsWorld->removeRigidBody(base); base->setDamping(0,0); m_dynamicsWorld->addRigidBody(base,collisionFilterGroup,collisionFilterMask); btBoxShape* linkBox1 = new btBoxShape(linkHalfExtents); btSphereShape* linkSphere = new btSphereShape(radius); btRigidBody* prevBody = base; for (int i=0;i<numLinks;i++) { btTransform linkTrans; linkTrans = baseWorldTrans; linkTrans.setOrigin(basePosition-btVector3(0,linkHalfExtents[1]*2.f*(i+1),0)); btCollisionShape* colOb = 0; if (i==0) { colOb = linkBox1; } else { colOb = linkSphere; } btRigidBody* linkBody = createRigidBody(linkMass,linkTrans,colOb); m_dynamicsWorld->removeRigidBody(linkBody); m_dynamicsWorld->addRigidBody(linkBody,collisionFilterGroup,collisionFilterMask); linkBody->setDamping(0,0); btTypedConstraint* con = 0; if (i==0) { //create a hinge constraint btVector3 pivotInA(0,-linkHalfExtents[1],0); btVector3 pivotInB(0,linkHalfExtents[1],0); btVector3 axisInA(1,0,0); btVector3 axisInB(1,0,0); bool useReferenceA = true; btHingeConstraint* hinge = new btHingeConstraint(*prevBody,*linkBody, pivotInA,pivotInB, axisInA,axisInB,useReferenceA); con = hinge; } else { btTransform pivotInA(btQuaternion::getIdentity(),btVector3(0, -radius, 0)); //par body's COM to cur body's COM offset btTransform pivotInB(btQuaternion::getIdentity(),btVector3(0, radius, 0)); //cur body's COM to cur body's PIV offset btGeneric6DofSpring2Constraint* fixed = new btGeneric6DofSpring2Constraint(*prevBody, *linkBody, pivotInA,pivotInB); fixed->setLinearLowerLimit(btVector3(0,0,0)); fixed->setLinearUpperLimit(btVector3(0,0,0)); fixed->setAngularLowerLimit(btVector3(0,0,0)); fixed->setAngularUpperLimit(btVector3(0,0,0)); con = fixed; } btAssert(con); if (con) { btJointFeedback* fb = new btJointFeedback(); m_jointFeedback.push_back(fb); con->setJointFeedback(fb); m_dynamicsWorld->addConstraint(con,true); } prevBody = linkBody; } } if (1) { btVector3 groundHalfExtents(1,1,0.2); groundHalfExtents[upAxis]=1.f; btBoxShape* box = new btBoxShape(groundHalfExtents); box->initializePolyhedralFeatures(); btTransform start; start.setIdentity(); btVector3 groundOrigin(-0.4f, 3.f, 0.f); btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f); btQuaternion groundOrn(btVector3(0,1,0),0.25*SIMD_PI); groundOrigin[upAxis] -=.5; groundOrigin[2]-=0.6; start.setOrigin(groundOrigin); // start.setRotation(groundOrn); btRigidBody* body = createRigidBody(0,start,box); body->setFriction(0); } m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld); }