/**
 * Returns the symmetry axis for the given matrix
 *
 * According to ITA, 11.2 the axis of a symmetry operation can be determined by
 * solving the Eigenvalue problem \f$Wu = u\f$ for rotations or \f$Wu = -u\f$
 * for rotoinversions. This is implemented using the general real non-symmetric
 * eigen-problem solver provided by the GSL.
 *
 * @param matrix :: Matrix of a SymmetryOperation
 * @return Axis of symmetry element.
 */
V3R SymmetryElementWithAxisGenerator::determineAxis(
    const Kernel::IntMatrix &matrix) const {
  gsl_matrix *eigenMatrix = getGSLMatrix(matrix);
  gsl_matrix *identityMatrix =
      getGSLIdentityMatrix(matrix.numRows(), matrix.numCols());

  gsl_eigen_genv_workspace *eigenWs = gsl_eigen_genv_alloc(matrix.numRows());

  gsl_vector_complex *alpha = gsl_vector_complex_alloc(3);
  gsl_vector *beta = gsl_vector_alloc(3);
  gsl_matrix_complex *eigenVectors = gsl_matrix_complex_alloc(3, 3);

  gsl_eigen_genv(eigenMatrix, identityMatrix, alpha, beta, eigenVectors,
                 eigenWs);
  gsl_eigen_genv_sort(alpha, beta, eigenVectors, GSL_EIGEN_SORT_ABS_DESC);

  double determinant = matrix.determinant();

  Kernel::V3D eigenVector;

  for (size_t i = 0; i < matrix.numCols(); ++i) {
    double eigenValue = GSL_REAL(gsl_complex_div_real(
        gsl_vector_complex_get(alpha, i), gsl_vector_get(beta, i)));

    if (fabs(eigenValue - determinant) < 1e-9) {
      for (size_t j = 0; j < matrix.numRows(); ++j) {
        double element = GSL_REAL(gsl_matrix_complex_get(eigenVectors, j, i));

        eigenVector[j] = element;
      }
    }
  }

  eigenVector *= determinant;

  double sumOfElements = eigenVector.X() + eigenVector.Y() + eigenVector.Z();

  if (sumOfElements < 0) {
    eigenVector *= -1.0;
  }

  gsl_matrix_free(eigenMatrix);
  gsl_matrix_free(identityMatrix);
  gsl_eigen_genv_free(eigenWs);
  gsl_vector_complex_free(alpha);
  gsl_vector_free(beta);
  gsl_matrix_complex_free(eigenVectors);

  double min = 1.0;
  for (size_t i = 0; i < 3; ++i) {
    double absoluteValue = fabs(eigenVector[i]);
    if (absoluteValue != 0.0 &&
        (eigenVector[i] < min && (absoluteValue - fabs(min)) < 1e-9)) {
      min = eigenVector[i];
    }
  }

  V3R axis;
  for (size_t i = 0; i < 3; ++i) {
    axis[i] = static_cast<int>(boost::math::round(eigenVector[i] / min));
  }

  return axis;
}
Esempio n. 2
0
File: test.c Progetto: lemahdi/mglib
void
test_eigen_gen_pencil(const gsl_matrix * A, const gsl_matrix * B,
                      size_t count, const char * desc, int test_schur,
                      test_eigen_gen_workspace *w)
{
  const size_t N = A->size1;
  size_t i;

  gsl_matrix_memcpy(w->A, A);
  gsl_matrix_memcpy(w->B, B);

  if (test_schur)
    {
      gsl_eigen_genv_QZ(w->A, w->B, w->alphav, w->betav, w->evec, w->Q, w->Z, w->genv_p);
      test_eigen_schur(A, w->A, w->Q, w->Z, count, "genv/A", desc);
      test_eigen_schur(B, w->B, w->Q, w->Z, count, "genv/B", desc);
    }
  else
    gsl_eigen_genv(w->A, w->B, w->alphav, w->betav, w->evec, w->genv_p);

  test_eigen_gen_results(A, B, w->alphav, w->betav, w->evec, count, desc, "unsorted");

  gsl_matrix_memcpy(w->A, A);
  gsl_matrix_memcpy(w->B, B);

  if (test_schur)
    {
      gsl_eigen_gen_params(1, 1, 0, w->gen_p);
      gsl_eigen_gen_QZ(w->A, w->B, w->alpha, w->beta, w->Q, w->Z, w->gen_p);
      test_eigen_schur(A, w->A, w->Q, w->Z, count, "gen/A", desc);
      test_eigen_schur(B, w->B, w->Q, w->Z, count, "gen/B", desc);
    }
  else
    {
      gsl_eigen_gen_params(0, 0, 0, w->gen_p);
      gsl_eigen_gen(w->A, w->B, w->alpha, w->beta, w->gen_p);
    }

  /* compute eval = alpha / beta values */
  for (i = 0; i < N; ++i)
    {
      gsl_complex z, ai;
      double bi;

      ai = gsl_vector_complex_get(w->alpha, i);
      bi = gsl_vector_get(w->beta, i);
      GSL_SET_COMPLEX(&z, GSL_REAL(ai) / bi, GSL_IMAG(ai) / bi);
      gsl_vector_complex_set(w->eval, i, z);

      ai = gsl_vector_complex_get(w->alphav, i);
      bi = gsl_vector_get(w->betav, i);
      GSL_SET_COMPLEX(&z, GSL_REAL(ai) / bi, GSL_IMAG(ai) / bi);
      gsl_vector_complex_set(w->evalv, i, z);
    }

  /* sort eval and evalv and test them */
  gsl_eigen_nonsymmv_sort(w->eval, NULL, GSL_EIGEN_SORT_ABS_ASC);
  gsl_eigen_nonsymmv_sort(w->evalv, NULL, GSL_EIGEN_SORT_ABS_ASC);
  test_eigenvalues_complex(w->evalv, w->eval, "gen", desc);

  gsl_eigen_genv_sort(w->alphav, w->betav, w->evec, GSL_EIGEN_SORT_ABS_ASC);
  test_eigen_gen_results(A, B, w->alphav, w->betav, w->evec, count, desc, "abs/asc");
  gsl_eigen_genv_sort(w->alphav, w->betav, w->evec, GSL_EIGEN_SORT_ABS_DESC);
  test_eigen_gen_results(A, B, w->alphav, w->betav, w->evec, count, desc, "abs/desc");
} /* test_eigen_gen_pencil() */
Esempio n. 3
0
    /**
     * C++ version of gsl_eigen_genv().
     * Computes the eigenvalues of A and stores them (unordered) in eval.
     * The diagonal and lower triangle of A are altered. The workspace should have size
     * @c n, where @c A has @c n rows and columns.
     * @param A A matrix (should be square)
     * @param B A matrix (should be square)
     * @param alpha This is where the eigenvalues are stored
     * @param beta This is where the eigenvalues are stored
     * @param evec This is where the eigenvectors are stored
     * @param w A workspace
     * @return Error code on failure
     */
    inline int genv( gsl::matrix& A, gsl::matrix& B, gsl::vector_complex& alpha,
		     gsl::vector& beta, gsl::matrix_complex& evec, genv_workspace& w ){
      return gsl_eigen_genv( A.get(), B.get(), alpha.get(), beta.get(), evec.get(), w.get() ); }
Esempio n. 4
0
void Spectrometer::countDispersion_BS(Medium &Osrodek, QString DataName, QProgressBar *Progress, int factor) {
    //lsfgerhla

    double a=Osrodek.itsBasis.getLatticeConstant();
    double thickness=Osrodek.itsStructure.getThickness();

    int RecVec=itsRecVectors;
    int k_prec=itsK_Precision;
    double wi=itsFrequencies[0];
    double w_prec=itsFrequencies[1];
    double wf=itsFrequencies[2];

    int half=3*(2*RecVec+1)*(2*RecVec+1);
    int dimension=6*(2*RecVec+1)*(2*RecVec+1);
    int EigValStrNumber=6*(2*RecVec+1)*(2*RecVec+1);
    int EigValNumber=9*(2*RecVec+1)*(2*RecVec+1);

    std::ofstream plik;
    DataName="results/"+ DataName + ".dat";
    QByteArray   bytes  = DataName.toAscii();
    const char * CDataName = bytes.data();
    plik.open(CDataName);

    //inicjalizacje wektorów i macierzy

    gsl_matrix *gammaA=gsl_matrix_calloc(dimension, dimension);
    gsl_matrix *gammaB=gsl_matrix_calloc(dimension, dimension);

    gsl_matrix *gammaC=gsl_matrix_calloc(dimension, dimension);
    gsl_matrix *gammaD=gsl_matrix_calloc(dimension, dimension);

    gsl_eigen_genv_workspace *wspce=gsl_eigen_genv_alloc(dimension);
    gsl_eigen_genv_workspace *wspce2=gsl_eigen_genv_alloc(dimension);

    gsl_vector_complex *StrAlpha =gsl_vector_complex_alloc(dimension);
    gsl_vector *StrBeta = gsl_vector_alloc(dimension);
    gsl_matrix_complex *StrEigenVec=gsl_matrix_complex_calloc(dimension, dimension);

    gsl_vector_complex *BAlpha =gsl_vector_complex_alloc(dimension);
    gsl_vector *BBeta = gsl_vector_alloc(dimension);
    gsl_matrix_complex *BasisEigenVec=gsl_matrix_complex_calloc(dimension, dimension);

    gsl_matrix_complex *ChosenVectors = gsl_matrix_complex_calloc(half, EigValNumber);
    gsl_vector_complex *ChosenValues = gsl_vector_complex_calloc(EigValNumber);
    gsl_matrix_complex *Boundaries=gsl_matrix_complex_calloc(EigValNumber, EigValNumber);

    double kx, ky, krokx, kroky, boundary_x, boundary_y;
    double k_zred, k_zred0;

    double krok = M_PI/(k_prec*a);

    for (int droga=0; droga<3; droga++) {
    //int droga = 1;
        if (droga==0)           //droga M->Gamma
        {
            kx=-M_PI/a;
            krokx=krok;
            boundary_x=0;
            ky=-M_PI/a;
            kroky=krok;
            boundary_y=0;

            k_zred0=-1*sqrt(pow(kx/(2*M_PI/a), 2)+pow(ky/(2*M_PI/a), 2));
        }
        else if (droga==1)
        {
            kx=0;               //droga Gamma->X
            krokx=krok;
            boundary_x=M_PI/a;
            ky=0;
            kroky=0;
            boundary_y=0;

            k_zred0=sqrt(2)/2;
            //k_zred0=0;
        }
        else if (droga==2)
        {
            kx=M_PI/a;          //Droga X->M
            krokx=0;
            boundary_x=M_PI/a;
            ky=0;
            kroky=krok;
            boundary_y=M_PI/a;

            k_zred0=sqrt(2)/2;
        }

       //petla dla wektorów falowych
       for (; kx <= boundary_x && ky <= boundary_y; kx=kx+krokx, ky=ky+kroky)
       {
           if (droga==0) {
               k_zred = abs(k_zred0 + sqrt( pow(kx/(2*M_PI/a), 2)+pow(ky/(2*M_PI/a), 2)));
           } else {
               k_zred = k_zred0 + kx/(2*M_PI/a) + ky/(2*M_PI/a);
           }


           int postep=int(100*k_zred/1.7);
           Progress->setValue(postep);
           Progress->update();
           QApplication::processEvents();

            //pętla dla częstości w
           for (double w=wi; w<wf; w=w+w_prec)
            {

                gsl_matrix_complex_set_all(Boundaries, gsl_complex_rect (0,0)); //ustawienie wartosci wyznacznika na 0
                gsl_matrix_set_all(gammaA, 0);
                gsl_matrix_set_all(gammaB, 0);
                gsl_matrix_set_all(gammaC, 0);
                gsl_matrix_set_all(gammaD, 0);
                gsl_vector_complex_set_all(StrAlpha, gsl_complex_rect (0,0));
                gsl_vector_set_all(BBeta, 0);
                gsl_vector_complex_set_all(BAlpha, gsl_complex_rect (0,0));
                gsl_vector_set_all(StrBeta, 0);
                gsl_matrix_complex_set_all(BasisEigenVec, gsl_complex_rect (0,0));
                gsl_matrix_complex_set_all(StrEigenVec, gsl_complex_rect (0,0));
                gsl_matrix_complex_set_all(ChosenVectors, gsl_complex_rect (0,0));
                gsl_vector_complex_set_all(ChosenValues, gsl_complex_rect (0,0));

                //gammaA,B dla struktury
                            //gammaA,B dla struktury
                /*
                S - numeruje transformaty tensora sprężystoœci i gestosci
                i - numeruje wiersze macierzy
                j - numeruje kolumny macierzy
                half - druga polowa macierzy
                */
                for(int Nx=-RecVec, i=0, S=0; Nx<=RecVec; Nx++) {
                    for(int Ny=-RecVec; Ny<=RecVec; Ny++, i=i+3) {
                        for(int Nx_prim=-RecVec, j=0; Nx_prim<=RecVec; Nx_prim++) {
                            for(int Ny_prim=-RecVec; Ny_prim<=RecVec; Ny_prim++, j=j+3, S++) {

                                double Elasticity[6][6];
                                itsRecStructureSubstance[S].getElasticity(Elasticity);
                                double Density=itsRecStructureSubstance[S].getDensity();
                                double gx=2*M_PI*Nx/a;
                                double gy=2*M_PI*Ny/a;
                                double gx_prim=2*M_PI*Nx_prim/a;
                                double gy_prim=2*M_PI*Ny_prim/a;

                                gsl_matrix_set(gammaA, i, j, Elasticity[3][3]);
                                gsl_matrix_set(gammaA, i+1, j+1, Elasticity[3][3]);
                                gsl_matrix_set(gammaA, i+2, j+2, Elasticity[0][0]);

                                gsl_matrix_set(gammaB, i+2, j, -Elasticity[0][1]*(kx+gx_prim)-Elasticity[3][3]*(kx+gx));
                                gsl_matrix_set(gammaB, i+2, j+1, -Elasticity[0][1]*(ky+gy_prim)-Elasticity[3][3]*(ky+gy));
                                gsl_matrix_set(gammaB, i, j+2, -Elasticity[0][1]*(kx+gx)-Elasticity[3][3]*(kx+gx_prim));
                                gsl_matrix_set(gammaB, i+1, j+2, -Elasticity[0][1]*(ky+gy)-Elasticity[3][3]*(ky+gy_prim));

                                gsl_matrix_set(gammaB, i, j+half, -Elasticity[0][0]*(kx+gx)*(kx+gx_prim)-Elasticity[3][3]*(ky+gy)*(ky+gy_prim)+Density*w*w);
                                gsl_matrix_set(gammaB, i+1, j+half, -Elasticity[0][1]*(kx+gx_prim)*(ky+gy)-Elasticity[3][3]*(ky+gy_prim)*(kx+gx));
                                gsl_matrix_set(gammaB, i, j+half+1, -Elasticity[0][1]*(ky+gy_prim)*(kx+gx)-Elasticity[3][3]*(kx+gx_prim)*(ky+gy));
                                gsl_matrix_set(gammaB, i+1, j+half+1, -Elasticity[0][0]*(ky+gy_prim)*(ky+gy)-Elasticity[3][3]*(kx+gx_prim)*(kx+gx)+Density*w*w);
                                gsl_matrix_set(gammaB, i+2, j+half+2, -Elasticity[3][3]*(ky+gy_prim)*(ky+gy)-Elasticity[3][3]*(kx+gx_prim)*(kx+gx)+Density*w*w);

                                if (i==j) {
                                    gsl_matrix_set(gammaA, i+half, j+half, 1);
                                    gsl_matrix_set(gammaA, i+half+1, j+half+1, 1);
                                    gsl_matrix_set(gammaA, i+half+2, j+half+2, 1);

                                    gsl_matrix_set(gammaB, i+half, j, 1);
                                    gsl_matrix_set(gammaB, i+half+1, j+1, 1);
                                    gsl_matrix_set(gammaB, i+half+2, j+2, 1);
                                }


                            }
                        }
                    }
                }

                //rozwiazanie zagadnienienia własnego
                gsl_eigen_genv(gammaB, gammaA, StrAlpha, StrBeta, StrEigenVec, wspce);


                //gammaC,D dla Podłoża
                for(int Nx=-RecVec, i=0, S=0; Nx<=RecVec; Nx++) {
                    for(int Ny=-RecVec; Ny<=RecVec; Ny++, i=i+3) {
                        for(int Nx_prim=-RecVec, j=0; Nx_prim<=RecVec; Nx_prim++) {
                            for(int Ny_prim=-RecVec; Ny_prim<=RecVec; Ny_prim++, j=j+3, S++) {

                                double Elasticity[6][6];
                                itsRecBasisSubstance[S].getElasticity(Elasticity);
                                double Density=itsRecBasisSubstance[S].getDensity();
                                double gx=2*M_PI*Nx/a;
                                double gy=2*M_PI*Ny/a;
                                double gx_prim=2*M_PI*Nx_prim/a;
                                double gy_prim=2*M_PI*Ny_prim/a;

                                gsl_matrix_set(gammaC, i, j, Elasticity[3][3]);
                                gsl_matrix_set(gammaC, i+1, j+1, Elasticity[3][3]);
                                gsl_matrix_set(gammaC, i+2, j+2, Elasticity[0][0]);

                                gsl_matrix_set(gammaD, i+2, j, -Elasticity[0][1]*(kx+gx_prim)-Elasticity[3][3]*(kx+gx));
                                gsl_matrix_set(gammaD, i+2, j+1, -Elasticity[0][1]*(ky+gy_prim)-Elasticity[3][3]*(ky+gy));
                                gsl_matrix_set(gammaD, i, j+2, -Elasticity[0][1]*(kx+gx)-Elasticity[3][3]*(kx+gx_prim));
                                gsl_matrix_set(gammaD, i+1, j+2, -Elasticity[0][1]*(ky+gy)-Elasticity[3][3]*(ky+gy_prim));

                                gsl_matrix_set(gammaD, i, j+half, -Elasticity[0][0]*(kx+gx)*(kx+gx_prim)-Elasticity[3][3]*(ky+gy)*(ky+gy_prim)+Density*w*w);
                                gsl_matrix_set(gammaD, i+1, j+half, -Elasticity[0][1]*(kx+gx_prim)*(ky+gy)-Elasticity[3][3]*(ky+gy_prim)*(kx+gx));
                                gsl_matrix_set(gammaD, i, j+half+1, -Elasticity[0][1]*(ky+gy_prim)*(kx+gx)-Elasticity[3][3]*(kx+gx_prim)*(ky+gy));
                                gsl_matrix_set(gammaD, i+1, j+half+1, -Elasticity[0][0]*(ky+gy_prim)*(ky+gy)-Elasticity[3][3]*(kx+gx_prim)*(kx+gx)+Density*w*w);
                                gsl_matrix_set(gammaD, i+2, j+half+2, -Elasticity[3][3]*(ky+gy_prim)*(ky+gy)-Elasticity[3][3]*(kx+gx_prim)*(kx+gx)+Density*w*w);

                                if (i==j) {
                                    gsl_matrix_set(gammaC, i+half, j+half, 1);
                                    gsl_matrix_set(gammaC, i+half+1, j+half+1, 1);
                                    gsl_matrix_set(gammaC, i+half+2, j+half+2, 1);

                                    gsl_matrix_set(gammaD, i+half, j, 1);
                                    gsl_matrix_set(gammaD, i+half+1, j+1, 1);
                                    gsl_matrix_set(gammaD, i+half+2, j+2, 1);
                                }


                            }
                        }
                    }
                }

                //rozwiazanie zagadnienienia własnego
                gsl_eigen_genv(gammaD, gammaC, BAlpha, BBeta, BasisEigenVec, wspce2);

                double imagL, realL; //części Re i Im wartości własnych

                int n=0;
                for (int i = 0; i<dimension; i++)
                {
                    //przepisanie wartości i wektorów własnych struktury do macierzy Chosen*
                    gsl_complex StrValue;
                    StrValue= gsl_complex_div_real(gsl_vector_complex_get(StrAlpha, i), gsl_vector_get(StrBeta,i));
                    gsl_vector_complex_set(ChosenValues, i, StrValue);
                    for (int j = half, m=0; j < dimension; j++, m++)
                    {
                        gsl_matrix_complex_set(ChosenVectors, m, i, gsl_matrix_complex_get(StrEigenVec, j, i));
                    }

                    //wybieranie odpowiednich wartości i wektorów własnych dla podłoża i przepisanie do macierzy Chosen*
                    gsl_complex BValue;
                    BValue= gsl_complex_div_real(gsl_vector_complex_get(BAlpha, i), gsl_vector_get(BBeta,i));
                    imagL=GSL_IMAG(BValue);
                    realL=GSL_REAL(BValue);

                    if (imagL > 0.00001 && n+EigValStrNumber<EigValNumber) //warunek na wartości własne && żeby nie było ich więcej niż połowa
                    {
                        gsl_vector_complex_set(ChosenValues, n+EigValStrNumber, BValue); //wybranie wartości własnej

                        for (int j = half, m=0; j < dimension; j++, m++)
                        {
                           gsl_matrix_complex_set(ChosenVectors, m, n+EigValStrNumber, gsl_complex_mul_real(gsl_matrix_complex_get(BasisEigenVec, j, i), -1));  //wybranie drugiej połowy wektora własnego
                        }

                        n++;
                    }

                }

                if (n+EigValStrNumber<EigValNumber)
                {
                    for (int i = 0; i<dimension; i++)
                    {
                        gsl_complex BValue;
                        BValue= gsl_complex_div_real(gsl_vector_complex_get(BAlpha, i), gsl_vector_get(BBeta,i));
                        imagL=GSL_IMAG(BValue);
                        realL=GSL_REAL(BValue);

                        if (imagL < 0.00001 && imagL > -0.00001 && realL < -0.00001 && n+EigValStrNumber<EigValNumber) //warunek na wartości własne && żeby nie było ich więcej niż połowa
                        {
                            gsl_vector_complex_set(ChosenValues, n+EigValStrNumber, BValue); //wybranie wartości własnej

                            for (int j = half, m=0; j < dimension; j++, m++)
                            {
                               gsl_matrix_complex_set(ChosenVectors, m, n+EigValStrNumber, gsl_complex_mul_real(gsl_matrix_complex_get(BasisEigenVec, j, i), -1));  //wybranie drugiej połowy wektora własnego
                            }

                            n++;
                        }
                    }
                }


                //wyznacznik warunków brzegowych - konstrukcja
                /*
                S, S' - numerujš transformaty tensora sprężystoœci
                i - numeruje wektory własne A w pętli dla G
                j - numeruje warunki brzegowe dla kolejnych wektorow odwrotnych G
                k - numeruje wektory własne A w pętli dla G'
                L - numeruje wartoœci własne
                */
                for (int Nx=-RecVec, S=0, S_prim=0, i=0, j=0; Nx <= RecVec; Nx++) {
                    for (int Ny=-RecVec; Ny <= RecVec; Ny++, j=j+9, i=i+3) {

                        for (int L=0; L < EigValNumber; L++) {

                            S_prim = S;
                            for (int Nx_prim=-RecVec, k=0; Nx_prim <= RecVec; Nx_prim++) {
                                for (int Ny_prim=-RecVec; Ny_prim <= RecVec; Ny_prim++, S_prim++, k=k+3) {

                                    double StrElasticity[6][6];
                                    itsRecStructureSubstance[S_prim].getElasticity(StrElasticity);
                                    double BasisElasticity[6][6];
                                    itsRecBasisSubstance[S_prim].getElasticity(BasisElasticity);

                                    double gx_prim=2*M_PI*Nx_prim/a;
                                    double gy_prim=2*M_PI*Ny_prim/a;

                                    if (L < EigValStrNumber)
                                    {

                                        //eksponens
                                        gsl_complex exponent = gsl_complex_polar(exp(GSL_IMAG(gsl_vector_complex_get(ChosenValues, L))*thickness), -1*GSL_REAL(gsl_vector_complex_get(ChosenValues, L))*thickness);

                                        //warunki zerowania się naprężenia na powierzchni
                                        gsl_complex w1 = gsl_complex_mul_real(exponent, StrElasticity[3][3]);
                                        gsl_complex w2 = gsl_complex_mul_real(gsl_matrix_complex_get(ChosenVectors, k+2, L), (kx+gx_prim));
                                        gsl_complex w3 = gsl_complex_mul(gsl_vector_complex_get(ChosenValues, L), gsl_matrix_complex_get(ChosenVectors, k, L));
                                        gsl_complex BCjL = gsl_complex_add(gsl_complex_mul(gsl_complex_add(w2, w3), w1), gsl_matrix_complex_get(Boundaries, j, L));
                                        gsl_matrix_complex_set(Boundaries, j, L, BCjL);

                                        w1 = gsl_complex_mul_real(exponent, StrElasticity[3][3]);
                                        w2 = gsl_complex_mul_real(gsl_matrix_complex_get(ChosenVectors, k+2, L), (ky+gy_prim));
                                        w3 = gsl_complex_mul(gsl_vector_complex_get(ChosenValues, L), gsl_matrix_complex_get(ChosenVectors, k+1, L));
                                        BCjL = gsl_complex_add(gsl_complex_mul(gsl_complex_add(w2, w3), w1), gsl_matrix_complex_get(Boundaries, j+1, L));
                                        gsl_matrix_complex_set(Boundaries, j+1, L, BCjL);

                                        w1 = gsl_complex_mul_real(exponent, StrElasticity[0][0]);
                                        gsl_complex w11 = gsl_complex_mul_real(exponent, StrElasticity[0][1]);
                                        w2 = gsl_complex_mul_real(gsl_matrix_complex_get(ChosenVectors, k, L), (kx+gx_prim));
                                        gsl_complex w22 = gsl_complex_mul_real(gsl_matrix_complex_get(ChosenVectors, k+1, L), (ky+gy_prim));
                                        w3 = gsl_complex_mul(gsl_vector_complex_get(ChosenValues, L), gsl_matrix_complex_get(ChosenVectors, k+2, L));
                                        gsl_complex w4 = gsl_complex_add(gsl_complex_mul(gsl_complex_add(w2, w22), w11), gsl_complex_mul(w3, w1));
                                        BCjL = gsl_complex_add(w4, gsl_matrix_complex_get(Boundaries, j+2, L));
                                        gsl_matrix_complex_set(Boundaries, j+2, L, BCjL);

                                        //warunki równości naprężeń na granicy ośrodków - część dla struktury
                                        w2 = gsl_complex_mul_real(gsl_matrix_complex_get(ChosenVectors, k+2, L), (kx+gx_prim));
                                        w3 = gsl_complex_mul(gsl_vector_complex_get(ChosenValues, L), gsl_matrix_complex_get(ChosenVectors, k, L));
                                        BCjL = gsl_complex_add(gsl_complex_mul_real(gsl_complex_add(w2, w3), StrElasticity[3][3]), gsl_matrix_complex_get(Boundaries, j+3, L));
                                        gsl_matrix_complex_set(Boundaries, j+3, L, BCjL);

                                        w2 = gsl_complex_mul_real(gsl_matrix_complex_get(ChosenVectors, k+2, L), (ky+gy_prim));
                                        w3 = gsl_complex_mul(gsl_vector_complex_get(ChosenValues, L), gsl_matrix_complex_get(ChosenVectors, k+1, L));
                                        BCjL = gsl_complex_add(gsl_complex_mul_real(gsl_complex_add(w2, w3), StrElasticity[3][3]), gsl_matrix_complex_get(Boundaries, j+4, L));
                                        gsl_matrix_complex_set(Boundaries, j+4, L, BCjL);

                                        w2 = gsl_complex_mul_real(gsl_matrix_complex_get(ChosenVectors, k, L), (kx+gx_prim));
                                        w22 = gsl_complex_mul_real(gsl_matrix_complex_get(ChosenVectors, k+1, L), (ky+gy_prim));
                                        w3 = gsl_complex_mul(gsl_vector_complex_get(ChosenValues, L), gsl_matrix_complex_get(ChosenVectors, k+2, L));
                                        w4 = gsl_complex_add(gsl_complex_mul_real(gsl_complex_add(w2, w22), StrElasticity[0][1]), gsl_complex_mul_real(w3, StrElasticity[0][0]));
                                        BCjL = gsl_complex_add(w4, gsl_matrix_complex_get(Boundaries, j+5, L));
                                        gsl_matrix_complex_set(Boundaries, j+5, L, BCjL);

                                    } else {

                                        //warunki równości naprężeń na granicy ośrodków - część dla podłoża
                                        gsl_complex w2 = gsl_complex_mul_real(gsl_matrix_complex_get(ChosenVectors, k+2, L), (kx+gx_prim));
                                        gsl_complex w3 = gsl_complex_mul(gsl_vector_complex_get(ChosenValues, L), gsl_matrix_complex_get(ChosenVectors, k, L));
                                        gsl_complex BCjL = gsl_complex_add(gsl_complex_mul_real(gsl_complex_add(w2, w3), BasisElasticity[3][3]), gsl_matrix_complex_get(Boundaries, j+3, L));
                                        gsl_matrix_complex_set(Boundaries, j+3, L, BCjL);

                                        w2 = gsl_complex_mul_real(gsl_matrix_complex_get(ChosenVectors, k+2, L), (ky+gy_prim));
                                        w3 = gsl_complex_mul(gsl_vector_complex_get(ChosenValues, L), gsl_matrix_complex_get(ChosenVectors, k+1, L));
                                        BCjL = gsl_complex_add(gsl_complex_mul_real(gsl_complex_add(w2, w3), BasisElasticity[3][3]), gsl_matrix_complex_get(Boundaries, j+4, L));
                                        gsl_matrix_complex_set(Boundaries, j+4, L, BCjL);

                                        w2 = gsl_complex_mul_real(gsl_matrix_complex_get(ChosenVectors, k, L), (kx+gx_prim));
                                        gsl_complex w22 = gsl_complex_mul_real(gsl_matrix_complex_get(ChosenVectors, k+1, L), (ky+gy_prim));
                                        w3 = gsl_complex_mul(gsl_vector_complex_get(ChosenValues, L), gsl_matrix_complex_get(ChosenVectors, k+2, L));
                                        gsl_complex w4 = gsl_complex_add(gsl_complex_mul_real(gsl_complex_add(w2, w22), BasisElasticity[0][1]), gsl_complex_mul_real(w3, BasisElasticity[0][0]));
                                        BCjL = gsl_complex_add(w4, gsl_matrix_complex_get(Boundaries, j+5, L));
                                        gsl_matrix_complex_set(Boundaries, j+5, L, BCjL);

                                    }
                                }
                            }

                            // warunek równości wychyleń na granicy ośrodków
                            gsl_matrix_complex_set(Boundaries, j+6, L, gsl_matrix_complex_get(ChosenVectors, i, L));
                            gsl_matrix_complex_set(Boundaries, j+7, L, gsl_matrix_complex_get(ChosenVectors, i+1, L));
                            gsl_matrix_complex_set(Boundaries, j+8, L, gsl_matrix_complex_get(ChosenVectors, i+2, L));

                        }
                        S=S_prim;
                    }
                }

                //skalowanie macierzy Boundaries
                gsl_complex scale=gsl_complex_rect(pow(10, factor), 0);
                gsl_matrix_complex_scale(Boundaries, scale);

                //obliczenie wyznacznika z Boundaries
                gsl_permutation *Bpermutation = gsl_permutation_alloc(EigValNumber);
                int Bsignum;
                gsl_linalg_complex_LU_decomp(Boundaries, Bpermutation, &Bsignum);
                double DetVal = gsl_linalg_complex_LU_lndet(Boundaries);

                //usuwanie NaN
                if(DetVal != DetVal) DetVal = 0;

                //zapisanie wartości do pliku
                plik << k_zred << "\t" << w << "\t" << DetVal << "\n";

            }
            plik << "\n";
        }

    }

    plik.close();
    gsl_matrix_free(gammaA);
    gsl_matrix_free(gammaB);
    gsl_vector_free(BBeta);
    gsl_vector_free(StrBeta);
    gsl_matrix_free(gammaC);
    gsl_matrix_free(gammaD);
    gsl_vector_complex_free(StrAlpha);
    gsl_vector_complex_free(BAlpha);
    gsl_eigen_genv_free(wspce);
        gsl_eigen_genv_free(wspce2);
    gsl_matrix_complex_free(Boundaries);
    gsl_matrix_complex_free(ChosenVectors);
    gsl_vector_complex_free(ChosenValues);

}