Esempio n. 1
0
int
gsl_linalg_complex_cholesky_decomp(gsl_matrix_complex *A)
{
  const size_t N = A->size1;
  
  if (N != A->size2)
    {
      GSL_ERROR("cholesky decomposition requires square matrix", GSL_ENOTSQR);
    }
  else
    {
      size_t i, j;
      gsl_complex z;
      double ajj;

      for (j = 0; j < N; ++j)
        {
          z = gsl_matrix_complex_get(A, j, j);
          ajj = GSL_REAL(z);

          if (j > 0)
            {
              gsl_vector_complex_const_view aj =
                gsl_matrix_complex_const_subrow(A, j, 0, j);

              gsl_blas_zdotc(&aj.vector, &aj.vector, &z);
              ajj -= GSL_REAL(z);
            }

          if (ajj <= 0.0)
            {
              GSL_ERROR("matrix is not positive definite", GSL_EDOM);
            }

          ajj = sqrt(ajj);
          GSL_SET_COMPLEX(&z, ajj, 0.0);
          gsl_matrix_complex_set(A, j, j, z);

          if (j < N - 1)
            {
              gsl_vector_complex_view av =
                gsl_matrix_complex_subcolumn(A, j, j + 1, N - j - 1);

              if (j > 0)
                {
                  gsl_vector_complex_view aj =
                    gsl_matrix_complex_subrow(A, j, 0, j);
                  gsl_matrix_complex_view am =
                    gsl_matrix_complex_submatrix(A, j + 1, 0, N - j - 1, j);

                  cholesky_complex_conj_vector(&aj.vector);

                  gsl_blas_zgemv(CblasNoTrans,
                                 GSL_COMPLEX_NEGONE,
                                 &am.matrix,
                                 &aj.vector,
                                 GSL_COMPLEX_ONE,
                                 &av.vector);

                  cholesky_complex_conj_vector(&aj.vector);
                }

              gsl_blas_zdscal(1.0 / ajj, &av.vector);
            }
        }

      /* Now store L^H in upper triangle */
      for (i = 1; i < N; ++i)
        {
          for (j = 0; j < i; ++j)
            {
              z = gsl_matrix_complex_get(A, i, j);
              gsl_matrix_complex_set(A, j, i, gsl_complex_conjugate(z));
            }
        }

      return GSL_SUCCESS;
    }
} /* gsl_linalg_complex_cholesky_decomp() */
Esempio n. 2
0
int
gsl_linalg_complex_cholesky_invert(gsl_matrix_complex * LLT)
{
  if (LLT->size1 != LLT->size2)
    {
      GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
    }
  else
    {
      size_t N = LLT->size1;
      size_t i, j;
      gsl_vector_complex_view v1;

      /* invert the lower triangle of LLT */
      for (i = 0; i < N; ++i)
        {
          double ajj;
          gsl_complex z;

          j = N - i - 1;

          { 
            gsl_complex z0 = gsl_matrix_complex_get(LLT, j, j);
            ajj = 1.0 / GSL_REAL(z0); 
          }

          GSL_SET_COMPLEX(&z, ajj, 0.0);
          gsl_matrix_complex_set(LLT, j, j, z);

          {
            gsl_complex z1 = gsl_matrix_complex_get(LLT, j, j);
            ajj = -GSL_REAL(z1);
          }

          if (j < N - 1)
            {
              gsl_matrix_complex_view m;
              
              m = gsl_matrix_complex_submatrix(LLT, j + 1, j + 1,
                                       N - j - 1, N - j - 1);
              v1 = gsl_matrix_complex_subcolumn(LLT, j, j + 1, N - j - 1);

              gsl_blas_ztrmv(CblasLower, CblasNoTrans, CblasNonUnit,
                             &m.matrix, &v1.vector);

              gsl_blas_zdscal(ajj, &v1.vector);
            }
        } /* for (i = 0; i < N; ++i) */

      /*
       * The lower triangle of LLT now contains L^{-1}. Now compute
       * A^{-1} = L^{-H} L^{-1}
       *
       * The (ij) element of A^{-1} is column i of conj(L^{-1}) dotted into
       * column j of L^{-1}
       */

      for (i = 0; i < N; ++i)
        {
          gsl_complex sum;
          for (j = i + 1; j < N; ++j)
            {
              gsl_vector_complex_view v2;
              v1 = gsl_matrix_complex_subcolumn(LLT, i, j, N - j);
              v2 = gsl_matrix_complex_subcolumn(LLT, j, j, N - j);

              /* compute Ainv[i,j] = sum_k{conj(Linv[k,i]) * Linv[k,j]} */
              gsl_blas_zdotc(&v1.vector, &v2.vector, &sum);

              /* store in upper triangle */
              gsl_matrix_complex_set(LLT, i, j, sum);
            }

          /* now compute the diagonal element */
          v1 = gsl_matrix_complex_subcolumn(LLT, i, i, N - i);
          gsl_blas_zdotc(&v1.vector, &v1.vector, &sum);
          gsl_matrix_complex_set(LLT, i, i, sum);
        }

      /* copy the Hermitian upper triangle to the lower triangle */

      for (j = 1; j < N; j++)
        {
          for (i = 0; i < j; i++)
            {
              gsl_complex z = gsl_matrix_complex_get(LLT, i, j);
              gsl_matrix_complex_set(LLT, j, i, gsl_complex_conjugate(z));
            }
        } 

      return GSL_SUCCESS;
    }
} /* gsl_linalg_complex_cholesky_invert() */
Esempio n. 3
0
int 
gsl_linalg_hermtd_decomp (gsl_matrix_complex * A, gsl_vector_complex * tau)  
{
  if (A->size1 != A->size2)
    {
      GSL_ERROR ("hermitian tridiagonal decomposition requires square matrix",
                 GSL_ENOTSQR);
    }
  else if (tau->size + 1 != A->size1)
    {
      GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN);
    }
  else
    {
      const size_t N = A->size1;
      size_t i;
  
      const gsl_complex zero = gsl_complex_rect (0.0, 0.0);
      const gsl_complex one = gsl_complex_rect (1.0, 0.0);
      const gsl_complex neg_one = gsl_complex_rect (-1.0, 0.0);

      for (i = 0 ; i < N - 1; i++)
        {
          gsl_vector_complex_view c = gsl_matrix_complex_column (A, i);
          gsl_vector_complex_view v = gsl_vector_complex_subvector (&c.vector, i + 1, N - (i + 1));
          gsl_complex tau_i = gsl_linalg_complex_householder_transform (&v.vector);
          
          /* Apply the transformation H^T A H to the remaining columns */

          if ((i + 1) < (N - 1) 
              && !(GSL_REAL(tau_i) == 0.0 && GSL_IMAG(tau_i) == 0.0)) 
            {
              gsl_matrix_complex_view m = 
                gsl_matrix_complex_submatrix (A, i + 1, i + 1, 
                                              N - (i+1), N - (i+1));
              gsl_complex ei = gsl_vector_complex_get(&v.vector, 0);
              gsl_vector_complex_view x = gsl_vector_complex_subvector (tau, i, N-(i+1));
              gsl_vector_complex_set (&v.vector, 0, one);
              
              /* x = tau * A * v */
              gsl_blas_zhemv (CblasLower, tau_i, &m.matrix, &v.vector, zero, &x.vector);

              /* w = x - (1/2) tau * (x' * v) * v  */
              {
                gsl_complex xv, txv, alpha;
                gsl_blas_zdotc(&x.vector, &v.vector, &xv);
                txv = gsl_complex_mul(tau_i, xv);
                alpha = gsl_complex_mul_real(txv, -0.5);
                gsl_blas_zaxpy(alpha, &v.vector, &x.vector);
              }
              
              /* apply the transformation A = A - v w' - w v' */
              gsl_blas_zher2(CblasLower, neg_one, &v.vector, &x.vector, &m.matrix);

              gsl_vector_complex_set (&v.vector, 0, ei);
            }
          
          gsl_vector_complex_set (tau, i, tau_i);
        }
      
      return GSL_SUCCESS;
    }
}  
Esempio n. 4
0
static int
mc_eigen(lua_State *L)                                         /* (-1,+2,e) */
{
    mMatComplex *m = qlua_checkMatComplex(L, 1);
    gsl_matrix_complex_view mx;
    gsl_eigen_hermv_workspace *w;
    gsl_vector *ev;
    mVecReal *lambda;
    mMatComplex *trans;
    mMatComplex *tmp;
    int n;
    int i;
    int lo, hi;

    switch (lua_gettop(L)) {
    case 1:
        if (m->l_size != m->r_size)
            return luaL_error(L, "matrix:eigen() expects square matrix");
        lo = 0;
        hi = m->l_size;
        break;
    case 2:
        lo = 0;
        hi = luaL_checkint(L, 2);
        if ((hi > m->l_size) || (hi > m->r_size))
            return slice_out(L);
        break;
    case 3:
        lo = luaL_checkint(L, 2);
        hi = luaL_checkint(L, 3);
        if ((lo >= hi) ||
            (lo > m->l_size) || (lo > m->r_size) ||
            (hi > m->l_size) || (hi > m->r_size))
            return slice_out(L);
        break;
    default:
        return luaL_error(L, "matrix:eigen(): illegal arguments");
    }

    n = hi - lo;
    mx = gsl_matrix_complex_submatrix(m->m, lo, lo, n, n);
    tmp = qlua_newMatComplex(L, n, n);
    gsl_matrix_complex_memcpy(tmp->m, &mx.matrix);
    lambda = qlua_newVecReal(L, n);
    trans = qlua_newMatComplex(L, n, n);

    ev = new_gsl_vector(L, n);
    w = gsl_eigen_hermv_alloc(n);
    if (w == 0) {
        lua_gc(L, LUA_GCCOLLECT, 0);
        w = gsl_eigen_hermv_alloc(n);
        if (w == 0)
            luaL_error(L, "not enough memory");
    }
    
    if (gsl_eigen_hermv(tmp->m, ev, trans->m, w))
        luaL_error(L, "matrix:eigen() failed");

    if (gsl_eigen_hermv_sort(ev, trans->m, GSL_EIGEN_SORT_VAL_ASC))
        luaL_error(L, "matrix:eigen() eigenvalue ordering failed");

    for (i = 0; i < n; i++)
        lambda->val[i] = gsl_vector_get(ev, i);

    gsl_vector_free(ev);
    gsl_eigen_hermv_free(w);

    return 2;
}
Esempio n. 5
0
int
gsl_linalg_hermtd_unpack (const gsl_matrix_complex * A, 
                          const gsl_vector_complex * tau,
                          gsl_matrix_complex * U, 
                          gsl_vector * diag, 
                          gsl_vector * sdiag)
{
  if (A->size1 !=  A->size2)
    {
      GSL_ERROR ("matrix A must be sqaure", GSL_ENOTSQR);
    }
  else if (tau->size + 1 != A->size1)
    {
      GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN);
    }
  else if (U->size1 != A->size1 || U->size2 != A->size1)
    {
      GSL_ERROR ("size of U must match size of A", GSL_EBADLEN);
    }
  else if (diag->size != A->size1)
    {
      GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN);
    }
  else if (sdiag->size + 1 != A->size1)
    {
      GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN);
    }
  else
    {
      const size_t N = A->size1;

      size_t i;

      /* Initialize U to the identity */

      gsl_matrix_complex_set_identity (U);

      for (i = N - 1; i-- > 0;)
        {
          gsl_complex ti = gsl_vector_complex_get (tau, i);

          gsl_vector_complex_const_view c = gsl_matrix_complex_const_column (A, i);

          gsl_vector_complex_const_view h = 
            gsl_vector_complex_const_subvector (&c.vector, i + 1, N - (i+1));

          gsl_matrix_complex_view m = 
            gsl_matrix_complex_submatrix (U, i + 1, i + 1, N-(i+1), N-(i+1));

          gsl_linalg_complex_householder_hm (ti, &h.vector, &m.matrix);
        }

      /* Copy diagonal into diag */

      for (i = 0; i < N; i++)
        {
          gsl_complex Aii = gsl_matrix_complex_get (A, i, i);
          gsl_vector_set (diag, i, GSL_REAL(Aii));
        }

      /* Copy subdiagonal into sdiag */

      for (i = 0; i < N - 1; i++)
        {
          gsl_complex Aji = gsl_matrix_complex_get (A, i+1, i);
          gsl_vector_set (sdiag, i, GSL_REAL(Aji));
        }

      return GSL_SUCCESS;
    }
}