Esempio n. 1
1
int main(int argc, char** argv) {
	int opt;
	char path_file[PATH_FILE_MAX_LEN];
	char date_time[DATE_TIME_MAX_LEN];
	const char* rxpath = NULL;
	const char* txpath = NULL;
	int result;
	time_t rawtime;
	struct tm * timeinfo;
	long int file_pos;
	int exit_code = EXIT_SUCCESS;
	struct timeval t_end;
	float time_diff;
	unsigned int lna_gain=8, vga_gain=20, txvga_gain=0;
	int udpport = 8192;
  
	while( (opt = getopt(argc, argv, "wr:t:f:i:o:m:a:p:s:n:b:l:g:x:c:u:")) != EOF )
	{
		result = HACKRF_SUCCESS;
		switch( opt ) 
		{
		case 'w':
			receive_wav = true;
			break;
		
		case 'r':
			receive = true;
			rxpath = optarg;
			break;
		
		case 't':
			transmit = true;
			txpath = optarg;
			break;

		case 'f':
			automatic_tuning = true;
			result = parse_u64(optarg, &freq_hz);
			break;

		case 'i':
			if_freq = true;
			result = parse_u64(optarg, &if_freq_hz);
			break;

		case 'o':
			lo_freq = true;
			result = parse_u64(optarg, &lo_freq_hz);
			break;

		case 'm':
			image_reject = true;
			result = parse_u32(optarg, &image_reject_selection);
			break;

		case 'a':
			amp = true;
			result = parse_u32(optarg, &amp_enable);
			break;

		case 'p':
			antenna = true;
			result = parse_u32(optarg, &antenna_enable);
			break;

		case 'l':
			result = parse_u32(optarg, &lna_gain);
			break;

		case 'g':
			result = parse_u32(optarg, &vga_gain);
			break;

		case 'x':
			result = parse_u32(optarg, &txvga_gain);
			break;

		case 's':
			sample_rate = true;
			result = parse_u32(optarg, &sample_rate_hz);
			break;

		case 'n':
			limit_num_samples = true;
			result = parse_u64(optarg, &samples_to_xfer);
			bytes_to_xfer = samples_to_xfer * 2ull;
			break;

		case 'b':
			baseband_filter_bw = true;
			result = parse_u32(optarg, &baseband_filter_bw_hz);
			break;

		case 'c':
			transmit = true;
			signalsource = true;
			result = parse_u32(optarg, &amplitude);
			break;

		case 'u':
			udpport = atoi(optarg);
			break;

		default:
			printf("unknown argument '-%c %s'\n", opt, optarg);
			usage();
			return EXIT_FAILURE;
		}
		
		if( result != HACKRF_SUCCESS ) {
			printf("argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result);
			return EXIT_FAILURE;
		}		
	}

	if (samples_to_xfer >= SAMPLES_TO_XFER_MAX) {
		printf("argument error: num_samples must be less than %s/%sMio\n",
			u64toa(SAMPLES_TO_XFER_MAX,&ascii_u64_data1),
			u64toa((SAMPLES_TO_XFER_MAX/FREQ_ONE_MHZ),&ascii_u64_data2));
		return EXIT_FAILURE;
	}

	if (if_freq || lo_freq || image_reject) {
		/* explicit tuning selected */
		if (!if_freq) {
			printf("argument error: if_freq_hz must be specified for explicit tuning.\n");
			return EXIT_FAILURE;
		}
		if (!image_reject) {
			printf("argument error: image_reject must be specified for explicit tuning.\n");
			return EXIT_FAILURE;
		}
		if (!lo_freq && (image_reject_selection != RF_PATH_FILTER_BYPASS)) {
			printf("argument error: lo_freq_hz must be specified for explicit tuning unless image_reject is set to bypass.\n");
			return EXIT_FAILURE;
		}
		if ((if_freq_hz > IF_MAX_HZ) || (if_freq_hz < IF_MIN_HZ)) {
			printf("argument error: if_freq_hz shall be between %s and %s.\n",
				u64toa(IF_MIN_HZ,&ascii_u64_data1),
				u64toa(IF_MAX_HZ,&ascii_u64_data2));
			return EXIT_FAILURE;
		}
		if ((lo_freq_hz > LO_MAX_HZ) || (lo_freq_hz < LO_MIN_HZ)) {
			printf("argument error: lo_freq_hz shall be between %s and %s.\n",
				u64toa(LO_MIN_HZ,&ascii_u64_data1),
				u64toa(LO_MAX_HZ,&ascii_u64_data2));
			return EXIT_FAILURE;
		}
		if (image_reject_selection > 2) {
			printf("argument error: image_reject must be 0, 1, or 2 .\n");
			return EXIT_FAILURE;
		}
		if (automatic_tuning) {
			printf("warning: freq_hz ignored by explicit tuning selection.\n");
			automatic_tuning = false;
		}
		switch (image_reject_selection) {
		case RF_PATH_FILTER_BYPASS:
			freq_hz = if_freq_hz;
			break;
		case RF_PATH_FILTER_LOW_PASS:
			freq_hz = abs(if_freq_hz - lo_freq_hz);
			break;
		case RF_PATH_FILTER_HIGH_PASS:
			freq_hz = if_freq_hz + lo_freq_hz;
			break;
		default:
			freq_hz = DEFAULT_FREQ_HZ;
			break;
		}
		printf("explicit tuning specified for %s Hz.\n",
			u64toa(freq_hz,&ascii_u64_data1));

	} else if (automatic_tuning) {
		if( (freq_hz > FREQ_MAX_HZ) || (freq_hz < FREQ_MIN_HZ) )
		{
			printf("argument error: freq_hz shall be between %s and %s.\n",
				u64toa(FREQ_MIN_HZ,&ascii_u64_data1),
				u64toa(FREQ_MAX_HZ,&ascii_u64_data2));
			return EXIT_FAILURE;
		}
	} else {
		/* Use default freq */
		freq_hz = DEFAULT_FREQ_HZ;
		automatic_tuning = true;
	}

	if( amp ) {
		if( amp_enable > 1 )
		{
			printf("argument error: amp_enable shall be 0 or 1.\n");
			return EXIT_FAILURE;
		}
	}

	if (antenna) {
		if (antenna_enable > 1) {
			printf("argument error: antenna_enable shall be 0 or 1.\n");
			return EXIT_FAILURE;
		}
	}

	if( sample_rate == false ) 
	{
		sample_rate_hz = DEFAULT_SAMPLE_RATE_HZ;
	}

	if( baseband_filter_bw )
	{
		/* Compute nearest freq for bw filter */
		baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw(baseband_filter_bw_hz);
	}else
	{
		/* Compute default value depending on sample rate */
		baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw_round_down_lt(sample_rate_hz);
	}

	if (baseband_filter_bw_hz > BASEBAND_FILTER_BW_MAX) {
		printf("argument error: baseband_filter_bw_hz must be less or equal to %u Hz/%.03f MHz\n",
				BASEBAND_FILTER_BW_MAX, (float)(BASEBAND_FILTER_BW_MAX/FREQ_ONE_MHZ));
		return EXIT_FAILURE;
	}

	if (baseband_filter_bw_hz < BASEBAND_FILTER_BW_MIN) {
		printf("argument error: baseband_filter_bw_hz must be greater or equal to %u Hz/%.03f MHz\n",
				BASEBAND_FILTER_BW_MIN, (float)(BASEBAND_FILTER_BW_MIN/FREQ_ONE_MHZ));
		return EXIT_FAILURE;
	}

	if( receive ) {
		transceiver_mode = TRANSCEIVER_MODE_RX;
	} else if( transmit ) {
		transceiver_mode = TRANSCEIVER_MODE_TX;
	}

	if (signalsource) {
		transceiver_mode = TRANSCEIVER_MODE_SS;
		if (amplitude >127) {
			printf("argument error: amplitude shall be in between 0 and 128.\n");
			return EXIT_FAILURE;
		}
	}

	if( receive_wav )
	{
		time (&rawtime);
		timeinfo = localtime (&rawtime);
		transceiver_mode = TRANSCEIVER_MODE_RX;
		/* File format HackRF Year(2013), Month(11), Day(28), Hour Min Sec+Z, Freq kHz, IQ.wav */
		strftime(date_time, DATE_TIME_MAX_LEN, "%Y%m%d_%H%M%S", timeinfo);
		snprintf(path_file, PATH_FILE_MAX_LEN, "HackRF_%sZ_%ukHz_IQ.wav", date_time, (uint32_t)(freq_hz/(1000ull)) );
		rxpath = path_file;
		printf("Receive wav file: %s\n", rxpath);
	}	

	// In signal source mode, the PATH argument is neglected.
	if (transceiver_mode != TRANSCEIVER_MODE_SS) {
		if( rxpath == NULL && txpath == NULL) {
			printf("specify a path to a file to transmit/receive\n");
			return EXIT_FAILURE;
		}
	}

	result = hackrf_init();
	if( result != HACKRF_SUCCESS ) {
		printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result);
		return EXIT_FAILURE;
	}
	
	result = hackrf_open(&device);
	if( result != HACKRF_SUCCESS ) {
		printf("hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result);
		return EXIT_FAILURE;
	}
	
	if (transceiver_mode != TRANSCEIVER_MODE_SS) {
		if( rxpath != NULL )
		{
			rxfd = fopen(rxpath, "wb");
			if( rxfd == NULL ) {
				printf("Failed to open file: %s\n", rxpath);
				return EXIT_FAILURE;
			}
			/* Change fd buffer to have bigger one to store or read data on/to HDD */
			setvbuf(rxfd , NULL , _IOFBF , FD_BUFFER_SIZE);
		}
		if( txpath != NULL )
		{
			txfd = fopen(txpath, "rb");
			if( txfd == NULL ) {
				printf("Failed to open file: %s\n", txpath);
				return EXIT_FAILURE;
			}
			/* Change fd buffer to have bigger one to store or read data on/to HDD */
			setvbuf(txfd , NULL , _IOFBF , FD_BUFFER_SIZE);
		}
	}

	/* Write Wav header */
	if( receive_wav ) 
	{
		fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), rxfd);
	}
	
#ifdef _MSC_VER
	SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE );
#else
	signal(SIGINT, &sigint_callback_handler);
	//signal(SIGILL, &sigint_callback_handler);
	//signal(SIGFPE, &sigint_callback_handler);
	//signal(SIGSEGV, &sigint_callback_handler);
	//signal(SIGTERM, &sigint_callback_handler);
	//signal(SIGABRT, &sigint_callback_handler);
#endif
	printf("call hackrf_sample_rate_set(%u Hz/%.03f MHz)\n", sample_rate_hz,((float)sample_rate_hz/(float)FREQ_ONE_MHZ));
	result = hackrf_set_sample_rate_manual(device, sample_rate_hz, 1);
	if( result != HACKRF_SUCCESS ) {
		printf("hackrf_sample_rate_set() failed: %s (%d)\n", hackrf_error_name(result), result);
		return EXIT_FAILURE;
	}

	printf("call hackrf_baseband_filter_bandwidth_set(%d Hz/%.03f MHz)\n",
			baseband_filter_bw_hz, ((float)baseband_filter_bw_hz/(float)FREQ_ONE_MHZ));
	result = hackrf_set_baseband_filter_bandwidth(device, baseband_filter_bw_hz);
	if( result != HACKRF_SUCCESS ) {
		printf("hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n", hackrf_error_name(result), result);
		return EXIT_FAILURE;
	}

	result = hackrf_set_vga_gain(device, vga_gain);
	result |= hackrf_set_lna_gain(device, lna_gain);
	result |= hackrf_set_txvga_gain(device, txvga_gain);
	if (rxfd != NULL) {
		result |= hackrf_start_rx(device, rx_callback, NULL);
	} else {
		result |= hackrf_start_tx(device, tx_callback, NULL);
	}

#if 0
	if( transceiver_mode == TRANSCEIVER_MODE_RX ) {
		result |= hackrf_start_rx(device, rx_callback, NULL);
	} else {
		result |= hackrf_start_tx(device, tx_callback, NULL);
	}
#endif

	if( result != HACKRF_SUCCESS ) {
		printf("hackrf_start_?x() failed: %s (%d)\n", hackrf_error_name(result), result);
		return EXIT_FAILURE;
	}

	if (automatic_tuning) {
		printf("call hackrf_set_freq(%s Hz/%.03f MHz)\n",
			u64toa(freq_hz, &ascii_u64_data1),((double)freq_hz/(double)FREQ_ONE_MHZ) );
		result = hackrf_set_freq(device, freq_hz);
		if( result != HACKRF_SUCCESS ) {
			printf("hackrf_set_freq() failed: %s (%d)\n", hackrf_error_name(result), result);
			return EXIT_FAILURE;
		}
	} else {
		printf("call hackrf_set_freq_explicit() with %s Hz IF, %s Hz LO, %s\n",
				u64toa(if_freq_hz,&ascii_u64_data1),
				u64toa(lo_freq_hz,&ascii_u64_data2),
				hackrf_filter_path_name(image_reject_selection));
		result = hackrf_set_freq_explicit(device, if_freq_hz, lo_freq_hz,
				image_reject_selection);
		if (result != HACKRF_SUCCESS) {
			printf("hackrf_set_freq_explicit() failed: %s (%d)\n",
					hackrf_error_name(result), result);
			return EXIT_FAILURE;
		}
	}

	if( amp ) {
		printf("call hackrf_set_amp_enable(%u)\n", amp_enable);
		result = hackrf_set_amp_enable(device, (uint8_t)amp_enable);
		if( result != HACKRF_SUCCESS ) {
			printf("hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name(result), result);
			return EXIT_FAILURE;
		}
	}

	if (antenna) {
		printf("call hackrf_set_antenna_enable(%u)\n", antenna_enable);
		result = hackrf_set_antenna_enable(device, (uint8_t)antenna_enable);
		if (result != HACKRF_SUCCESS) {
			printf("hackrf_set_antenna_enable() failed: %s (%d)\n", hackrf_error_name(result), result);
			return EXIT_FAILURE;
		}
	}

	if( limit_num_samples ) {
		printf("samples_to_xfer %s/%sMio\n",
		u64toa(samples_to_xfer,&ascii_u64_data1),
		u64toa((samples_to_xfer/FREQ_ONE_MHZ),&ascii_u64_data2) );
	}
	
	gettimeofday(&t_start, NULL);
	gettimeofday(&time_start, NULL);

	printf("Stop with Ctrl-C\n");
	while(  /*(hackrf_is_streaming(device) == HACKRF_TRUE) && */
			(request_exit == false) ) 
	{
#if 0
		uint32_t byte_count_now;
		struct timeval time_now;
		float time_difference, rate;
		sleep(1);
		
		gettimeofday(&time_now, NULL);
		
		byte_count_now = byte_count;
		byte_count = 0;
		
		time_difference = TimevalDiff(&time_now, &time_start);
		rate = (float)byte_count_now / time_difference;
		printf("%4.1f MiB / %5.3f sec = %4.1f MiB/second\n",
				(byte_count_now / 1e6f), time_difference, (rate / 1e6f) );

		time_start = time_now;

		if (byte_count_now == 0) {
			exit_code = EXIT_FAILURE;
			printf("\nCouldn't transfer any bytes for one second.\n");
			break;
		}
#endif
		printf("hackrf_is%s_streaming\n", 
			hackrf_is_streaming(device)==HACKRF_TRUE ? "":"_not");
		usbsoftrock(udpport);
	}
	
	result = hackrf_is_streaming(device);	
	if (request_exit)
	{
		printf("\nUser cancel, exiting...\n");
	} else {
		printf("\nExiting... hackrf_is_streaming() result: %s (%d)\n", hackrf_error_name(result), result);
	}
	do_exit = true;
	
	gettimeofday(&t_end, NULL);
	time_diff = TimevalDiff(&t_end, &t_start);
	printf("Total time: %5.5f s\n", time_diff);
	
	if(device != NULL)
	{
		if( receive ) 
		{
			result = hackrf_stop_rx(device);
			if( result != HACKRF_SUCCESS ) {
				printf("hackrf_stop_rx() failed: %s (%d)\n", hackrf_error_name(result), result);
			}else {
				printf("hackrf_stop_rx() done\n");
			}
		}
	
		if( transmit ) 
		{
			result = hackrf_stop_tx(device);
			if( result != HACKRF_SUCCESS ) {
				printf("hackrf_stop_tx() failed: %s (%d)\n", hackrf_error_name(result), result);
			}else {
				printf("hackrf_stop_tx() done\n");
			}
		}
		
		result = hackrf_close(device);
		if( result != HACKRF_SUCCESS ) 
		{
			printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result);
		}else {
			printf("hackrf_close() done\n");
		}
		
		hackrf_exit();
		printf("hackrf_exit() done\n");
	}
		
	if(rxfd != NULL)
	{
		if( receive_wav ) 
		{
			/* Get size of file */
			file_pos = ftell(rxfd);
			/* Update Wav Header */
			wave_file_hdr.hdr.size = file_pos+8;
			wave_file_hdr.fmt_chunk.dwSamplesPerSec = sample_rate_hz;
			wave_file_hdr.fmt_chunk.dwAvgBytesPerSec = wave_file_hdr.fmt_chunk.dwSamplesPerSec*2;
			wave_file_hdr.data_chunk.chunkSize = file_pos - sizeof(t_wav_file_hdr);
			/* Overwrite header with updated data */
			rewind(rxfd);
			fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), rxfd);
		}	
		fclose(rxfd);
		rxfd = NULL;
		printf("fclose(rxfd) done\n");
	}
	printf("exit\n");
	return exit_code;
}
Esempio n. 2
0
static void setup_hackrf() {
    int status;

    status = hackrf_init();
    HACKRF_CHECK_STATUS(status, "hackrf_init");

    status = hackrf_open(&device);
    HACKRF_CHECK_STATUS(status, "hackrf_open");

    status = hackrf_set_freq(device, frequency);
    HACKRF_CHECK_STATUS(status, "hackrf_set_freq");

    status = hackrf_set_sample_rate(device, SAMPLE_RATE);
    HACKRF_CHECK_STATUS(status, "hackrf_set_sample_rate");

    status = hackrf_set_amp_enable(device, 0);
    HACKRF_CHECK_STATUS(status, "hackrf_set_amp_enable");

    status = hackrf_set_lna_gain(device, 32);
    HACKRF_CHECK_STATUS(status, "hackrf_set_lna_gain");

    status = hackrf_set_vga_gain(device, 40);
    HACKRF_CHECK_STATUS(status, "hackrf_set_lna_gain");

    status = hackrf_start_rx(device, receive_sample_block, NULL);
    HACKRF_CHECK_STATUS(status, "hackrf_start_rx");
}
Esempio n. 3
0
static void sighandler(int signum)
{
	fprintf(stderr, "Signal caught, exiting!\n");
	if (!do_exit) {
		//rtlsdr_cancel_async(dev);
		hackrf_stop_rx(dev);
		hackrf_close(dev);
		sleep(1.2);
		hackrf_init();
		hackrf_open(&dev);
		do_exit = 1;
	}
}
int main(int argc, char *argv[])
{

   /* setup */

   hackrf_device* device;
   int rc = HACKRF_SUCCESS;

   State* s = (State*) malloc(sizeof(State));
   CHECK_MALLOC(s)
   init_state(s);

   get_args(argc, argv, s);

   print_state_json(s, s->fd);

   /* initialization */
   rc = hackrf_init();
   HACKRF_ERROR_CHECK(rc)

   /* open hack rf */
   rc = hackrf_open(&device);
   HACKRF_ERROR_CHECK(rc)

   /* set sample rate */
   rc = hackrf_set_sample_rate_manual(device, s->fs, 1);
   HACKRF_ERROR_CHECK(rc)

   /* set gain */
   rc = hackrf_set_lna_gain(device, s->lna_gain);
   HACKRF_ERROR_CHECK(rc)

   rc = hackrf_set_vga_gain(device, s->vga_gain);
   HACKRF_ERROR_CHECK(rc)

   /* tune */
   rc = hackrf_set_freq(device, s->fc);
   HACKRF_ERROR_CHECK(rc)

   /* start hacking */
   rc = hackrf_start_rx(device, hackrf_rx_callback, (void*)s);
   HACKRF_ERROR_CHECK(rc)

   rc = pthread_cond_wait(&(s->cond), &(s->lock));
   if(rc < 0){
      printf("pthread_cond_wait() error\n");
      exit(EXIT_FAILURE);
   }

   exit(EXIT_SUCCESS);
}
Esempio n. 5
0
BOOL WINAPI
sighandler(int signum)
{
	if (CTRL_C_EVENT == signum) {
		fprintf(stderr, "Signal caught, exiting!\n");
		//rtlsdr_cancel_async(dev);
		hackrf_stop_rx(dev);
		hackrf_close(dev);
		sleep(1.2);
		hackrf_init();
		hackrf_open(&dev);
		do_exit = 1;
		return TRUE;
	}
	return FALSE;
}
Esempio n. 6
0
int main(int argc, char **argv) {
    if (argc != 3) {
        usage();
        exit(1);
    }
    double freq_mhz = atof(argv[1]);
    FREQUENCY = freq_mhz * 1e6;
    int count = atoi(argv[2]);
    BUFFER_SIZE = NRF_SAMPLES_LENGTH * count;
    buffer = calloc(BUFFER_SIZE, 1);

    int status;
    hackrf_device *device;

    status = hackrf_init();
    CHECK_STATUS(status, "hackrf_init");

    status = hackrf_open(&device);
    CHECK_STATUS(status, "hackrf_open");

    status = hackrf_set_freq(device, FREQUENCY);
    CHECK_STATUS(status, "hackrf_set_freq");

    status = hackrf_set_sample_rate(device, SAMPLE_RATE);
    CHECK_STATUS(status, "hackrf_set_sample_rate");

    status = hackrf_set_amp_enable(device, 0);
    CHECK_STATUS(status, "hackrf_set_amp_enable");

    status = hackrf_set_lna_gain(device, 32);
    CHECK_STATUS(status, "hackrf_set_lna_gain");

    status = hackrf_set_vga_gain(device, 34);
    CHECK_STATUS(status, "hackrf_set_vga_gain");

    status = hackrf_start_rx(device, receive_sample_block, NULL);
    CHECK_STATUS(status, "hackrf_start_rx");

    while (buffer_pos < BUFFER_SIZE) {
        sleep(1);
    }

    hackrf_stop_rx(device);
    hackrf_close(device);
    hackrf_exit();
    return 0;
}
Esempio n. 7
0
int main(int argc, char **argv) {
    int status;

    if (argc != 3) {
        printf("Usage: rfcap FREQ N_SAMPLES\n");
        exit(EXIT_FAILURE);
    }

    current_freq = atof(argv[1]);
    n_samples = atoi(argv[2]);

    status = hackrf_init();
    HACKRF_CHECK_STATUS(status, "hackrf_init");

    status = hackrf_open(&device);
    HACKRF_CHECK_STATUS(status, "hackrf_open");

    status = hackrf_set_freq(device, current_freq * 1e6);
    HACKRF_CHECK_STATUS(status, "hackrf_set_freq");

    status = hackrf_set_sample_rate(device, 10e6);
    HACKRF_CHECK_STATUS(status, "hackrf_set_sample_rate");

    status = hackrf_set_amp_enable(device, 0);
    HACKRF_CHECK_STATUS(status, "hackrf_set_amp_enable");

    status = hackrf_set_lna_gain(device, 32);
    HACKRF_CHECK_STATUS(status, "hackrf_set_lna_gain");

    status = hackrf_set_vga_gain(device, 30);
    HACKRF_CHECK_STATUS(status, "hackrf_set_lna_gain");

    status = hackrf_start_rx(device, receive_sample_block, NULL);
    HACKRF_CHECK_STATUS(status, "hackrf_start_rx");

    while (receive_count < n_samples) {
        usleep(100);
    }

    hackrf_stop_rx(device);
    hackrf_close(device);
    hackrf_exit();
    return 0;
}
Esempio n. 8
0
File: hackrf.c Progetto: simid/fmcw2
int ADDCALL hackrf_open_by_serial(const char* const desired_serial_number, hackrf_device** device)
{
	libusb_device_handle* usb_device;
	
	if( desired_serial_number == NULL )
	{
		return hackrf_open(device);
	}
	
	if( device == NULL )
	{
		return HACKRF_ERROR_INVALID_PARAM;
	}
	
	usb_device = hackrf_open_usb(desired_serial_number);
	
	if( usb_device == NULL )
	{
		return HACKRF_ERROR_NOT_FOUND;
	}
	
	return hackrf_open_setup(usb_device, device);
}
Esempio n. 9
0
HackRFSource::HackRFSource(std::string args,
                           uint32_t sampleRate, 
                           uint32_t sampleCount, 
                           double startFrequency, 
                           double stopFrequency)
  : SignalSource(sampleRate, sampleCount, startFrequency, stopFrequency, 0.75, 0.0),
    m_dev(nullptr),
    m_streamingState(Illegal),
    m_nextValidStreamTime{0, 0},
    m_retuneTime(0.0100),
    m_dropPacketCount(0), // ceil(sampleRate * m_retuneTime / 131072)),
    m_scanStartCount(101),
    m_centerFrequency(1e12),
    m_didRetune(false)
{
  int status;

  status = hackrf_init();
  HANDLE_ERROR("hackrf_init() failed: %%s\n");

  status = hackrf_open( &this->m_dev );
  HANDLE_ERROR("Failed to open HackRF device: %%s\n");

  uint8_t board_id;
  status = hackrf_board_id_read( this->m_dev, &board_id );
  HANDLE_ERROR("Failed to get HackRF board id: %%s\n");

  char version[128];
  memset(version, 0, sizeof(version));
  status = hackrf_version_string_read( this->m_dev, version, sizeof(version));
  HANDLE_ERROR("Failed to read version string: %%s\n");

  this->set_sample_rate(sampleRate);

  uint32_t bandWidth = hackrf_compute_baseband_filter_bw(uint32_t(0.75 * sampleRate));
  status = hackrf_set_baseband_filter_bandwidth( this->m_dev, bandWidth );
  HANDLE_ERROR("hackrf_set_baseband_filter_bandwidth %u: %%s", bandWidth );

  /* range 0-40 step 8d, IF gain in osmosdr  */
  hackrf_set_lna_gain(this->m_dev, 24);

  /* range 0-62 step 2db, BB gain in osmosdr */
  hackrf_set_vga_gain(this->m_dev, 28);

  /* Disable AMP gain stage by default. */
  hackrf_set_amp_enable(this->m_dev, 0);

  status = hackrf_set_antenna_enable(this->m_dev, 0);

  if (args.find("bias")) {
    /* antenna port power control */
    status = hackrf_set_antenna_enable(this->m_dev, 1);
    HANDLE_ERROR("Failed to enable antenna DC bias: %%s\n");
  }

  double startFrequency1 = this->GetStartFrequency();
  this->Retune(startFrequency1);

  double stopFrequency1 = this->GetStopFrequency();
  // This was my firmware sweep implementation. But Michael Ossmann has provided
  // new firmware API that sweeps much faster.
#if 0
  status = hackrf_set_scan_parameters(this->m_dev,
                                      uint64_t(startFrequency1),
                                      uint64_t(stopFrequency1),
                                      uint32_t(0.75 * sampleRate));
  printf("Setting scan parameters: [%lu %lu %u]\n",
         uint64_t(startFrequency1),
         uint64_t(stopFrequency1),
         uint32_t(0.75 * sampleRate));

  HANDLE_ERROR("Failed to set scan parameters: %%s\n");
#endif

  // Store scan parameters to use later.
  this->m_scanStartFrequency = uint16_t(startFrequency/1e6);
  this->m_scanStopFrequency = uint16_t(stopFrequency/1e6);
  this->m_scanNumBytes = sampleCount*2;
  this->m_scanStepWidth = 0.75 * sampleRate;
  this->m_scanOffset = this->m_scanStepWidth/2.0;
}
Esempio n. 10
0
int main(int argc, char** argv)
{
	int opt;
	uint32_t length = 0;
	uint32_t total_length = 0;
	const char* path = NULL;
	hackrf_device* device = NULL;
	int result = HACKRF_SUCCESS;
	int option_index = 0;
	FILE* fd = NULL;
	ssize_t bytes_read;
	uint16_t xfer_len = 0;	
	uint8_t* pdata = &data[0];	

	while ((opt = getopt_long(argc, argv, "x:", long_options,
			&option_index)) != EOF) {
		switch (opt) {
		case 'x':
			path = optarg;
			break;

		default:
			usage();
			return EXIT_FAILURE;
		}

		if (result != HACKRF_SUCCESS) {
			fprintf(stderr, "argument error: %s (%d)\n",
					hackrf_error_name(result), result);
			usage();
			return EXIT_FAILURE;
		}
	}

	if (path == NULL) {
		fprintf(stderr, "Specify a path to a file.\n");
		usage();
		return EXIT_FAILURE;
	}

	fd = fopen(path, "rb");
	if (fd == NULL)
	{
		fprintf(stderr, "Failed to open file: %s\n", path);
		return EXIT_FAILURE;
	}	
	/* Get size of the file  */
	fseek(fd, 0, SEEK_END); /* Not really portable but work on major OS Linux/Win32 */
	length = ftell(fd);
	/* Move to start */
	rewind(fd);
	printf("File size %d bytes.\n", length);	

	if (length > MAX_XSVF_LENGTH) {
		fprintf(stderr, "XSVF file too large.\n");
		usage();
		return EXIT_FAILURE;
	}
	
	total_length = length;
	bytes_read = fread(data, 1, total_length, fd);
	if (bytes_read != total_length)
	{
		fprintf(stderr, "Failed to read all bytes (read %d bytes instead of %d bytes).\n",
				(int)bytes_read, total_length);
		fclose(fd);
		fd = NULL;
		return EXIT_FAILURE;
	}

	result = hackrf_init();
	if (result != HACKRF_SUCCESS) {
		fprintf(stderr, "hackrf_init() failed: %s (%d)\n",
				hackrf_error_name(result), result);
		return EXIT_FAILURE;
	}

	result = hackrf_open(&device);
	if (result != HACKRF_SUCCESS) {
		fprintf(stderr, "hackrf_open() failed: %s (%d)\n",
				hackrf_error_name(result), result);
		return EXIT_FAILURE;
	}

	printf("LED1/2/3 blinking means CPLD program success.\nLED3/RED steady means error.\n");
	printf("Wait message 'Write finished' or in case of LED3/RED steady, Power OFF/Disconnect the Jawbreaker.\n");
	while( length )
	{
		xfer_len = (length > PACKET_LEN) ? PACKET_LEN : length;
		result = hackrf_cpld_write(device, xfer_len, pdata, total_length);
		if (result != HACKRF_SUCCESS)
		{
			fprintf(stderr, "hackrf_cpld_write() failed: %s (%d)\n",
					hackrf_error_name(result), result);
			fclose(fd);
			fd = NULL;
			return EXIT_FAILURE;
		}
		pdata += xfer_len;
		length -= xfer_len;
		printf("hackrf_cpld_write() Writing %d bytes, remaining %d bytes.\n",
			xfer_len, length);		
	}
	printf("Write finished.\n");
	printf("Please Power OFF/Disconnect the Jawbreaker.\n");
	fflush(stdout);
		
	result = hackrf_close(device);
	if( result != HACKRF_SUCCESS )
	{
		fprintf(stderr, "hackrf_close() failed: %s (%d)\n",
				hackrf_error_name(result), result);
		fclose(fd);
		fd = NULL;
		return EXIT_FAILURE;
	}

	hackrf_exit();

	if (fd != NULL) {
		fclose(fd);
	}

	return EXIT_SUCCESS;
}
Esempio n. 11
0
int
main ( int argc, char** argv )
  {
  /*
   * Setup.
   */
  // How did it do?
  int result ;
  // Signal and carrier angle.
  double sa, ca ;
  // Sample offsets.
  co = 0 ; mo = 0 ; so = 0 ;
  // Sample number.
  sn = 0L ;
  // Mark or space?
  ms = false ;
  // Catch signals that we want to handle gracefully.
  signal ( SIGINT, &sigint_callback_handler ) ;
  signal ( SIGILL, &sigint_callback_handler ) ;
  signal ( SIGFPE, &sigint_callback_handler ) ;
  signal ( SIGSEGV, &sigint_callback_handler ) ;
  signal ( SIGTERM, &sigint_callback_handler ) ;
  signal ( SIGABRT, &sigint_callback_handler ) ;
  // This takes a bit.
  fprintf ( stderr, "Precalculating lookup tables...\n" ) ;
  /*
   * Precalc waveforms.
   */
  // Lookup for 1200Hz.
  for ( int s = 0 ; s < 6666; s++ )
    {
    sa = s * tau / 6666.0 ;
    for ( int c = 0; c < 10; c++ )
      {
      ca = c * tau / 10.0 ;
      mi[s][c] = ( int8_t ) ( 127.0 * sin ( ca - dm * cos ( sa ) ) ) ;
      mq[s][c] = ( int8_t ) ( 127.0 * cos ( ca - dm * cos ( sa ) ) ) ;
      }
    }
  // Lookup for 2200Hz.
  for ( int s = 0 ; s < 3636; s++ )
    {
    sa = s * tau / 3636.0 ;
    for ( int c = 0; c < 10; c++ )
      {
      ca = c * tau / 10.0 ;
      si[s][c] = ( int8_t ) ( 127.0 * sin ( ca - dm * cos ( sa ) ) ) ;
      sq[s][c] = ( int8_t ) ( 127.0 * cos ( ca - dm * cos ( sa ) ) ) ;
      }
    }
  /*
   * Setup the HackRF for transmitting at full power, 8M samples/s, 144MHz
   */
  // Ok.
  fprintf ( stderr, "Setting up the HackRF...\n" ) ;
  // Initialize the HackRF.
  result = hackrf_init() ;
  if ( result != HACKRF_SUCCESS )
    {
    fprintf ( stderr, "hackrf_init() failed: %s (%d)\n", hackrf_error_name ( result ), result ) ;
    return EXIT_FAILURE ;
    }
  // Open the HackRF.
  result = hackrf_open ( &device ) ;
  if ( result != HACKRF_SUCCESS )
    {
    fprintf ( stderr, "hackrf_open() failed: %s (%d)\n", hackrf_error_name ( result ), result ) ;
    return EXIT_FAILURE ;
    }
  // Set the sample rate.
  result = hackrf_set_sample_rate_manual ( device, sr, 1 ) ;
  if ( result != HACKRF_SUCCESS )
    {
    fprintf ( stderr, "hackrf_sample_rate_set() failed: %s (%d)\n", hackrf_error_name ( result ), result ) ;
    return EXIT_FAILURE ;
    }
  // Set the filter bandwith to default.
  result = hackrf_set_baseband_filter_bandwidth ( device, hackrf_compute_baseband_filter_bw_round_down_lt ( sr ) ) ;
  if ( result != HACKRF_SUCCESS )
    {
    fprintf ( stderr, "hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n", hackrf_error_name ( result ), result ) ;
    return EXIT_FAILURE ;
    }
  // Set the gain.
  result = hackrf_set_txvga_gain ( device, gain ) ;
  result |= hackrf_start_tx ( device, tx_callback, NULL ) ;
  if ( result != HACKRF_SUCCESS )
    {
    fprintf ( stderr, "hackrf_start_tx() failed: %s (%d)\n", hackrf_error_name ( result ), result ) ;
    return EXIT_FAILURE ;
    }
  // Set the transmit frequency.
  result = hackrf_set_freq ( device, tf ) ;
  if ( result != HACKRF_SUCCESS )
    {
    fprintf ( stderr, "hackrf_set_freq() failed: %s (%d)\n", hackrf_error_name ( result ), result ) ;
    return EXIT_FAILURE ;
    }
  // Turn on the amp.
  result = hackrf_set_amp_enable ( device, ( uint8_t ) 1 ) ;
  if ( result != HACKRF_SUCCESS )
    {
    fprintf ( stderr, "hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name ( result ), result ) ;
    return EXIT_FAILURE ;
    }
  /*
   * Transmitting.
   */
  // Ready?
  fprintf ( stderr, "Transmitting, stop with Ctrl-C\n" ) ;
  // Spin until done or killed.
  while ( ( hackrf_is_streaming ( device ) == HACKRF_TRUE ) && ( do_exit == false ) ) sleep ( 1 ) ;
  /*
   * Clean up and shut down.
   */
  // What happened?
  result = hackrf_is_streaming ( device ) ;
  if ( do_exit )
    {
    printf ( "\nUser cancel, exiting...\n" ) ;
    }
  else
    {
    fprintf ( stderr, "\nExiting... hackrf_is_streaming() result: %s (%d)\n", hackrf_error_name ( result ), result ) ;
    }
  // Shut down the HackRF.
  if ( device != NULL )
    {
    result = hackrf_stop_tx ( device ) ;
    if ( result != HACKRF_SUCCESS )
      {
      fprintf ( stderr, "hackrf_stop_tx() failed: %s (%d)\n", hackrf_error_name ( result ), result ) ;
      }
    result = hackrf_close ( device ) ;
    if ( result != HACKRF_SUCCESS )
      {
      fprintf ( stderr, "hackrf_close() failed: %s (%d)\n", hackrf_error_name ( result ), result ) ;
      }
    hackrf_exit() ;
    }
  // That's all, folks!!!
  return EXIT_SUCCESS ;
  }
Esempio n. 12
0
int main(int argc, char** argv) {
	int opt;
	uint16_t register_number = REGISTER_INVALID;
	uint16_t register_value;
	
	int result = hackrf_init();
	if( result ) {
		printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result);
		return -1;
	}
	
	hackrf_device* device = NULL;
	result = hackrf_open(&device);
	if( result ) {
		printf("hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result);
		return -1;
	}

	int option_index = 0;
	while( (opt = getopt_long(argc, argv, "cn:rw:", long_options, &option_index)) != EOF ) {
		switch( opt ) {
		case 'n':
			result = parse_int(optarg, &register_number);
			break;
		
		case 'w':
			result = parse_int(optarg, &register_value);
			if( result == HACKRF_SUCCESS ) {
				result = write_register(device, register_number, register_value);
			}
			break;
		
		case 'r':
			if( register_number == REGISTER_INVALID ) {
				result = dump_registers(device);
			} else {
				result = dump_register(device, register_number);
			}
			break;
		
		case 'c':
			dump_configuration(device);
			break;

		default:
			usage();
		}
		
		if( result != HACKRF_SUCCESS ) {
			printf("argument error: %s (%d)\n", hackrf_error_name(result), result);
			break;
		}
	}
	
	result = hackrf_close(device);
	if( result ) {
		printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result);
		return -1;
	}
	
	hackrf_exit();
    
    return 0;
}
Esempio n. 13
0
int main(int argc, char** argv)
{
	int opt;
	uint32_t address = 0;
	uint32_t length = 0;
	uint32_t tmp_length;
	uint16_t xfer_len = 0;
	const char* path = NULL;
	hackrf_device* device = NULL;
	int result = HACKRF_SUCCESS;
	int option_index = 0;
	static uint8_t data[MAX_LENGTH];
	uint8_t* pdata = &data[0];
	FILE* fd = NULL;
	bool read = false;
	bool write = false;

	while ((opt = getopt_long(argc, argv, "a:l:r:w:", long_options,
			&option_index)) != EOF) {
		switch (opt) {
		case 'a':
			result = parse_u32(optarg, &address);
			break;

		case 'l':
			result = parse_u32(optarg, &length);
			break;

		case 'r':
			read = true;
			path = optarg;
			break;

		case 'w':
			write = true;
			path = optarg;
			break;

		default:
			fprintf(stderr, "opt error: %d\n", opt);
			usage();
			return EXIT_FAILURE;
		}

		if (result != HACKRF_SUCCESS) {
			fprintf(stderr, "argument error: %s (%d)\n",
					hackrf_error_name(result), result);
			usage();
			return EXIT_FAILURE;
		}
	}

	if (write == read) {
		if (write == true) {
			fprintf(stderr, "Read and write options are mutually exclusive.\n");
		} else {
			fprintf(stderr, "Specify either read or write option.\n");
		}
		usage();
		return EXIT_FAILURE;
	}
	
	if (path == NULL) {
		fprintf(stderr, "Specify a path to a file.\n");
		usage();
		return EXIT_FAILURE;
	}	
	
	if( write )
	{
		fd = fopen(path, "rb");
		/* Get size of the file  */
		fseek(fd, 0, SEEK_END); /* Not really portable but work on major OS Linux/Win32 */
		length = ftell(fd);
		/* Move to start */
		rewind(fd);
		printf("File size %d bytes.\n", length);
	}

	if (length == 0) {
		fprintf(stderr, "Requested transfer of zero bytes.\n");
		if(fd != NULL)
			fclose(fd);
		usage();
		return EXIT_FAILURE;
	}

	if ((length > MAX_LENGTH) || (address > MAX_LENGTH)
			|| ((address + length) > MAX_LENGTH)) {
		fprintf(stderr, "Request exceeds size of flash memory.\n");
		if(fd != NULL)
			fclose(fd);
		usage();
		return EXIT_FAILURE;
	}

	if (read) {
		fd = fopen(path, "wb");
	}

	if (fd == NULL) {
		fprintf(stderr, "Failed to open file: %s\n", path);
		return EXIT_FAILURE;
	}

	result = hackrf_init();
	if (result != HACKRF_SUCCESS) {
		fprintf(stderr, "hackrf_init() failed: %s (%d)\n",
				hackrf_error_name(result), result);
		return EXIT_FAILURE;
	}

	result = hackrf_open(&device);
	if (result != HACKRF_SUCCESS) {
		fprintf(stderr, "hackrf_open() failed: %s (%d)\n",
				hackrf_error_name(result), result);
		return EXIT_FAILURE;
	}

	if (read) 
	{
		ssize_t bytes_written;
		tmp_length = length;
		while (tmp_length) 
		{
			xfer_len = (tmp_length > 256) ? 256 : tmp_length;
			printf("Reading %d bytes from 0x%06x.\n", xfer_len, address);
			result = hackrf_spiflash_read(device, address, xfer_len, pdata);
			if (result != HACKRF_SUCCESS) {
				fprintf(stderr, "hackrf_spiflash_read() failed: %s (%d)\n",
						hackrf_error_name(result), result);
				fclose(fd);
				fd = NULL;
				return EXIT_FAILURE;
			}			
			address += xfer_len;
			pdata += xfer_len;
			tmp_length -= xfer_len;
		}
		bytes_written = fwrite(data, 1, length, fd);
		if (bytes_written != length) {
			fprintf(stderr, "Failed write to file (wrote %d bytes).\n",
					(int)bytes_written);
			fclose(fd);
			fd = NULL;
			return EXIT_FAILURE;
		}
	} else {
		ssize_t bytes_read = fread(data, 1, length, fd);
		if (bytes_read != length) {
			fprintf(stderr, "Failed read file (read %d bytes).\n",
					(int)bytes_read);
			fclose(fd);
			fd = NULL;
			return EXIT_FAILURE;
		}
		printf("Erasing SPI flash.\n");
		result = hackrf_spiflash_erase(device);
		if (result != HACKRF_SUCCESS) {
			fprintf(stderr, "hackrf_spiflash_erase() failed: %s (%d)\n",
					hackrf_error_name(result), result);
			fclose(fd);
			fd = NULL;
			return EXIT_FAILURE;
		}
		while (length) {
			xfer_len = (length > 256) ? 256 : length;
			printf("Writing %d bytes at 0x%06x.\n", xfer_len, address);
			result = hackrf_spiflash_write(device, address, xfer_len, pdata);
			if (result != HACKRF_SUCCESS) {
				fprintf(stderr, "hackrf_spiflash_write() failed: %s (%d)\n",
						hackrf_error_name(result), result);
				fclose(fd);
				fd = NULL;
				return EXIT_FAILURE;
			}
			address += xfer_len;
			pdata += xfer_len;
			length -= xfer_len;
		}
	}

	result = hackrf_close(device);
	if (result != HACKRF_SUCCESS) {
		fprintf(stderr, "hackrf_close() failed: %s (%d)\n",
				hackrf_error_name(result), result);
		fclose(fd);
		fd = NULL;
		return EXIT_FAILURE;
	}

	hackrf_exit();

	if (fd != NULL) {
		fclose(fd);
	}

	return EXIT_SUCCESS;
}
Esempio n. 14
0
int main(int argc, char** argv) {
	int opt;
	char path_file[PATH_FILE_MAX_LEN];
	char date_time[DATE_TIME_MAX_LEN];
	const char* path = NULL;
	int result;
	time_t rawtime;
	struct tm * timeinfo;
	long int file_pos;
	int exit_code = EXIT_SUCCESS;
	struct timeval t_end;
	float time_diff;
	unsigned int lna_gain=8, vga_gain=20, txvga_gain=0;
  
	while( (opt = getopt(argc, argv, "wr:t:f:a:s:n:b:l:i:x:")) != EOF )
	{
		result = HACKRF_SUCCESS;
		switch( opt ) 
		{
		case 'w':
			receive_wav = true;
			break;
		
		case 'r':
			receive = true;
			path = optarg;
			break;
		
		case 't':
			transmit = true;
			path = optarg;
			break;
		
		case 'f':
			freq = true;
			result = parse_u64(optarg, &freq_hz);
			break;

		case 'a':
			amp = true;
			result = parse_u32(optarg, &amp_enable);
			break;

		case 'l':
			result = parse_u32(optarg, &lna_gain);
			break;

		case 'i':
			result = parse_u32(optarg, &vga_gain);
			break;

		case 'x':
			result = parse_u32(optarg, &txvga_gain);
			break;

		case 's':
			sample_rate = true;
			result = parse_u32(optarg, &sample_rate_hz);
			break;

		case 'n':
			limit_num_samples = true;
			result = parse_u64(optarg, &samples_to_xfer);
			bytes_to_xfer = samples_to_xfer * 2ull;
			break;

		case 'b':
			baseband_filter_bw = true;
			result = parse_u32(optarg, &baseband_filter_bw_hz);
			break;

		default:
			printf("unknown argument '-%c %s'\n", opt, optarg);
			usage();
			return EXIT_FAILURE;
		}
		
		if( result != HACKRF_SUCCESS ) {
			printf("argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result);
			usage();
			return EXIT_FAILURE;
		}		
	}

	if (samples_to_xfer >= SAMPLES_TO_XFER_MAX) {
		printf("argument error: num_samples must be less than %llu/%lluMio\n",
				SAMPLES_TO_XFER_MAX, SAMPLES_TO_XFER_MAX/FREQ_ONE_MHZ);
		usage();
		return EXIT_FAILURE;
	}

	if( freq ) {
		if( (freq_hz >= FREQ_MAX_HZ) || (freq_hz < FREQ_MIN_HZ) )
		{
			printf("argument error: set_freq_hz shall be between [%llu, %llu[.\n", FREQ_MIN_HZ, FREQ_MAX_HZ);
			usage();
			return EXIT_FAILURE;
		}
	}else
	{
		/* Use default freq */
		freq_hz = DEFAULT_FREQ_HZ;
	}

	if( amp ) {
		if( amp_enable > 1 )
		{
			printf("argument error: set_amp shall be 0 or 1.\n");
			usage();
			return EXIT_FAILURE;
		}
	}

	if( sample_rate == false ) 
	{
		sample_rate_hz = DEFAULT_SAMPLE_RATE_HZ;
	}

	if( baseband_filter_bw )
	{
		/* Compute nearest freq for bw filter */
		baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw(baseband_filter_bw_hz);
	}else
	{
		/* Compute default value depending on sample rate */
		baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw_round_down_lt(sample_rate_hz);
	}

	if (baseband_filter_bw_hz > BASEBAND_FILTER_BW_MAX) {
		printf("argument error: baseband_filter_bw_hz must be less or equal to %u Hz/%.03f MHz\n",
				BASEBAND_FILTER_BW_MAX, (float)(BASEBAND_FILTER_BW_MAX/FREQ_ONE_MHZ));
		usage();
		return EXIT_FAILURE;
	}

	if (baseband_filter_bw_hz < BASEBAND_FILTER_BW_MIN) {
		printf("argument error: baseband_filter_bw_hz must be greater or equal to %u Hz/%.03f MHz\n",
				BASEBAND_FILTER_BW_MIN, (float)(BASEBAND_FILTER_BW_MIN/FREQ_ONE_MHZ));
		usage();
		return EXIT_FAILURE;
	}

	if( (transmit == false) && (receive == receive_wav) )
	{
		printf("receive -r and receive_wav -w options are mutually exclusive\n");
		usage();
		return EXIT_FAILURE;
	}
	
	if( receive_wav == false )
	{
		if( transmit == receive ) 
		{
			if( transmit == true ) 
			{
				printf("receive -r and transmit -t options are mutually exclusive\n");
			} else
			{
				printf("specify either transmit -t or receive -r or receive_wav -w option\n");
			}
			usage();
			return EXIT_FAILURE;
		}
	}
	
	if( receive ) {
		transceiver_mode = TRANSCEIVER_MODE_RX;
	}
	
	if( transmit ) {
		transceiver_mode = TRANSCEIVER_MODE_TX;
	}

	if( receive_wav ) 
	{
		time (&rawtime);
		timeinfo = localtime (&rawtime);
		transceiver_mode = TRANSCEIVER_MODE_RX;
		/* File format HackRF Year(2013), Month(11), Day(28), Hour Min Sec+Z, Freq kHz, IQ.wav */
		strftime(date_time, DATE_TIME_MAX_LEN, "%Y%m%d_%H%M%S", timeinfo);
		snprintf(path_file, PATH_FILE_MAX_LEN, "HackRF_%sZ_%ukHz_IQ.wav", date_time, (uint32_t)(freq_hz/(1000ull)) );
		path = path_file;
		printf("Receive wav file: %s\n", path);
	}	

	if( path == NULL ) {
		printf("specify a path to a file to transmit/receive\n");
		usage();
		return EXIT_FAILURE;
	}
	
	result = hackrf_init();
	if( result != HACKRF_SUCCESS ) {
		printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result);
		usage();
		return EXIT_FAILURE;
	}
	
	result = hackrf_open(&device);
	if( result != HACKRF_SUCCESS ) {
		printf("hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result);
		usage();
		return EXIT_FAILURE;
	}
	
	if( transceiver_mode == TRANSCEIVER_MODE_RX ) 
	{
		fd = fopen(path, "wb");
	} else {
		fd = fopen(path, "rb");
	}
	
	if( fd == NULL ) {
		printf("Failed to open file: %s\n", path);
		return EXIT_FAILURE;
	}
	/* Change fd buffer to have bigger one to store or read data on/to HDD */
	result = setvbuf(fd , NULL , _IOFBF , FD_BUFFER_SIZE);
	if( result != 0 ) {
		printf("setvbuf() failed: %d\n", result);
		usage();
		return EXIT_FAILURE;
	}
	
	/* Write Wav header */
	if( receive_wav ) 
	{
		fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), fd);
	}
	
#ifdef _MSC_VER
	SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE );
#else
	signal(SIGINT, &sigint_callback_handler);
	signal(SIGILL, &sigint_callback_handler);
	signal(SIGFPE, &sigint_callback_handler);
	signal(SIGSEGV, &sigint_callback_handler);
	signal(SIGTERM, &sigint_callback_handler);
	signal(SIGABRT, &sigint_callback_handler);
#endif
	printf("call hackrf_sample_rate_set(%u Hz/%.03f MHz)\n", sample_rate_hz,((float)sample_rate_hz/(float)FREQ_ONE_MHZ));
	result = hackrf_sample_rate_set(device, sample_rate_hz);
	if( result != HACKRF_SUCCESS ) {
		printf("hackrf_sample_rate_set() failed: %s (%d)\n", hackrf_error_name(result), result);
		usage();
		return EXIT_FAILURE;
	}

	printf("call hackrf_baseband_filter_bandwidth_set(%d Hz/%.03f MHz)\n",
			baseband_filter_bw_hz, ((float)baseband_filter_bw_hz/(float)FREQ_ONE_MHZ));
	result = hackrf_baseband_filter_bandwidth_set(device, baseband_filter_bw_hz);
	if( result != HACKRF_SUCCESS ) {
		printf("hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n", hackrf_error_name(result), result);
		usage();
		return EXIT_FAILURE;
	}

	if( transceiver_mode == TRANSCEIVER_MODE_RX ) {
		result = hackrf_set_vga_gain(device, vga_gain);
		result |= hackrf_set_lna_gain(device, lna_gain);
		result |= hackrf_start_rx(device, rx_callback, NULL);
	} else {
		result = hackrf_set_txvga_gain(device, txvga_gain);
		result |= hackrf_start_tx(device, tx_callback, NULL);
	}
	if( result != HACKRF_SUCCESS ) {
		printf("hackrf_start_?x() failed: %s (%d)\n", hackrf_error_name(result), result);
		usage();
		return EXIT_FAILURE;
	}

	printf("call hackrf_set_freq(%llu Hz/%.03f MHz)\n", freq_hz, ((float)freq_hz/(float)FREQ_ONE_MHZ) );
	result = hackrf_set_freq(device, freq_hz);
	if( result != HACKRF_SUCCESS ) {
		printf("hackrf_set_freq() failed: %s (%d)\n", hackrf_error_name(result), result);
		usage();
		return EXIT_FAILURE;
	}

	if( amp ) {
		printf("call hackrf_set_amp_enable(%u)\n", amp_enable);
		result = hackrf_set_amp_enable(device, (uint8_t)amp_enable);
		if( result != HACKRF_SUCCESS ) {
			printf("hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name(result), result);
			usage();
			return EXIT_FAILURE;
		}
	}
	
	if( limit_num_samples ) {
		printf("samples_to_xfer %llu/%lluMio\n", samples_to_xfer, (samples_to_xfer/FREQ_ONE_MHZ) );
	}
	
	gettimeofday(&t_start, NULL);
	gettimeofday(&time_start, NULL);

	printf("Stop with Ctrl-C\n");
	while( (hackrf_is_streaming(device) == HACKRF_TRUE) &&
			(do_exit == false) ) 
	{
		uint32_t byte_count_now;
		struct timeval time_now;
		float time_difference, rate;
		sleep(1);
		
		gettimeofday(&time_now, NULL);
		
		byte_count_now = byte_count;
		byte_count = 0;
		
		time_difference = TimevalDiff(&time_now, &time_start);
		rate = (float)byte_count_now / time_difference;
		printf("%4.1f MiB / %5.3f sec = %4.1f MiB/second\n",
				(byte_count_now / 1e6f), time_difference, (rate / 1e6f) );

		time_start = time_now;

		if (byte_count_now == 0) {
			exit_code = EXIT_FAILURE;
			printf("\nCouldn't transfer any bytes for one second.\n");
			break;
		}
	}
	
	result = hackrf_is_streaming(device);	
	if (do_exit)
	{
		printf("\nUser cancel, exiting...\n");
	} else {
		printf("\nExiting... hackrf_is_streaming() result: %s (%d)\n", hackrf_error_name(result), result);
	}
	
	gettimeofday(&t_end, NULL);
	time_diff = TimevalDiff(&t_end, &t_start);
	printf("Total time: %5.5f s\n", time_diff);
	
	if(device != NULL)
	{
		if( receive ) 
		{
			result = hackrf_stop_rx(device);
			if( result != HACKRF_SUCCESS ) {
				printf("hackrf_stop_rx() failed: %s (%d)\n", hackrf_error_name(result), result);
			}else {
				printf("hackrf_stop_rx() done\n");
			}
		}
	
		if( transmit ) 
		{
			result = hackrf_stop_tx(device);
			if( result != HACKRF_SUCCESS ) {
				printf("hackrf_stop_tx() failed: %s (%d)\n", hackrf_error_name(result), result);
			}else {
				printf("hackrf_stop_tx() done\n");
			}
		}
		
		result = hackrf_close(device);
		if( result != HACKRF_SUCCESS ) 
		{
			printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result);
		}else {
			printf("hackrf_close() done\n");
		}
		
		hackrf_exit();
		printf("hackrf_exit() done\n");
	}
		
	if(fd != NULL)
	{
		if( receive_wav ) 
		{
			/* Get size of file */
			file_pos = ftell(fd);
			/* Update Wav Header */
			wave_file_hdr.hdr.size = file_pos+8;
			wave_file_hdr.fmt_chunk.dwSamplesPerSec = sample_rate_hz;
			wave_file_hdr.fmt_chunk.dwAvgBytesPerSec = wave_file_hdr.fmt_chunk.dwSamplesPerSec*2;
			wave_file_hdr.data_chunk.chunkSize = file_pos - sizeof(t_wav_file_hdr);
			/* Overwrite header with updated data */
			rewind(fd);
			fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), fd);
		}	
		fclose(fd);
		fd = NULL;
		printf("fclose(fd) done\n");
	}
	printf("exit\n");
	return exit_code;
}