Esempio n. 1
0
term_t cbif_spawn_monitor1(proc_t *proc, term_t *regs)
{
	term_t Fun = regs[0];
	if (!is_boxed(Fun))
		badarg(Fun);
	uint32_t *fdata = peel_boxed(Fun);
	if (boxed_tag(fdata) != SUBTAG_FUN)
		badarg(Fun);
	t_fun_t *f = (t_fun_t *)fdata;
	if (f->fe == 0)
		not_implemented("unloaded funs");

	term_t ref = heap_make_ref(&proc->hp);

	proc_t *new_proc = proc_make(proc->group_leader);
	int x = proc_spawn_fun0_N(new_proc, f);
	if (x == 0)
	{
		uint64_t ref_id = local_ref_id(ref);
		x = monitor(ref_id, proc->pid, new_proc->pid);
	}
	if (x < 0)
	{
		// no need to demonitor
		proc_destroy(new_proc);

		if (x == -TOO_DEEP)
			fail(A_SYSTEM_LIMIT);
		else
			fail(A_NOT_SPAWNED);
	}

	return heap_tuple2(&proc->hp, new_proc->pid, ref);
}
Esempio n. 2
0
term_t list_monitors(term_t pid1, heap_t *hp)
{
	monitor_t *m = active_monitors;
	term_t list = nil;
	while (m != 0)
	{
		if (m->pid1 == pid1)
			list = heap_cons(hp, heap_tuple2(hp, A_PROCESS, m->pid2), list);
		m = m->next;
	}
	return list;
}
Esempio n. 3
0
apr_status_t ol_listener_close0(outlet_t *self)
{
	ol_listener_data_t *data = self->data;
	
	if (data->is_accepting)
	{
		proc_t *proc = scheduler_lookup(data->teevm->scheduler, pid_serial(data->reply_to_pid));
		term_t msg = heap_tuple2(proc->heap, A_TCP_CLOSED, outlet_id(self));
		scheduler_new_local_mail(data->teevm->scheduler, proc, msg);

		data->is_accepting = 0;
	}

	apr_socket_close(data->sock);
	outlet_mall_kick_out(data->teevm->mall, self);
	apr_pool_destroy(self->pool);

	return APR_SUCCESS;
}
Esempio n. 4
0
term_t cbif_spawn_monitor3(proc_t *proc, term_t *regs)
{
	term_t m = regs[0];
	term_t f = regs[1];
	term_t args = regs[2];

	if (!is_atom(m))
		badarg(m);
	if (!is_atom(f))
		badarg(f);
	if (!is_list(args))
		badarg(args);

	if (list_len(args) < 0)
		badarg(args); // too odd

	term_t ref = heap_make_ref(&proc->hp);

	proc_t *new_proc = proc_make(proc->group_leader);
	int x = proc_spawn_N(new_proc, m, f, args);
	if (x == 0)
	{
		uint64_t ref_id = local_ref_id(ref);
		x = monitor(ref_id, proc->pid, new_proc->pid);
	}
	if (x < 0)
	{
		//NB: no need to demonitor
		proc_destroy(new_proc);

		if (x == -TOO_DEEP)
			fail(A_SYSTEM_LIMIT);
		else
			fail(A_NOT_SPAWNED);
	}

	return heap_tuple2(&proc->hp, new_proc->pid, ref);
}
Esempio n. 5
0
// maps:to_list/1 [19]
term_t cbif_to_list1(proc_t *proc, term_t *regs)
{
	term_t Map = regs[0];
	if (!is_boxed_map(Map))
		badarg(Map);

	term_t out = nil;

	t_map_t *m = (t_map_t *)peel_boxed(Map);
	term_t *p = peel_tuple(m->keys);
	int n = *p++;
	term_t *v = m->values;

	p += n;
	v += n;
	while (n-- > 0)
	{
		p--; v--;
		term_t kv = heap_tuple2(&proc->hp, *p, *v);
		out = heap_cons(&proc->hp, kv, out);
	}

	return out;
}
Esempio n. 6
0
term_t cbif_process_info2(proc_t *proc, term_t *regs)
{
	term_t Pid = regs[0];
	term_t What = regs[1];

	if (!is_short_pid(Pid))
		badarg(Pid);
	if (!is_atom(What))
		badarg(What);

	proc_t *probe = scheduler_lookup(Pid);
	if (probe == 0)
		return A_UNDEFINED;

	term_t val;
	if (What == A_BACKTRACE)
	{
		//TODO: current stack trace is not enough
		val = A_UNDEFINED;
	}
	else if (What == A_BINARY)
	{
		//NB: BinInfo is documented to be a list, yet its contents is unspesfied
		val = int_to_term(probe->hp.total_pb_size, &probe->hp);
	}
	else if (What == A_CATCHLEVEL)
	{
		assert(fits_int(probe->catch_level));
		val = tag_int(probe->catch_level);
	}
	else if (What == A_CURRENT_FUNCTION)
	{
		// NB: probe->cap.ip is valid even if proc == probe
		uint32_t *fi = backstep_to_func_info(probe->cap.ip);
		val = heap_tuple3(&proc->hp, fi[1], fi[2], tag_int(fi[3]));
	}
	else if (What == A_CURRENT_LOCATION)
	{
		// NB: probe->cap.ip is valid even if proc == probe
		uint32_t *fi = backstep_to_func_info(probe->cap.ip);
		term_t loc = nil;
		char fname[256];
		uint32_t line = code_base_source_line(probe->cap.ip, fname, sizeof(fname));
		if (line != 0)
		{
			term_t f = heap_strz(&proc->hp, fname);
			term_t t1 = heap_tuple2(&proc->hp, A_FILE, f);
			term_t t2 = heap_tuple2(&proc->hp, A_LINE, tag_int(line));
			loc = heap_cons(&proc->hp, t2, nil);
			loc = heap_cons(&proc->hp, t1, loc);
		}

		val = heap_tuple4(&proc->hp, fi[1], fi[2], tag_int(fi[3]), loc);
	}
	else if (What == A_CURRENT_STACKTRACE)
	{
		val = probe->stack_trace;
		if (probe != proc)
		{
			int x = heap_copy_terms_N(&proc->hp, &val, 1);
			if (x < 0)
				fail(err_to_term(x));
		}
	}
	else if (What == A_DICTIONARY)
	{
		val = probe->dictionary;
		if (probe != proc)
		{
			int x = heap_copy_terms_N(&proc->hp, &val, 1);
			if (x < 0)
				fail(err_to_term(x));
		}
	}
	else if (What == A_ERROR_HANDLER)
		val = A_ERROR_HANDLER;
	else if (What == A_GARBAGE_COLLECTION)
	{
		//TODO
		val = A_UNDEFINED;
	}
	else if (What == A_GROUP_LEADER)
		val = probe->group_leader;
	else if (What == A_HEAP_SIZE)
		val = int_to_term(probe->hp.total_size, &proc->hp);
	else if (What == A_INITIAL_CALL)
	{
		val = (probe->init_call_mod == noval)
				?A_UNDEFINED
				:heap_tuple3(&proc->hp, probe->init_call_mod,
										probe->init_call_func,
										tag_int(probe->init_call_arity));
	}
	else if (What == A_LINKS)
	{
		term_t ids = nil;
		plink_t *pl = probe->links.active;
		while (pl != 0)
		{
			ids = heap_cons(&proc->hp, pl->id, ids);
			pl = pl->next;
		}

		val = ids;
	}
	else if (What == A_LAST_CALLS)
	{
		//TODO
		val = A_FALSE;
	}
	else if (What == A_MEMORY)
	{
		int pages = 0;

		pages += probe->home_node->index;
		pages += probe->stack_node->index;
		memnode_t *node = probe->hp.nodes;
		while (node != 0)
		{
			pages += node->index;
			node = node->next;
		}
		node = probe->mailbox.nodes;
		while (node != 0)
		{
			pages += node->index;
			node = node->next;
		}
		node = probe->links.nodes;
		while (node != 0)
		{
			pages += node->index;
			node = node->next;
		}

		int bytes = pages * PAGE_SIZE;
		val = int_to_term(bytes, &proc->hp);
	}
	else if (What == A_MESSAGE_BINARY)
	{
		//TODO
		val = A_UNDEFINED;
	}
	else if (What == A_MESSAGE_QUEUE_LEN)
	{
		int len = msg_queue_len(&probe->mailbox);
		assert(fits_int(len));
		val = tag_int(len);
	}
	else if (What == A_MESSAGES)
	{
		int messages = nil;
		message_t *msg = probe->mailbox.head;
		while (msg != 0)
		{
			term_t marsh_body = msg->body;
			if (probe != proc)
			{
				int x = heap_copy_terms_N(&proc->hp, &marsh_body, 1);
				if (x < 0)
					fail(err_to_term(x));
			}
			messages = heap_cons(&proc->hp, marsh_body, messages);
			msg = msg->next;
		}

		val = list_rev(messages, &proc->hp);
	}
	else if (What == A_MIN_HEAP_SIZE)
		val = tag_int(INIT_HEAP_SIZE);
	else if (What == A_MIN_BIN_VHEAP_SIZE)
	{
		//TODO
		val = A_UNDEFINED;
	}
	else if (What == A_MONITORED_BY)
		val = list_monitored_by(probe->pid, &proc->hp);
	else if (What == A_MONITORS)
		val = list_monitors(probe->pid, &proc->hp);
	else if (What == A_PRIORITY)
		val = probe->priority;
	else if (What == A_REDUCTIONS)
		val = int_to_term(probe->total_reds, &proc->hp);
	else if (What == A_REGISTERED_NAME)
	{
		val = probe->name;
		if (val == noval)
			return nil;		// be backward compatible
	}
	else if (What == A_SEQUENTIAL_TRACE_TOKEN)
	{
		//TODO
		val = A_UNDEFINED;
	}
	else if (What == A_STACK_SIZE)
	{
		int ss = proc_stack_bottom(probe) - proc_stack_top(probe);
		assert(fits_int(ss));
		val = tag_int(ss);
	}
	else if (What == A_STATUS)
	{
		if (probe->my_queue == MY_QUEUE_NORMAL ||
			probe->my_queue == MY_QUEUE_HIGH ||
			probe->my_queue == MY_QUEUE_LOW)
				val = A_RUNNABLE;
		else if (probe->my_queue == MY_QUEUE_INF_WAIT ||
				 probe->my_queue == MY_QUEUE_TIMED_WAIT)
			val = A_WAITING;
		else
		{
			assert(probe->my_queue == MY_QUEUE_NONE);
			val = A_RUNNING;
		}
	}
	else if (What == A_SUSPENDING)
	{
		//TODO
		val = nil;
	}
	else if (What == A_TOTAL_HEAP_SIZE)
	{
		int ss = proc_stack_bottom(probe) - proc_stack_top(probe);
		int ths = probe->hp.total_size + ss;
		assert(fits_int(ths));
		val = tag_int(ths);
	}
	else if (What == A_TRACE)
	{
		//TODO
		val = A_UNDEFINED;
	}
	else if (What == A_TRAP_EXIT)
		val = probe->trap_exit;
	else
		badarg(What);

	return heap_tuple2(&proc->hp, What, val);
}