Esempio n. 1
0
template <typename PointInT, typename PointNT, typename PointOutT> void
pcl::VFHEstimation<PointInT, PointNT, PointOutT>::computePointSPFHSignature (
      const Eigen::Vector4f &centroid_p, const Eigen::Vector4f &centroid_n, 
      const pcl::PointCloud<PointInT> &cloud, const pcl::PointCloud<PointNT> &normals, 
      const std::vector<int> &indices)
{
  Eigen::Vector4f pfh_tuple;
  // Reset the whole thing
  hist_f1_.setZero (nr_bins_f1_);
  hist_f2_.setZero (nr_bins_f2_);
  hist_f3_.setZero (nr_bins_f3_);
  hist_f4_.setZero (nr_bins_f4_);

  // Get the bounding box of the current cluster
  Eigen::Vector4f min_pt, max_pt;
  pcl::getMinMax3D (cloud, indices, min_pt, max_pt);
  
  // Estimate the largest distance
  double distance_normalization_factor = (std::max)((centroid_p - min_pt).norm (), (centroid_p - max_pt).norm ());

  // Factorization constant
  float hist_incr = 100.0 / (float)(indices.size () - 1);

  // Iterate over all the points in the neighborhood
  for (size_t idx = 0; idx < indices.size (); ++idx)
  {
    // Compute the pair P to NNi
    if (!computePairFeatures (
          centroid_p, centroid_n,
          cloud.points[indices[idx]].getVector4fMap (), normals.points[indices[idx]].getNormalVector4fMap (), 
          pfh_tuple[0], pfh_tuple[1], pfh_tuple[2], pfh_tuple[3]))
      continue;

    // Normalize the f1, f2, f3, f4 features and push them in the histogram
    int h_index = floor (nr_bins_f1_ * ((pfh_tuple[0] + M_PI) * d_pi_));
    if (h_index < 0)            h_index = 0;
    if (h_index >= nr_bins_f1_) h_index = nr_bins_f1_ - 1;
    hist_f1_ (h_index) += hist_incr;

    h_index = floor (nr_bins_f2_ * ((pfh_tuple[1] + 1.0) * 0.5));
    if (h_index < 0)            h_index = 0;
    if (h_index >= nr_bins_f2_) h_index = nr_bins_f2_ - 1;
    hist_f2_ (h_index) += hist_incr;

    h_index = floor (nr_bins_f3_ * ((pfh_tuple[2] + 1.0) * 0.5));
    if (h_index < 0)            h_index = 0;
    if (h_index >= nr_bins_f3_) h_index = nr_bins_f3_ - 1;
    hist_f3_ (h_index) += hist_incr;

    h_index = floor (nr_bins_f4_ * (pfh_tuple[3] / distance_normalization_factor));
    if (h_index < 0)            h_index = 0;
    if (h_index >= nr_bins_f4_) h_index = nr_bins_f4_ - 1;
    hist_f4_ (h_index) += hist_incr;
  }
}
Esempio n. 2
0
template<typename PointInT, typename PointNT, typename PointOutT> void
pcl::VFHEstimation<PointInT, PointNT, PointOutT>::computePointSPFHSignature (const Eigen::Vector4f &centroid_p,
                                                                             const Eigen::Vector4f &centroid_n,
                                                                             const pcl::PointCloud<PointInT> &cloud,
                                                                             const pcl::PointCloud<PointNT> &normals,
                                                                             const std::vector<int> &indices)
{
  Eigen::Vector4f pfh_tuple;
  // Reset the whole thing
  hist_f1_.setZero (nr_bins_f1_);
  hist_f2_.setZero (nr_bins_f2_);
  hist_f3_.setZero (nr_bins_f3_);
  hist_f4_.setZero (nr_bins_f4_);

  // Get the bounding box of the current cluster
  //Eigen::Vector4f min_pt, max_pt;
  //pcl::getMinMax3D (cloud, indices, min_pt, max_pt);
  //double distance_normalization_factor = (std::max)((centroid_p - min_pt).norm (), (centroid_p - max_pt).norm ());

  //Instead of using the bounding box to normalize the VFH distance component, it is better to use the max_distance
  //from any point to centroid. VFH is invariant to rotation about the roll axis but the bounding box is not,
  //resulting in different normalization factors for point clouds that are just rotated about that axis.

  double distance_normalization_factor = 1.0;
  if ( normalize_distances_ ) {
    Eigen::Vector4f max_pt;
    pcl::getMaxDistance (cloud, indices, centroid_p, max_pt);
    distance_normalization_factor = (centroid_p - max_pt).norm ();
  }

  // Factorization constant
  float hist_incr;
  if (normalize_bins_) {
    hist_incr = 100.0 / (float)(indices.size () - 1);
  } else {
    hist_incr = 1.0;
  }

  float hist_incr_size_component;
  if (size_component_)
    hist_incr_size_component = hist_incr;
  else
    hist_incr_size_component = 0.0;

  // Iterate over all the points in the neighborhood
  for (size_t idx = 0; idx < indices.size (); ++idx)
  {
    // Compute the pair P to NNi
    if (!computePairFeatures (centroid_p, centroid_n, cloud.points[indices[idx]].getVector4fMap (),
                              normals.points[indices[idx]].getNormalVector4fMap (), pfh_tuple[0], pfh_tuple[1],
                              pfh_tuple[2], pfh_tuple[3]))
      continue;

    // Normalize the f1, f2, f3, f4 features and push them in the histogram
    int h_index = floor (nr_bins_f1_ * ((pfh_tuple[0] + M_PI) * d_pi_));
    if (h_index < 0)
      h_index = 0;
    if (h_index >= nr_bins_f1_)
      h_index = nr_bins_f1_ - 1;
    hist_f1_ (h_index) += hist_incr;

    h_index = floor (nr_bins_f2_ * ((pfh_tuple[1] + 1.0) * 0.5));
    if (h_index < 0)
      h_index = 0;
    if (h_index >= nr_bins_f2_)
      h_index = nr_bins_f2_ - 1;
    hist_f2_ (h_index) += hist_incr;

    h_index = floor (nr_bins_f3_ * ((pfh_tuple[2] + 1.0) * 0.5));
    if (h_index < 0)
      h_index = 0;
    if (h_index >= nr_bins_f3_)
      h_index = nr_bins_f3_ - 1;
    hist_f3_ (h_index) += hist_incr;

    if (normalize_distances_) 
      h_index = floor (nr_bins_f4_ * (pfh_tuple[3] / distance_normalization_factor));
    else
      h_index = pcl_round (pfh_tuple[3] * 100);

    if (h_index < 0)
      h_index = 0;
    if (h_index >= nr_bins_f4_)
      h_index = nr_bins_f4_ - 1;

    hist_f4_ (h_index) += hist_incr_size_component;
  }
}