Esempio n. 1
0
Datum htg_distance(PG_FUNCTION_ARGS){
	Histogram * htg1 = (Histogram*) PG_GETARG_POINTER(0);
	Histogram * htg2 = (Histogram*) PG_GETARG_POINTER(1);

	Dis result = histogramDistance(htg1,htg2);

	PG_RETURN_FLOAT8(result);
}
Esempio n. 2
0
void HullToObjectModule::completeBlobs(std::deque<SpRMMMobileObject> &objects,
                                               QImage *fg, QImage *current) {

    if(objects.size() == 0)
        return;
    int nbins = 256/m_bins;
    int i, j, w = fg->width(), h = fg->height(), k=0;
    int i0, j0, w0, h0;
    double maxVal;

    QImage curr888 = current->convertToFormat(QImage::Format_RGB888);
    cv::Mat c(h, w, CV_8UC3), c_yuv(h, w, CV_8UC3),
            f(h, w, CV_8UC1), f0(h, w, CV_8UC1), r(h, w, CV_8UC3);

    int bl = fg->bytesPerLine(), bl2 = curr888.bytesPerLine();
    std::deque<SpRMMMobileObject>::iterator it, it_end = objects.end();
    uchar d1, d2, d3,
          *fg_p = fg->bits(),
          *c_p = curr888.bits();

    memcpy(c.data, c_p, h*bl2);
    memcpy(f.data, fg_p, h*bl);
    memset(c_yuv.data, 0, h*bl2);
    memset(r.data, 0, h*bl2);

    f.copyTo(f0);

    cv::Rect roi;
    //Histogram parameters
    int channels[] = {1, 2};
    int histSize[] = {nbins, nbins};
    float pranges[] = { 0, 256 };
    const float* ranges[] = { pranges, pranges };

    //Rectangular structuring element
    cv::Mat element = cv::getStructuringElement( cv::MORPH_RECT,
                                           cv::Size( 3, 3 ),
                                           cv::Point( 1, 1 ) );

    //Set local window pixel histogram for comparison
    cv::Rect wroi;
    wroi.width = wroi.height = w_size/2;

    //Start blobs processing for hulls calculation
    for(it=objects.begin(); it!=it_end; it++) {
        k++;

        SpRMMMobileObject obj = (*it);
        SpHullModel newHull(new HullModel());
        Blob &b = obj->multiModel.binterface;
        i0 = b.bbox.ytop, j0 = b.bbox.xleft,
        h0 = b.bbox.height, w0 = b.bbox.width;
        if(j0 >= f.cols || i0 >= f.rows || h0 <= 0 || w0 <= 0) {
            m_data->hulls.push_back(newHull);
            continue;
        }        

        if(j0 < 0) {
            w0 += j0;
            j0 = 0;
            if(w0 <= 0) w0 = 1;
        }

        if(i0 < 0) {
            h0 += i0;
            i0 = 0;
            if(h0 <= 0) h0 = 1;
        }

        if(j0 + w0 > f.cols)
            w0 = f.cols - j0;

        if(i0 + h0 > f.rows)
            h0 = f.rows - i0;

        //Con la misma Mat f .....

        //Apertura en blob
        roi.x = j0;
        roi.y = i0;
        roi.width = w0;
        roi.height = h0;


/*        if(m_data->frameNumber == 962) {
            std::cout << "Error frame " << m_data->frameNumber << std::endl;
            std::cout << "Mobile id " << obj->mobile_id << std::endl;
            std::cout << "\troi.x: " << roi.x;
            std::cout << "\troi.y: " << roi.y;
            std::cout << ";\troi.width: " << roi.width;
            std::cout << ";\troi.height: " << roi.height;
            std::cout << ";\tf.cols: " << f.cols << std::endl;
        } */


        //Restrict operations to blob zone

        if(!(0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= f.cols)) {
            std::cout << "Error frame " << m_data->frameNumber << std::endl;
            std::cout << "\troi.x: " << roi.x;
            std::cout << ";\troi.width: " << roi.width;
            std::cout << ";\tf.cols: " << f.cols << std::endl;
        }

        if(!(0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= f.rows)) {
            std::cout << "Error frame " << m_data->frameNumber << std::endl;
            std::cout << "\troi.x: " << roi.y;
            std::cout << ";\troi.width: " << roi.height;
            std::cout << ";\tf.cols: " << f.rows << std::endl;
        }

        cv::Mat aux(f, roi);
        cv::Mat aux0(f0, roi);

        //Reduce bad detections, in general near borders
        cv::erode(aux, aux, element, cv::Point(-1,-1), 1);

        //Reduce bad detections, in general near borders and recover shape
        cv::erode(aux0, aux0, element, cv::Point(-1,-1), 1);
        cv::dilate(aux0, aux0, element, cv::Point(-1,-1), 1);

        //Border detection
        cv::Mat border_aux(aux.size(), CV_8UC1);
        cv::Canny(aux,border_aux, 50,100, 3);

#ifdef RSEG_DEBUG
//        cv::namedWindow( "Canny", 1 );
//        cv::imshow( "Canny", border_aux );
#endif

        //Find confining convex hull (Note: used border_copy as findContours modifies the image)
        std::vector<std::vector<cv::Point> > contours;
        std::vector<cv::Vec4i> hierarchy;
        cv::Mat border_copy(border_aux.size(), CV_8UC1);
        border_aux.copyTo(border_copy);

#ifdef __OPENCV3__
        cv::findContours(border_copy, contours, hierarchy, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE, cv::Point(0, 0) );
#else
        cv::findContours(border_copy, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cv::Point(0, 0) );
#endif


#ifdef RSEG_DEBUG
/*        cv::Scalar color = cv::Scalar( 255, 255, 255);
        cv::Mat drawing = cv::Mat::zeros( border_aux.size(), CV_8UC3);
        for(i = 0; i< contours.size(); i++ )
            cv::drawContours( drawing, contours, i, color, 1, 8, hierarchy, 0, cv::Point() );
        cv::namedWindow( "Contours", CV_WINDOW_AUTOSIZE );
        cv::imshow( "Contours", drawing );*/
#endif

        //One contour to confine all detected contours
        std::vector<cv::Point> big_contour;
        std::vector<cv::Point> hull;
        if(contours.size() > 0) {
            //Group found contours in one big contour
            for(i=0;i<contours.size(); i++) {
                if(hierarchy[i][2] < 0) { // No parent, so it's parent
                    if(big_contour.empty())
                        big_contour = contours[i];
                    else
                        big_contour.insert( big_contour.end(), contours[i].begin(), contours[i].end());
                }
            }
            //Get initial convex hull
            cv::convexHull( big_contour, hull, false );

#ifdef RSEG_DEBUG
            //Print contour and hull
            /*std::cout << "Hull" << std::endl;
            for(i=0; i<hull.size(); i++)
                std::cout << hull[i].x << "," << hull[i].y << std::endl;
            cv::Mat drawing2 = cv::Mat::zeros( border_aux.size(), CV_8UC3);
            cv::Scalar color = cv::Scalar( 255, 0, 255 );
            std::vector<std::vector<cv::Point> > drawc, drawh;
            drawc.push_back(big_contour);
            drawh.push_back(hull);
            color = cv::Scalar( 0, 0, 255 );
            cv::drawContours( drawing2, drawh, 0, color, 1, 8, std::vector<cv::Vec4i>(), 0, cv::Point() );
            color = cv::Scalar( 255, 0, 255 );
            cv::drawContours( drawing2, drawc, 0, color, 1, 8, std::vector<cv::Vec4i>(), 0, cv::Point() );
            cv::namedWindow( "Contour and Hull", CV_WINDOW_AUTOSIZE );
            cv::imshow( "Contour and Hull", drawing2 );*/
#endif
        } else {
            m_data->hulls.push_back(newHull);
            continue;
        }
        if(hull.size() == 0) {
            m_data->hulls.push_back(newHull);
            continue;
        }

        //Confine current image to blob, and get inverted foreground mask
        cv::Mat caux(c, roi), aux2 = 255 - aux;

        //COLOR HISTOGRAM
        //Get YCrCb image
        cv::Mat c_yuvaux(c_yuv, roi);
#ifdef __OPENCV3__
        cv::cvtColor(caux, c_yuvaux, cv::COLOR_BGR2YCrCb);
#else
        cv::cvtColor(caux, c_yuvaux, CV_BGR2YCrCb);
#endif

        //Calculate foreground and background chroma histograms
        cv::MatND hist, hist2;
        //Foreground
        cv::calcHist( &c_yuvaux, 1, channels, aux, // do not use mask
                  hist, 2, histSize, ranges,
                 true, // the histogram is uniform
                 false );
        maxVal=0;
        cv::minMaxLoc(hist, 0, &maxVal, 0, 0);
        hist = hist/maxVal;
        //Background
        cv::calcHist( &c_yuvaux, 1, channels, aux2, // do not use mask
                    hist2, 2, histSize, ranges,
                   true, // the histogram is uniform
                   false );
        maxVal=0;
        cv::minMaxLoc(hist2, 0, &maxVal, 0, 0);
        hist2 = hist2/maxVal;

        //Check correlation between color histograms:
        cv::MatND pixhist;
        for(i = i0; i < i0 + h0; i++ ) {
            for(j = j0; j < j0 + w0; j++ ) {
                //Just for points inside the convex hull and a little offset
                if(cv::pointPolygonTest(hull, cv::Point2f(j-j0,i-i0), true) > - m_hullOffset) {
                    if(f.data[i*bl+j]) { //Movement point
                       //Set augmented segmentation image
                       r.data[i*bl2+3*j] = r.data[i*bl2+3*j+1] = r.data[i*bl2+3*j+2] = 255; //White
                    } else { //Non-movement
                        //Check neighborhood for movement.
                       if(    j + w_size/2 >= w || i + w_size/2 >= h
                           || j - w_size/2 < 0  || i - w_size/2 < 0 )
                            continue;
                        wroi.x = j - w_size/2;
                        wroi.y = i - w_size/2;
                        if(movementFound(f, w_size, i, j, roi)) {
                            //Generate local histogram for comparison
                            cv::Mat c_yuvpix(c_yuv, wroi);
                            cv::calcHist( &c_yuvpix, 1, channels, cv::Mat(), // do not use mask
                                        pixhist, 2, histSize, ranges,
                                        true, // the histogram is uniform
                                        false );
                            maxVal = 0;
                            cv::minMaxLoc(pixhist, 0, &maxVal, 0, 0);
                            pixhist = pixhist/maxVal;

                            //Decide if background or foreground, comparing histograms
                            if(histogramDistance(hist,pixhist) < histogramDistance(hist2,pixhist)) {
                                r.data[i*bl2+3*j] = 255; //Red
                            }
                        }
                    }
                }
            }
        }
        //Integrate results with original mask
        for(i = i0; i < i0 + h0; i++ )
            for(j = j0; j < j0 + w0; j++ )
                if(f0.data[i*bl+j] != 0 || r.data[i*bl2+3*j] != 0 || r.data[i*bl2+3*j+1] != 0 || r.data[i*bl2+3*j+2] != 0) {
                    f.data[i*bl+j] = 255;
                    if(f0.data[i*bl+j] != 0)
                        r.data[i*bl2+3*j] = r.data[i*bl2+3*j+1] = r.data[i*bl2+3*j+2] = 255;
                }
        //Opening and Closing
        cv::erode(aux, aux, element);
        cv::dilate(aux, aux, element,cv::Point(-1,-1),2);
        cv::erode(aux, aux, element);

        //Recalculate Convex Hull
        cv::Canny(aux,border_aux, 50,100, 3);
        contours.clear();
        hierarchy.clear();
        big_contour.clear();
        hull.clear();
#ifdef __OPENCV3__
        cv::findContours(border_aux, contours, hierarchy, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE, cv::Point(0, 0) );
#else
        cv::findContours(border_aux, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cv::Point(0, 0) );
#endif

        for(i=0;i<contours.size(); i++) {
            if(hierarchy[i][2] < 0) { // No parent, so it's parent
                if(big_contour.empty())
                    big_contour = contours[i];
                else
                    big_contour.insert( big_contour.end(), contours[i].begin(), contours[i].end());
            }
        }
        cv::convexHull( big_contour, hull, false );

        newHull->local_hull = hull;
        newHull->off_x = j0;
        newHull->off_y = i0;
        newHull->id = (*it)->mobile_id;

        //Get principal/minor axis
        std::vector<cv::Point2f> data_aux(h0*w0);
        float mean_x = 0, mean_y = 0;
        int count = 0;

        for(i=0; i<h0; i++)
            for(j=0; j<w0; j++)
                if(cv::pointPolygonTest(hull, cv::Point2f(j, i), true) > - m_hullOffset) {
                    data_aux[count++] = cv::Point2f(j, i);
                    mean_x += j;
                    mean_y += i;
                }
        //data_aux.resize(count);
        //cv::Mat data(2, count, CV_32FC1, &data_aux.front());
        cv::Mat data(2, count, CV_32FC1);
        cv::Point2f x;
        for(i=0; i<count; i++) {
            data.at<float>(0,i) = data_aux[i].x;
            data.at<float>(1,i) = data_aux[i].y;
        }

        //cv::Mat data();
        mean_x /= count;
        mean_y /= count;
        cv::Mat mean(2, 1, CV_32FC1);
        mean.at<float>(0) = mean_x;
        mean.at<float>(1) = mean_y;

        //2. perform PCA
#ifdef __OPENCV3__
        cv::PCA pca(data, mean, cv::PCA::DATA_AS_COL, maxComponents);
#else
        cv::PCA pca(data, mean, CV_PCA_DATA_AS_COL, maxComponents);
#endif
        //result is contained in pca.eigenvectors (as row vectors)
        //std::cout << pca.eigenvectors << std::endl;

        //3. get angle of principal axis
        float dx = pca.eigenvectors.at<float>(0, 0),
              dy = pca.eigenvectors.at<float>(0, 1),
              scale = 40.0;
        cv::Point3f rline;
        cv::Point2f r1, r2;

        //Get line general form from principal component
        getGeneralLineForm(cv::Point2f(mean_x, mean_y),
                           cv::Point2f(mean_x + dx*scale, mean_y + dy*scale),
                           rline);
        //Get segment from line
        int n1, n2;
        getContourToLineIntersection(hull, rline, r1, r2, &n1, &n2);

        //Get pixel intersections for normals
        std::vector< segment2D<float> > &segs = newHull->segs;
        std::vector< segment2D<float> > &hull_segs = newHull->hull_segs;

        //Get segments of movement normal to principal axis. Also reorders r1 and r2 in
        //coherence with segments order
        getNormalIntersections(aux, roi, hull, r1, r2, n1, n2, dx, dy, segs, hull_segs);

        newHull->axis1 = r1;
        newHull->axis2 = r2;


        //Set new representation
        m_data->hulls.push_back(newHull);

        //Get the pixel distance function
        std::vector<float> dfunction;
        //dfunction.resize((int)D_axis + 1); //

                //First and last are zero for sure (axis intersects contour).
        //dfunction[0] = 0.0;
        //dfunction[(int)D_axis] = 0.0;
        //for

#ifdef RSEG_DEBUG
        /*std::cout << "Final Hull" << std::endl;
        for(i=0; i<hull.size(); i++)
            std::cout << i << " : " << hull[i].x << " ; " << hull[i].y << std::endl;
*/
/*        std::cout << "Distances" << std::endl;
        for(i=0; i<segs.size(); i++) {
            double dx = segs[i].first.x - segs[i].last.x;
            double dy = segs[i].first.y - segs[i].last.y;
            std::cout << i << " : " << sqrt(dx*dx+dy*dy) << std::endl;
        }
        color = cv::Scalar( 0, 255, 255 );
        std::vector<std::vector<cv::Point> > drawc;
        drawc.push_back(hull);
        cv::Mat raux(r, roi);
        cv::drawContours( raux, drawc, 0, color, 1, 8, std::vector<cv::Vec4i>(), 0, cv::Point() );
        color = cv::Scalar( 0, 255, 0 );
        cv::line(raux, r1, r2, color);
        cv::line(raux, cv::Point(mean_x - dx*scale, mean_y - dy*scale),
                       cv::Point(mean_x + dx*scale, mean_y + dy*scale), color);
        cv::namedWindow( "Final", CV_WINDOW_AUTOSIZE );
        cv::imshow( "Final", raux );*/
#endif
    }
    //Set datapool images
    memcpy(fg_p, f.data, h*bl);
    memcpy(m_data->rFgImage->bits(), r.data, h*bl2);

}