int drotek_marg2_init(drotek_marg2_t *marg2, i2c_bus_t *bus) { THROW_BEGIN(); THROW_ON_ERR(mpu6050_init(&marg2->mpu, bus, MPU6050_DLPF_CFG_94_98Hz, MPU6050_FS_SEL_500, MPU6050_AFS_SEL_4G)); THROW_ON_ERR(hmc5883_init(&marg2->hmc, bus)); THROW_END(); }
int main() { uint16_t a; int rv; uint8_t x; uart_init(); i2c_init(); /*for compass*/ uint8_t buf; double angle=0; uint16_t angle1=0; hmc5883_init(); Prints("hmc5883_init ok!\n\r"); while(1) { buf = 0x00; write_bytes(0x02,1,&buf); angle=CompassAngle(0,0,0); angle1=angle; Prints("Azimuth="); PrintInt(angle1/10); uart_putchar('.'); PrintUchar(angle1%10); _delay_ms(300); } return 0; }
int drotek_marg_init(drotek_marg_t *marg, i2c_bus_t *bus) { THROW_BEGIN(); THROW_ON_ERR(itg3200_init(&marg->itg, bus, ITG3200_DLPF_98HZ)); THROW_ON_ERR(bma180_init(&marg->bma, bus, BMA180_RANGE_4G, BMA180_BW_40HZ)); THROW_ON_ERR(hmc5883_init(&marg->hmc, bus)); THROW_END(); }
void main_thread() { printf_(OS_WELCOME_MESSAGE); u32 res = hmc5883_init(); while (1) { led_on(LED_1); hmc5883_read(); //printf_("%u : %i %i %i\n", res, g_hmc5883.mx, g_hmc5883.my, g_hmc5883.mz); printf_("%u : %i \n", res, g_hmc5883.mz); led_off(LED_1); timer_delay_ms(100); } robot_main(); }
int main(void) { i2c_bus_t bus; int ret = i2c_bus_open(&bus, "/dev/i2c-3"); if (ret < 0) { fatal("could not open i2c bus", ret); return EXIT_FAILURE; } /* ITG: */ itg3200_dev_t itg; itg_again: ret = itg3200_init(&itg, &bus, ITG3200_DLPF_42HZ); if (ret < 0) { fatal("could not inizialize ITG3200", ret); if (ret == -EAGAIN) { goto itg_again; } return EXIT_FAILURE; } /* BMA: */ bma180_dev_t bma; bma180_init(&bma, &bus, BMA180_RANGE_4G, BMA180_BW_10HZ); /* HMC: */ hmc5883_dev_t hmc; hmc5883_init(&hmc, &bus); /* MS: */ ms5611_dev_t ms; ret = ms5611_init(&ms, &bus, MS5611_OSR4096, MS5611_OSR4096); if (ret < 0) { fatal("could not inizialize MS5611", ret); return EXIT_FAILURE; } pthread_t thread; pthread_create(&thread, NULL, ms5611_reader, &ms); /* initialize AHRS filter: */ madgwick_ahrs_t madgwick_ahrs; madgwick_ahrs_init(&madgwick_ahrs, STANDARD_BETA); interval_t interval; interval_init(&interval); float init = START_BETA; udp_socket_t *socket = udp_socket_create("10.0.0.100", 5005, 0, 0); /* kalman filter: */ kalman_t kalman1, kalman2, kalman3; kalman_init(&kalman1, 1.0e-6, 1.0e-2, 0, 0); kalman_init(&kalman2, 1.0e-6, 1.0e-2, 0, 0); kalman_init(&kalman3, 1.0e-6, 1.0e-2, 0, 0); vec3_t global_acc; /* x = N, y = E, z = D */ int init_done = 0; int converged = 0; sliding_avg_t *avg[3]; avg[0] = sliding_avg_create(1000, 0.0); avg[1] = sliding_avg_create(1000, 0.0); avg[2] = sliding_avg_create(1000, -9.81); float alt_rel_last = 0.0; int udp_cnt = 0; while (1) { int i; float dt = interval_measure(&interval); init -= BETA_STEP; if (init < FINAL_BETA) { init = FINAL_BETA; init_done = 1; } madgwick_ahrs.beta = init; /* sensor data acquisition: */ itg3200_read_gyro(&itg); bma180_read_acc(&bma); hmc5883_read(&hmc); /* state estimates and output: */ euler_t euler; madgwick_ahrs_update(&madgwick_ahrs, itg.gyro.x, itg.gyro.y, itg.gyro.z, bma.raw.x, bma.raw.y, bma.raw.z, hmc.raw.x, hmc.raw.y, hmc.raw.z, 11.0, dt); quat_t q_body_to_world; quat_copy(&q_body_to_world, &madgwick_ahrs.quat); quat_rot_vec(&global_acc, &bma.raw, &q_body_to_world); for (i = 0; i < 3; i++) { global_acc.vec[i] -= sliding_avg_calc(avg[i], global_acc.vec[i]); } if (init_done) { kalman_in_t kalman_in; kalman_in.dt = dt; kalman_in.pos = 0; kalman_out_t kalman_out; kalman_in.acc = global_acc.x; kalman_run(&kalman_out, &kalman1, &kalman_in); kalman_in.acc = global_acc.y; kalman_run(&kalman_out, &kalman2, &kalman_in); kalman_in.acc = -global_acc.z; pthread_mutex_lock(&mutex); kalman_in.pos = alt_rel; pthread_mutex_unlock(&mutex); kalman_run(&kalman_out, &kalman3, &kalman_in); if (!converged) { if (fabs(kalman_out.pos - alt_rel) < 0.1) { converged = 1; fprintf(stderr, "init done\n"); } } if (converged) // && udp_cnt++ > 10) { if (udp_cnt++ == 10) { char buffer[1024]; udp_cnt = 0; int len = sprintf(buffer, "%f %f %f %f %f %f %f", madgwick_ahrs.quat.q0, madgwick_ahrs.quat.q1, madgwick_ahrs.quat.q2, madgwick_ahrs.quat.q3, global_acc.x, global_acc.y, global_acc.z); udp_socket_send(socket, buffer, len); } printf("%f %f %f\n", -global_acc.z, alt_rel, kalman_out.pos); fflush(stdout); } } } return 0; }
/* * Application entry point. */ int main(void) { enum led_status lstat = LST_INIT; EventListener el0; alert_status_t proto_st = ALST_INIT; alert_status_t bmp085_st = ALST_INIT; alert_status_t mpu6050_st = ALST_INIT; alert_status_t hmc5883_st = ALST_INIT; /* * System initializations. * - HAL initialization, this also initializes the configured device drivers * and performs the board-specific initializations. * - Kernel initialization, the main() function becomes a thread and the * RTOS is active. */ halInit(); chSysInit(); #ifdef BOARD_IMU_AHRF /* Clear DRDY pad */ palClearPad(GPIOA, GPIOA_DRDY); /* Activates serial */ sdStart(&SD1, NULL); sdStart(&SD2, NULL); /* Activate pwm */ pwmStart(&PWMD1, &pwm1cfg); /* Activate i2c */ i2cStart(&I2CD1, &i2c1cfg); /* Activate exti */ extStart(&EXTD1, &extcfg); #endif /* BOARD_IMU_AHRF */ #ifdef BOARD_CAPTAIN_PRO2 /* Activates serial */ sdStart(&SD3, NULL); sdStart(&SD4, NULL); /* Activate pwm */ pwmStart(&PWMD3, &pwm3cfg); pwmStart(&PWMD4, &pwm4cfg); pwmStart(&PWMD5, &pwm5cfg); /* Activate i2c */ i2cStart(&I2CD1, &i2c1cfg); /* Activate exti */ extStart(&EXTD1, &extcfg); /* Activate adc */ adcStart(&ADCD1, NULL); #endif /* BOARD_CAPTAIN_PRO2 */ /* alert subsys */ chEvtInit(&alert_event_source); chEvtRegister(&alert_event_source, &el0, 0); /* init devices */ pt_init(); chThdSleepMilliseconds(10); /* power on delay */ #ifdef HAS_DEV_BMP085 bmp085_init(); chThdSleepMilliseconds(50); /* init delay */ #endif #ifdef HAS_DEV_MS5611 ms5611_init(&ms5611cfg); chThdSleepMilliseconds(50); /* init delay */ #endif #ifdef HAS_DEV_MPU6050 mpu6050_init(&mpu6050cfg); chThdSleepMilliseconds(250); /* give some time for mpu6050 configuration */ #endif #ifdef HAS_DEV_HMC5883 hmc5883_init(&hmc5883cfg); #endif #ifdef HAS_DEV_SERVOPWM servopwm_init(&servopwmcfg); #endif #ifdef HAS_DEV_NTC10K ntc10k_init(); #endif #ifdef HAS_DEV_RPM rpm_init(); #endif #ifdef BOARD_IMU_AHRF /* Set DRDY pad */ palSetPad(GPIOA, GPIOA_DRDY); #endif while (TRUE) { eventmask_t msk = chEvtWaitOneTimeout(ALL_EVENTS, MS2ST(100)); if (msk & EVENT_MASK(0)) { flagsmask_t fl = chEvtGetAndClearFlags(&el0); if (fl & ALERT_FLAG_PROTO) proto_st = pt_get_status(); #ifdef HAS_DEV_MPU6050 if (fl & ALERT_FLAG_MPU6050) mpu6050_st = mpu6050_get_status(); #endif #ifdef HAS_DEV_HMC5883 if (fl & ALERT_FLAG_HMC5883) hmc5883_st = hmc5883_get_status(); #endif #ifdef HAS_DEV_BMP085 if (fl & ALERT_FLAG_BMP085) bmp085_st = bmp085_get_status(); #endif #ifdef HAS_DEV_MS5611 if (fl & ALERT_FLAG_BMP085) bmp085_st = ms5611_get_status(); #endif pt_set_sens_state(mpu6050_st, hmc5883_st, bmp085_st); } if (proto_st == ALST_FAIL || mpu6050_st == ALST_FAIL || hmc5883_st == ALST_FAIL || bmp085_st == ALST_FAIL) lstat = LST_FAIL; else if (proto_st == ALST_INIT || mpu6050_st == ALST_INIT || hmc5883_st == ALST_INIT || bmp085_st == ALST_INIT) lstat = LST_INIT; else if (proto_st == ALST_NORMAL && mpu6050_st == ALST_NORMAL && hmc5883_st == ALST_NORMAL && bmp085_st == ALST_NORMAL) lstat = LST_NORMAL; led_update(lstat); } }