static int _delete_handler(const hpx_addr_t * const lcos, size_t n) { hpx_lco_wait(lcos[2]); hpx_lco_delete(lcos[2], HPX_NULL); hpx_lco_delete(lcos[0], HPX_NULL); hpx_lco_set(lcos[1], 0, NULL, HPX_NULL, HPX_NULL); return HPX_SUCCESS; }
/// A utility that tests a certain leaf function through I iterations. static int _benchmark(char *name, hpx_action_t op, int iters, size_t size) { int ranks = HPX_LOCALITIES * HPX_THREADS; hpx_addr_t allreduce = hpx_lco_allreduce_new(ranks, ranks, size, _init, _min); hpx_addr_t done = hpx_lco_and_new(ranks); hpx_time_t start = hpx_time_now(); hpx_bcast(_fill_node, HPX_NULL, HPX_NULL, &op, &done, &allreduce, &iters, &size); hpx_lco_wait(done); double elapsed = hpx_time_elapsed_ms(start); hpx_lco_delete(allreduce, HPX_NULL); hpx_lco_delete(done, HPX_NULL); printf("%s: %.7f\n", name, elapsed/iters); return HPX_SUCCESS; }
/// A utility that tests a certain leaf function through I iterations. static int _test(hpx_action_t leaf) { int L = HPX_LOCALITIES; int n = N * L; hpx_addr_t allreduce = hpx_lco_allreduce_new(n, n, sizeof(int), _init, _sum); hpx_addr_t sum = hpx_lco_reduce_new(n, sizeof(int), _init, _sum); for (int i = 0; i < I; ++i) { int r; CHECK( hpx_bcast(_test_bcast, HPX_NULL, HPX_NULL, &allreduce, &sum, &leaf) ); CHECK( hpx_lco_get_reset(sum, sizeof(r), &r) ); test_assert(r == n * HPX_LOCALITIES * (N + 1) * N / 2); } hpx_lco_delete(sum, HPX_NULL); hpx_lco_delete(allreduce, HPX_NULL); return HPX_SUCCESS; }
static int _jacobi_main_handler(int n, int nsteps) { double h = 1.0/n; // allocate and initialize arrays hpx_addr_t u = hpx_gas_calloc_local_attr((n+1), BSIZE, 0, HPX_GAS_ATTR_LB); hpx_addr_t f = hpx_gas_alloc_local((n+1), BSIZE, 0); hpx_addr_t and = hpx_lco_and_new(n+1); for (int i = 0; i <= n; ++i) { double val = i*h; hpx_gas_memput_lsync(IDX(f,i), &val, sizeof(val), and); } hpx_lco_wait(and); hpx_lco_delete(and, HPX_NULL); printf("starting jacobi iterations...\n"); hpx_time_t start = hpx_time_now(); jacobi(n, nsteps, u, f); double elapsed = hpx_time_elapsed_ms(start)/1e3; // run the solver printf("n: %d\n", n); printf("nsteps: %d\n", nsteps); printf("seconds: %.7f\n", elapsed); // write the results if (fname) { write_solution(n, u, fname); } hpx_gas_free(f, HPX_NULL); hpx_gas_free(u, HPX_NULL); hpx_exit(HPX_SUCCESS); }
int _hpx_process_call(hpx_addr_t process, hpx_addr_t addr, hpx_action_t id, hpx_addr_t result, int n, ...) { va_list args; va_start(args, n); hpx_action_t set = hpx_lco_set_action; hpx_parcel_t *p = action_new_parcel_va(id, addr, result, set, n, &args); va_end(args); if (hpx_thread_current_pid() == hpx_process_getpid(process)) { hpx_parcel_send_sync(p); return HPX_SUCCESS; } hpx_addr_t sync = hpx_lco_future_new(0); hpx_parcel_t *q = hpx_parcel_acquire(NULL, parcel_size(p)); q->target = process; q->action = _proc_call; q->c_target = sync; q->c_action = hpx_lco_set_action; hpx_parcel_set_data(q, p, parcel_size(p)); q->pid = 0; q->credit = 0; EVENT_PROCESS_CALL(process, q->pid); hpx_parcel_send_sync(q); parcel_delete(p); hpx_lco_wait(sync); hpx_lco_delete(sync, HPX_NULL); return HPX_SUCCESS; }
// Do sweeps of Jacobi iteration on a 1D Poisson problem // discretized by n+1 equally spaced mesh points on [0,1]. // u is subject to Dirichlet boundary conditions specified in // the u[0] and u[n] entries of the initial vector. void jacobi(int nsteps, int n, hpx_addr_t u, hpx_addr_t f) { double h = 1.0/n; double h2 = h*h; hpx_addr_t utmp = hpx_gas_alloc_local((n+1), BSIZE, 0); // fill boundary conditions into utmp hpx_gas_memcpy_sync(IDX(utmp,0), IDX(u,0), sizeof(double)); hpx_gas_memcpy_sync(IDX(utmp,n), IDX(u,n), sizeof(double)); hpx_addr_t and = hpx_lco_and_new(n-1); for (int sweep = 0; sweep < nsteps; sweep += 2) { for (int i = 1; i < n; ++i) { hpx_xcall(IDX(utmp, i), _op, and, i, h2, u, f); } hpx_lco_wait_reset(and); for (int i = 1; i < n; ++i) { hpx_xcall(IDX(u, i), _op, and, i, h2, utmp, f); } hpx_lco_wait_reset(and); } hpx_lco_delete(and, HPX_NULL); hpx_gas_free(utmp, HPX_NULL); }
static int thread_cont_action_handler(void) { printf("Starting the Thread continue target and action test\n"); // Start the timer hpx_time_t t1 = hpx_time_now(); hpx_addr_t *cont_and = calloc(hpx_get_num_ranks(), sizeof(hpx_addr_t)); for (int i = 0; i < hpx_get_num_ranks(); i++) { cont_and[i] = hpx_lco_and_new(2); hpx_parcel_t *p = hpx_parcel_acquire(NULL, DATA_SIZE); hpx_parcel_set_target(p, HPX_THERE(i)); hpx_parcel_set_action(p, _thread_current_cont_target); hpx_parcel_set_cont_target(p, cont_and[i]); hpx_parcel_set_cont_action(p, hpx_lco_set_action); hpx_parcel_send_sync(p); printf("Started index %d.\n", i); } for (int i = 0; i < hpx_get_num_ranks(); i++) { hpx_lco_wait(cont_and[i]); printf("Received continuation from %d\n",i); hpx_lco_delete(cont_and[i], HPX_NULL); } free(cont_and); printf(" Elapsed: %g\n", hpx_time_elapsed_ms(t1)); return HPX_SUCCESS; }
static int lco_error_handler(void) { printf("Starting the HPX LCO get all test\n"); hpx_time_t t1 = hpx_time_now(); hpx_addr_t lco = hpx_lco_future_new(0); hpx_addr_t done = hpx_lco_future_new(0); hpx_call(HPX_HERE, _errorset, done, &lco, sizeof(lco)); hpx_status_t status = hpx_lco_wait(lco); printf("status == %d\n", status); assert(status == HPX_ERROR); hpx_lco_wait(done); hpx_lco_delete(lco, HPX_NULL); hpx_lco_delete(done, HPX_NULL); printf(" Elapsed: %.7f\n", hpx_time_elapsed_ms(t1)/1e3); return HPX_SUCCESS; }
static int _test_recursion_top_handler(void) { static int DEPTH = 500; hpx_addr_t and = hpx_lco_and_new(DEPTH); int e = hpx_xcall(HPX_HERE, _test_recursion, and, DEPTH, and); if (HPX_SUCCESS == e) { e = hpx_lco_wait(and); } hpx_lco_delete(and, HPX_NULL); return e; }
/// Use the join_async operation in the allreduce leaf. static int _join_async_leaf_handler(hpx_addr_t allreduce, int i, int j, hpx_addr_t sum) { int r; hpx_addr_t f = hpx_lco_future_new(0); CHECK( hpx_lco_allreduce_join_async(allreduce, i, sizeof(j), &j, &r, f) ); CHECK( hpx_lco_wait(f) ); hpx_lco_delete(f, HPX_NULL); test_assert(r == HPX_LOCALITIES * N * (N + 1) / 2); return hpx_call_cc(sum, hpx_lco_set_action, &r, sizeof(r)); }
// Testcase to test hpx_lco_get_all function static int _getAll_handler(uint32_t *args, size_t size) { uint32_t n = *args; if (n < 2) { return HPX_THREAD_CONTINUE(n); } hpx_addr_t peers[] = { HPX_HERE, HPX_HERE }; uint32_t ns[] = { n - 1, n - 2 }; hpx_addr_t futures[] = { hpx_lco_future_new(sizeof(uint32_t)), hpx_lco_future_new(sizeof(uint32_t)) }; uint32_t ssn[] = { 0, 0 }; void *addrs[] = { &ssn[0], &ssn[1] }; size_t sizes[] = { sizeof(uint32_t), sizeof(uint32_t) }; hpx_call(peers[0], _getAll, futures[0], &ns[0], sizeof(uint32_t)); hpx_call(peers[1], _getAll, futures[1], &ns[1], sizeof(uint32_t)); hpx_lco_get_all(2, futures, sizes, addrs, NULL); hpx_lco_wait(futures[0]); hpx_lco_wait(futures[1]); hpx_addr_t wait = hpx_lco_future_new(0); hpx_lco_delete_all(2, futures, wait); hpx_lco_wait(wait); hpx_lco_delete(wait, HPX_NULL); uint32_t sn = ssn[0] * ssn[0] + ssn[1] * ssn[1]; return HPX_THREAD_CONTINUE(sn); }
static int lco_wait_handler(void) { printf("Starting the LCO wait test.\n"); // allocate and start a timer const hpx_time_t t1 = hpx_time_now(); const hpx_addr_t termination_lco = hpx_lco_and_new(2 * LCOS_PER_LOCALITY * HPX_LOCALITIES); hpx_bcast(_spawn, HPX_NULL, HPX_NULL, &termination_lco); hpx_lco_wait(termination_lco); hpx_lco_delete(termination_lco, HPX_NULL); printf(" Elapsed: %g\n", hpx_time_elapsed_ms(t1)); return HPX_SUCCESS; }
static int _test_try_task_handler(void) { barrier = sr_barrier_new(HPX_THREADS); assert(barrier); hpx_addr_t and = hpx_lco_and_new(HPX_THREADS + 1); assert(and); for (int i = 0; i < HPX_THREADS; ++i) { int e = hpx_call(HPX_HERE, _test_action, and); assert(e == HPX_SUCCESS); } hpx_lco_wait(and); hpx_lco_delete(and, HPX_NULL); sync_barrier_delete(barrier); return HPX_SUCCESS; }
static int _main_action(int *args, size_t size) { int n = *args; printf("seqspawn(%d)\n", n); fflush(stdout); hpx_addr_t and = hpx_lco_and_new(n); hpx_time_t now = hpx_time_now(); for (int i = 0; i < n; i++) hpx_call(HPX_HERE, _nop, and, 0, 0); hpx_lco_wait(and); double elapsed = hpx_time_elapsed_ms(now)/1e3; hpx_lco_delete(and, HPX_NULL); printf("seconds: %.7f\n", elapsed); printf("localities: %d\n", HPX_LOCALITIES); printf("threads: %d\n", HPX_THREADS); hpx_exit(HPX_SUCCESS); }
/// Use a synchronous join for the allreduce operation. static int _allreduce_join_handler(hpx_addr_t allreduce, int iters, size_t size) { unsigned char sbuf[size]; unsigned char rbuf[size]; for (int i = 0, e = size; i < e; ++i) { sbuf[i] = rand(); } int id = (HPX_LOCALITY_ID * HPX_THREADS) + HPX_THREAD_ID; hpx_addr_t f = hpx_lco_future_new(0); for (int i = 0; i < iters; ++i) { hpx_lco_allreduce_join_async(allreduce, id, size, sbuf, rbuf, f); hpx_lco_wait_reset(f); } hpx_lco_delete(f, HPX_NULL); return HPX_SUCCESS; }
int parallel_nqueens(int n, int col, int *hist) { hpx_addr_t theThread = HPX_HERE; struct thread_data td; //td.lyst = hist; td.n = n; td.col = col; memcpy(td.lyst, hist, MAX_SIZE*sizeof(int)); //printf("thread_data size:%d\n", sizeof(struct thread_data)); mutex = hpx_lco_sema_new(1); //solve(td.n, td.col, td.lyst); hpx_addr_t done = hpx_lco_future_new(sizeof(uint64_t)); hpx_call(theThread, _nqueens, done, &td, sizeof(td)); hpx_lco_wait(done); hpx_lco_delete(done, HPX_NULL); return HPX_SUCCESS; }
// Test code -- ThreadCreate static int thread_create_handler(int *args, size_t size) { printf("Starting the Threads test\n"); // Start the timer hpx_time_t t1 = hpx_time_now(); hpx_addr_t addr = hpx_gas_alloc_cyclic(NUM_THREADS, sizeof(initBuffer_t), 0); // HPX Threads are spawned as a result of hpx_parcel_send() / hpx_parcel_ // sync(). for (int t = 0; t < NUM_THREADS; t++) { hpx_addr_t done = hpx_lco_and_new(1); hpx_parcel_t *p = hpx_parcel_acquire(NULL, sizeof(initBuffer_t)); // Fill the buffer initBuffer_t *init = hpx_parcel_get_data(p); init->index = t; strcpy(init->message, "Thread creation test"); // Set the target address and action for the parcel hpx_parcel_set_target(p, hpx_addr_add(addr, sizeof(initBuffer_t) * t, sizeof(initBuffer_t))); hpx_parcel_set_action(p, _initData); // Set the continuation target and action for parcel hpx_parcel_set_cont_target(p, done); hpx_parcel_set_cont_action(p, hpx_lco_set_action); // and send the parcel, this spawns the HPX thread hpx_parcel_send(p, HPX_NULL); hpx_lco_wait(done); hpx_lco_delete(done, HPX_NULL); } hpx_gas_free(addr, HPX_NULL); printf(" Elapsed: %g\n", hpx_time_elapsed_ms(t1)); hpx_exit(HPX_SUCCESS); }
static int parcel_get_continuation_handler(void) { printf("Testing parcel contination target and action\n"); hpx_time_t t1 = hpx_time_now(); hpx_addr_t addr = hpx_gas_alloc_cyclic(1, sizeof(uint64_t), sizeof(uint64_t)); hpx_addr_t done = hpx_lco_and_new(1); hpx_parcel_t *p = hpx_parcel_acquire(NULL, sizeof(uint64_t)); // Get access to the data, and fill it with the necessary data. uint64_t *result = hpx_parcel_get_data(p); *result = 1234; // Set the target address and action for the parcel hpx_parcel_set_target(p, addr); hpx_parcel_set_action(p, _get_cont_value); // Set the continuation target and action for the parcel hpx_parcel_set_cont_target(p, done); hpx_parcel_set_cont_action(p, hpx_lco_set_action); hpx_action_t get_act = hpx_parcel_get_cont_action(p); assert_msg(get_act == hpx_lco_set_action, "Error in getting cont action"); assert(hpx_parcel_get_cont_target(p) == done); // Send the parcel hpx_parcel_send(p, HPX_NULL); hpx_lco_wait(done); hpx_lco_delete(done, HPX_NULL); hpx_gas_free(addr, HPX_NULL); printf("Elapsed: %g\n", hpx_time_elapsed_ms(t1)); return HPX_SUCCESS; }
static int _nqueens_action(void *args, size_t size) { int i, j; struct thread_data *my_data; my_data = (struct thread_data *) args; /* printf("n = %d, col = %d, count = %d\n", my_data->n , my_data->col , count); */ if (my_data->col == my_data->n) { hpx_lco_sema_p(mutex); ++count; /* printf("\nNo. %d\n-----\n", count); for (i = 0; i < my_data->n; i++, putchar('\n')) for(j = 0; j < my_data->n; j++) putchar(j == my_data->lyst[i] ? 'Q' : ((i + j) & 1) ? ' ' : '.'); */ hpx_lco_sema_v_sync(mutex); hpx_thread_exit(HPX_SUCCESS); //hpx_thread_continue(NULL, 0); //return HPX_SUCCESS; } #define p_attack(i, j) (my_data->lyst[j] == i || abs(my_data->lyst[j] - i) == my_data->col - j) int dummy=0; int num_spawns=0; for(i = 0, j = 0; i < my_data->n; i++) { for (j = 0; j < my_data->col && !p_attack(i, j); j++); if (j < my_data->col) { dummy++; } } //printf("dummy/spawns: %d/%d\n", dummy, my_data->n); num_spawns = my_data->n - dummy; bool D_CALL = false; //printf("num_spawns = %d\n", num_spawns); if( num_spawns == 0 ) { num_spawns = 1; D_CALL = true; } //num_spawns = my_data->n; struct thread_data temp[num_spawns]; hpx_addr_t futures[num_spawns]; hpx_addr_t threads[num_spawns]; int pqs[num_spawns]; size_t p_size[num_spawns]; void *addrs[num_spawns]; for(i = 0; i < num_spawns; i++) { futures[i] = hpx_lco_future_new(sizeof(int)); threads[i] = HPX_HERE; pqs[i] = 0; addrs[i] = &pqs[i]; p_size[i] = sizeof(size_t); } int k=0; // counter for hpx data for(i = 0, j = 0; i < my_data->n; i++) { for (j = 0; j < my_data->col && !p_attack(i, j); j++); if (j < my_data->col) { //printf("[%d] call continue.\n", i); continue; } //printf("[%d] call nqueens %d\n", i, k); my_data->lyst[my_data->col] = i; memcpy(temp[k].lyst, my_data->lyst, MAX_SIZE*sizeof(int)); temp[k].n = my_data->n; temp[k].col = my_data->col+1; //solve(n, col + 1, hist); hpx_call(threads[k], _nqueens, futures[k], (void *)&temp[k], sizeof(temp[k])); k++; } if( !D_CALL ) { hpx_lco_get_all(num_spawns, futures, p_size, addrs, NULL); for(i = 0; i < num_spawns; i++) hpx_lco_delete(futures[i], HPX_NULL); } return HPX_SUCCESS; }
static int _main_action(int *args, size_t size) { hpx_time_t t; int count; fprintf(stdout, HEADER); fprintf(stdout, "# Latency in (ms)\n"); t = hpx_time_now(); hpx_addr_t done = hpx_lco_future_new(0); fprintf(stdout, "Creation time: %g\n", hpx_time_elapsed_ms(t)); value = 1234; t = hpx_time_now(); hpx_call(HPX_HERE, _set_value, done, &value, sizeof(value)); fprintf(stdout, "Value set time: %g\n", hpx_time_elapsed_ms(t)); t = hpx_time_now(); hpx_lco_wait(done); fprintf(stdout, "Wait time: %g\n", hpx_time_elapsed_ms(t)); t = hpx_time_now(); hpx_lco_delete(done, HPX_NULL); fprintf(stdout, "Deletion time: %g\n", hpx_time_elapsed_ms(t)); fprintf(stdout, "%s\t%*s%*s%*s\n", "# NumReaders " , FIELD_WIDTH, "Get_Value ", FIELD_WIDTH, " LCO_Getall ", FIELD_WIDTH, "Delete"); for (int i = 0; i < sizeof(num_readers)/sizeof(num_readers[0]); i++) { fprintf(stdout, "%d\t\t", num_readers[i]); count = num_readers[i]; int values[count]; void *addrs[count]; size_t sizes[count]; hpx_addr_t futures[count]; for (int j = 0; j < count; j++) { addrs[j] = &values[j]; sizes[j] = sizeof(int); futures[j] = hpx_lco_future_new(sizeof(int)); } t = hpx_time_now(); for (int j = 0; j < count; j++) { t = hpx_time_now(); hpx_call(HPX_HERE, _get_value, futures[j], NULL, 0); hpx_lco_wait(futures[j]); } fprintf(stdout, "%*g", FIELD_WIDTH, hpx_time_elapsed_ms(t)); t = hpx_time_now(); hpx_lco_get_all(count, futures, sizes, addrs, NULL); fprintf(stdout, "%*g", FIELD_WIDTH, hpx_time_elapsed_ms(t)); t = hpx_time_now(); for (int j = 0; j < count; j++) hpx_lco_delete(futures[j], HPX_NULL); fprintf(stdout, "%*g\n", FIELD_WIDTH, hpx_time_elapsed_ms(t)); } hpx_exit(HPX_SUCCESS); }