Esempio n. 1
0
hypre_ParCSRMatrix *
hypre_ParCSRBlockMatrixCompress( hypre_ParCSRBlockMatrix *matrix )
{
   MPI_Comm comm = hypre_ParCSRBlockMatrixComm(matrix);
   hypre_CSRBlockMatrix *diag = hypre_ParCSRBlockMatrixDiag(matrix);
   hypre_CSRBlockMatrix *offd = hypre_ParCSRBlockMatrixOffd(matrix);
   HYPRE_Int global_num_rows = hypre_ParCSRBlockMatrixGlobalNumRows(matrix);
   HYPRE_Int global_num_cols = hypre_ParCSRBlockMatrixGlobalNumCols(matrix);
   HYPRE_Int *row_starts = hypre_ParCSRBlockMatrixRowStarts(matrix);
   HYPRE_Int *col_starts = hypre_ParCSRBlockMatrixColStarts(matrix);
   HYPRE_Int num_cols_offd = hypre_CSRBlockMatrixNumCols(offd);
   HYPRE_Int num_nonzeros_diag = hypre_CSRBlockMatrixNumNonzeros(diag);
   HYPRE_Int num_nonzeros_offd = hypre_CSRBlockMatrixNumNonzeros(offd);

   hypre_ParCSRMatrix *matrix_C;

   HYPRE_Int i;

   matrix_C = hypre_ParCSRMatrixCreate(comm, global_num_rows, global_num_cols,
                                       row_starts,col_starts,num_cols_offd,num_nonzeros_diag,num_nonzeros_offd);
   hypre_ParCSRMatrixInitialize(matrix_C);

   hypre_CSRMatrixDestroy(hypre_ParCSRMatrixDiag(matrix_C));
   hypre_ParCSRMatrixDiag(matrix_C) = hypre_CSRBlockMatrixCompress(diag);
   hypre_CSRMatrixDestroy(hypre_ParCSRMatrixOffd(matrix_C));
   hypre_ParCSRMatrixOffd(matrix_C) = hypre_CSRBlockMatrixCompress(offd);

   for(i = 0; i < num_cols_offd; i++)
      hypre_ParCSRMatrixColMapOffd(matrix_C)[i] = 
         hypre_ParCSRBlockMatrixColMapOffd(matrix)[i];
   return matrix_C;
}
Esempio n. 2
0
HYPRE_Int
hypre_BoomerAMGSolve( void               *amg_vdata,
                   hypre_ParCSRMatrix *A,
                   hypre_ParVector    *f,
                   hypre_ParVector    *u         )
{

   MPI_Comm 	      comm = hypre_ParCSRMatrixComm(A);   

   hypre_ParAMGData   *amg_data = amg_vdata;

   /* Data Structure variables */

   HYPRE_Int      amg_print_level;
   HYPRE_Int      amg_logging;
   HYPRE_Int      cycle_count;
   HYPRE_Int      num_levels;
   /* HYPRE_Int      num_unknowns; */
   HYPRE_Real   tol;

   HYPRE_Int block_mode;
   

   hypre_ParCSRMatrix **A_array;
   hypre_ParVector    **F_array;
   hypre_ParVector    **U_array;

   hypre_ParCSRBlockMatrix **A_block_array;


   /*  Local variables  */

   HYPRE_Int      j;
   HYPRE_Int      Solve_err_flag;
   HYPRE_Int      min_iter;
   HYPRE_Int      max_iter;
   HYPRE_Int      num_procs, my_id;
   HYPRE_Int      additive;
   HYPRE_Int      mult_additive;
   HYPRE_Int      simple;

   HYPRE_Real   alpha = 1.0;
   HYPRE_Real   beta = -1.0;
   HYPRE_Real   cycle_op_count;
   HYPRE_Real   total_coeffs;
   HYPRE_Real   total_variables;
   HYPRE_Real  *num_coeffs;
   HYPRE_Real  *num_variables;
   HYPRE_Real   cycle_cmplxty = 0.0;
   HYPRE_Real   operat_cmplxty;
   HYPRE_Real   grid_cmplxty;
   HYPRE_Real   conv_factor = 0.0;
   HYPRE_Real   resid_nrm = 1.0;
   HYPRE_Real   resid_nrm_init = 0.0;
   HYPRE_Real   relative_resid;
   HYPRE_Real   rhs_norm = 0.0;
   HYPRE_Real   old_resid;
   HYPRE_Real   ieee_check = 0.;

   hypre_ParVector  *Vtemp;
   hypre_ParVector  *Residual;

   hypre_MPI_Comm_size(comm, &num_procs);   
   hypre_MPI_Comm_rank(comm,&my_id);

   amg_print_level    = hypre_ParAMGDataPrintLevel(amg_data);
   amg_logging      = hypre_ParAMGDataLogging(amg_data);
   if ( amg_logging > 1 )
      Residual = hypre_ParAMGDataResidual(amg_data);
   /* num_unknowns  = hypre_ParAMGDataNumUnknowns(amg_data); */
   num_levels       = hypre_ParAMGDataNumLevels(amg_data);
   A_array          = hypre_ParAMGDataAArray(amg_data);
   F_array          = hypre_ParAMGDataFArray(amg_data);
   U_array          = hypre_ParAMGDataUArray(amg_data);

   tol              = hypre_ParAMGDataTol(amg_data);
   min_iter         = hypre_ParAMGDataMinIter(amg_data);
   max_iter         = hypre_ParAMGDataMaxIter(amg_data);
   additive         = hypre_ParAMGDataAdditive(amg_data);
   simple           = hypre_ParAMGDataSimple(amg_data);
   mult_additive    = hypre_ParAMGDataMultAdditive(amg_data);

   A_array[0] = A;
   F_array[0] = f;
   U_array[0] = u;

   block_mode = hypre_ParAMGDataBlockMode(amg_data);

   A_block_array          = hypre_ParAMGDataABlockArray(amg_data);


/*   Vtemp = hypre_ParVectorCreate(hypre_ParCSRMatrixComm(A_array[0]),
                                 hypre_ParCSRMatrixGlobalNumRows(A_array[0]),
                                 hypre_ParCSRMatrixRowStarts(A_array[0]));
   hypre_ParVectorInitialize(Vtemp);
   hypre_ParVectorSetPartitioningOwner(Vtemp,0);
   hypre_ParAMGDataVtemp(amg_data) = Vtemp;
*/
   Vtemp = hypre_ParAMGDataVtemp(amg_data);


   /*-----------------------------------------------------------------------
    *    Write the solver parameters
    *-----------------------------------------------------------------------*/


   if (my_id == 0 && amg_print_level > 1)
      hypre_BoomerAMGWriteSolverParams(amg_data); 

   /*-----------------------------------------------------------------------
    *    Initialize the solver error flag and assorted bookkeeping variables
    *-----------------------------------------------------------------------*/

   Solve_err_flag = 0;

   total_coeffs = 0;
   total_variables = 0;
   cycle_count = 0;
   operat_cmplxty = 0;
   grid_cmplxty = 0;

   /*-----------------------------------------------------------------------
    *     write some initial info
    *-----------------------------------------------------------------------*/

   if (my_id == 0 && amg_print_level > 1 && tol > 0.)
     hypre_printf("\n\nAMG SOLUTION INFO:\n");


   /*-----------------------------------------------------------------------
    *    Compute initial fine-grid residual and print 
    *-----------------------------------------------------------------------*/

   if (amg_print_level > 1 || amg_logging > 1)
   {
     if ( amg_logging > 1 ) {
        hypre_ParVectorCopy(F_array[0], Residual );
        if (tol > 0)
	   hypre_ParCSRMatrixMatvec(alpha, A_array[0], U_array[0], beta, Residual );
        resid_nrm = sqrt(hypre_ParVectorInnerProd( Residual, Residual ));
     }
     else {
        hypre_ParVectorCopy(F_array[0], Vtemp);
        if (tol > 0)
           hypre_ParCSRMatrixMatvec(alpha, A_array[0], U_array[0], beta, Vtemp);
        resid_nrm = sqrt(hypre_ParVectorInnerProd(Vtemp, Vtemp));
     }

     /* Since it is does not diminish performance, attempt to return an error flag
        and notify users when they supply bad input. */
     if (resid_nrm != 0.) ieee_check = resid_nrm/resid_nrm; /* INF -> NaN conversion */
     if (ieee_check != ieee_check)
     {
        /* ...INFs or NaNs in input can make ieee_check a NaN.  This test
           for ieee_check self-equality works on all IEEE-compliant compilers/
           machines, c.f. page 8 of "Lecture Notes on the Status of IEEE 754"
           by W. Kahan, May 31, 1996.  Currently (July 2002) this paper may be
           found at http://HTTP.CS.Berkeley.EDU/~wkahan/ieee754status/IEEE754.PDF */
        if (amg_print_level > 0)
        {
          hypre_printf("\n\nERROR detected by Hypre ...  BEGIN\n");
          hypre_printf("ERROR -- hypre_BoomerAMGSolve: INFs and/or NaNs detected in input.\n");
          hypre_printf("User probably placed non-numerics in supplied A, x_0, or b.\n");
          hypre_printf("ERROR detected by Hypre ...  END\n\n\n");
        }
        hypre_error(HYPRE_ERROR_GENERIC);
        return hypre_error_flag;
     }

     resid_nrm_init = resid_nrm;
     rhs_norm = sqrt(hypre_ParVectorInnerProd(f, f));
     if (rhs_norm)
     {
       relative_resid = resid_nrm_init / rhs_norm;
     }
     else
     {
       relative_resid = resid_nrm_init;
     }
   }
   else
   {
     relative_resid = 1.;
   }

   if (my_id == 0 && amg_print_level > 1)
   {     
      hypre_printf("                                            relative\n");
      hypre_printf("               residual        factor       residual\n");
      hypre_printf("               --------        ------       --------\n");
      hypre_printf("    Initial    %e                 %e\n",resid_nrm_init,
              relative_resid);
   }

   /*-----------------------------------------------------------------------
    *    Main V-cycle loop
    *-----------------------------------------------------------------------*/
   
   while ((relative_resid >= tol || cycle_count < min_iter)
          && cycle_count < max_iter)
   {
      hypre_ParAMGDataCycleOpCount(amg_data) = 0;   
      /* Op count only needed for one cycle */

      if ((additive < 0 || additive >= num_levels) 
	   && (mult_additive < 0 || mult_additive >= num_levels)
	   && (simple < 0 || simple >= num_levels) )
         hypre_BoomerAMGCycle(amg_data, F_array, U_array); 
      else
         hypre_BoomerAMGAdditiveCycle(amg_data); 

      /*---------------------------------------------------------------
       *    Compute  fine-grid residual and residual norm
       *----------------------------------------------------------------*/

      if (amg_print_level > 1 || amg_logging > 1 || tol > 0.)
      {
        old_resid = resid_nrm;

        if ( amg_logging > 1 ) {
           hypre_ParCSRMatrixMatvecOutOfPlace(alpha, A_array[0], U_array[0], beta, F_array[0], Residual );
           resid_nrm = sqrt(hypre_ParVectorInnerProd( Residual, Residual ));
        }
        else {
           hypre_ParCSRMatrixMatvecOutOfPlace(alpha, A_array[0], U_array[0], beta, F_array[0], Vtemp);
           resid_nrm = sqrt(hypre_ParVectorInnerProd(Vtemp, Vtemp));
        }

        if (old_resid) conv_factor = resid_nrm / old_resid;
        else conv_factor = resid_nrm;
        if (rhs_norm)
        {
           relative_resid = resid_nrm / rhs_norm;
        }
        else
        {
           relative_resid = resid_nrm;
        }

        hypre_ParAMGDataRelativeResidualNorm(amg_data) = relative_resid;
      }

      ++cycle_count;

      hypre_ParAMGDataNumIterations(amg_data) = cycle_count;
#ifdef CUMNUMIT
      ++hypre_ParAMGDataCumNumIterations(amg_data);
#endif

      if (my_id == 0 && amg_print_level > 1)
      { 
         hypre_printf("    Cycle %2d   %e    %f     %e \n", cycle_count,
                 resid_nrm, conv_factor, relative_resid);
      }
   }

   if (cycle_count == max_iter && tol > 0.)
   {
      Solve_err_flag = 1;
      hypre_error(HYPRE_ERROR_CONV);
   }

   /*-----------------------------------------------------------------------
    *    Compute closing statistics
    *-----------------------------------------------------------------------*/

   if (cycle_count > 0 && resid_nrm_init) 
     conv_factor = pow((resid_nrm/resid_nrm_init),(1.0/(HYPRE_Real) cycle_count));
   else
     conv_factor = 1.;

   if (amg_print_level > 1) 
   {
      num_coeffs       = hypre_CTAlloc(HYPRE_Real, num_levels);
      num_variables    = hypre_CTAlloc(HYPRE_Real, num_levels);
      num_coeffs[0]    = hypre_ParCSRMatrixDNumNonzeros(A);
      num_variables[0] = hypre_ParCSRMatrixGlobalNumRows(A);

      if (block_mode)
      {
         for (j = 1; j < num_levels; j++)
         {
            num_coeffs[j]    = (HYPRE_Real) hypre_ParCSRBlockMatrixNumNonzeros(A_block_array[j]);
            num_variables[j] = (HYPRE_Real) hypre_ParCSRBlockMatrixGlobalNumRows(A_block_array[j]);
         }
         num_coeffs[0]    = hypre_ParCSRBlockMatrixDNumNonzeros(A_block_array[0]);
         num_variables[0] = hypre_ParCSRBlockMatrixGlobalNumRows(A_block_array[0]);

      }
      else
      {
         for (j = 1; j < num_levels; j++)
         {
            num_coeffs[j]    = (HYPRE_Real) hypre_ParCSRMatrixNumNonzeros(A_array[j]);
            num_variables[j] = (HYPRE_Real) hypre_ParCSRMatrixGlobalNumRows(A_array[j]);
         }
      }
   

      for (j=0;j<hypre_ParAMGDataNumLevels(amg_data);j++)
      {
         total_coeffs += num_coeffs[j];
         total_variables += num_variables[j];
      }

      cycle_op_count = hypre_ParAMGDataCycleOpCount(amg_data);

      if (num_variables[0])
         grid_cmplxty = total_variables / num_variables[0];
      if (num_coeffs[0])
      {
         operat_cmplxty = total_coeffs / num_coeffs[0];
         cycle_cmplxty = cycle_op_count / num_coeffs[0];
      }

      if (my_id == 0)
      {
         if (Solve_err_flag == 1)
         {
            hypre_printf("\n\n==============================================");
            hypre_printf("\n NOTE: Convergence tolerance was not achieved\n");
            hypre_printf("      within the allowed %d V-cycles\n",max_iter);
            hypre_printf("==============================================");
         }
         hypre_printf("\n\n Average Convergence Factor = %f",conv_factor);
         hypre_printf("\n\n     Complexity:    grid = %f\n",grid_cmplxty);
         hypre_printf("                operator = %f\n",operat_cmplxty);
         hypre_printf("                   cycle = %f\n\n\n\n",cycle_cmplxty);
      }

      hypre_TFree(num_coeffs);
      hypre_TFree(num_variables);
   }

   return hypre_error_flag;
}
HYPRE_Int
hypre_ParCSRBlockMatrixMatvec(HYPRE_Complex alpha,
                              hypre_ParCSRBlockMatrix *A,
                              hypre_ParVector *x,
                              HYPRE_Complex beta,
                              hypre_ParVector *y)
{
   hypre_ParCSRCommHandle *comm_handle;
   hypre_ParCSRCommPkg    *comm_pkg;
   hypre_CSRBlockMatrix   *diag, *offd;
   hypre_Vector           *x_local, *y_local, *x_tmp;
   HYPRE_Int               i, j, k, index, num_rows, num_cols;
   HYPRE_Int               blk_size, x_size, y_size, size;
   HYPRE_Int               num_cols_offd, start, finish, elem;
   HYPRE_Int               ierr = 0, nprocs, num_sends, mypid;
   HYPRE_Complex          *x_tmp_data, *x_buf_data, *x_local_data;

   hypre_MPI_Comm_size(hypre_ParCSRBlockMatrixComm(A), &nprocs);
   hypre_MPI_Comm_rank(hypre_ParCSRBlockMatrixComm(A), &mypid);
   comm_pkg = hypre_ParCSRBlockMatrixCommPkg(A);
   num_rows = hypre_ParCSRBlockMatrixGlobalNumRows(A);
   num_cols = hypre_ParCSRBlockMatrixGlobalNumCols(A);
   blk_size = hypre_ParCSRBlockMatrixBlockSize(A);
   diag   = hypre_ParCSRBlockMatrixDiag(A);
   offd   = hypre_ParCSRBlockMatrixOffd(A);
   num_cols_offd = hypre_CSRBlockMatrixNumCols(offd);
   x_local  = hypre_ParVectorLocalVector(x);   
   y_local  = hypre_ParVectorLocalVector(y);   
   x_size = hypre_ParVectorGlobalSize(x);
   y_size = hypre_ParVectorGlobalSize(y);
   x_local_data = hypre_VectorData(x_local);

   /*---------------------------------------------------------------------
    *  Check for size compatibility.  
    *--------------------------------------------------------------------*/
 
   if (num_cols*blk_size != x_size) ierr = 11;
   if (num_rows*blk_size != y_size) ierr = 12;
   if (num_cols*blk_size != x_size && num_rows*blk_size != y_size) ierr = 13;

   if (nprocs > 1)
   {
      x_tmp = hypre_SeqVectorCreate(num_cols_offd*blk_size);
      hypre_SeqVectorInitialize(x_tmp);
      x_tmp_data = hypre_VectorData(x_tmp);

      if (!comm_pkg)
      {
         hypre_BlockMatvecCommPkgCreate(A);
         comm_pkg = hypre_ParCSRBlockMatrixCommPkg(A); 
      }
      num_sends = hypre_ParCSRCommPkgNumSends(comm_pkg);
      size = hypre_ParCSRCommPkgSendMapStart(comm_pkg,num_sends)*blk_size;
      x_buf_data = hypre_CTAlloc(HYPRE_Complex, size);
      index = 0;
      for (i = 0; i < num_sends; i++)
      {
         start = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i);
         finish = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i+1);
         for (j = start; j < finish; j++)
         {
            elem = hypre_ParCSRCommPkgSendMapElmt(comm_pkg,j)*blk_size;
            for (k = 0; k < blk_size; k++)
               x_buf_data[index++] = x_local_data[elem++];
         }
      }
      comm_handle = hypre_ParCSRBlockCommHandleCreate(1, blk_size,comm_pkg,
                                                      x_buf_data, x_tmp_data);
   }
   hypre_CSRBlockMatrixMatvec(alpha, diag, x_local, beta, y_local);
   if (nprocs > 1)
   {
      hypre_ParCSRBlockCommHandleDestroy(comm_handle);
      comm_handle = NULL;
      if (num_cols_offd) 
         hypre_CSRBlockMatrixMatvec(alpha,offd,x_tmp,1.0,y_local);    
      hypre_SeqVectorDestroy(x_tmp);
      x_tmp = NULL;
      hypre_TFree(x_buf_data);
   }
   return ierr;
}
HYPRE_Int
hypre_ParCSRBlockMatrixMatvecT( HYPRE_Complex    alpha,
                                hypre_ParCSRBlockMatrix *A,
                                hypre_ParVector    *x,
                                HYPRE_Complex    beta,
                                hypre_ParVector    *y     )
{
   hypre_ParCSRCommHandle       *comm_handle;
   hypre_ParCSRCommPkg  *comm_pkg = hypre_ParCSRBlockMatrixCommPkg(A);
   hypre_CSRBlockMatrix *diag = hypre_ParCSRBlockMatrixDiag(A);
   hypre_CSRBlockMatrix *offd = hypre_ParCSRBlockMatrixOffd(A);
   hypre_Vector *x_local = hypre_ParVectorLocalVector(x);
   hypre_Vector *y_local = hypre_ParVectorLocalVector(y);
   hypre_Vector *y_tmp;

   HYPRE_Complex    *y_local_data;
   HYPRE_Int         blk_size = hypre_ParCSRBlockMatrixBlockSize(A);
   HYPRE_Int         x_size = hypre_ParVectorGlobalSize(x);
   HYPRE_Int         y_size = hypre_ParVectorGlobalSize(y);
   HYPRE_Complex    *y_tmp_data, *y_buf_data;
   

   HYPRE_Int         num_rows  = hypre_ParCSRBlockMatrixGlobalNumRows(A);
   HYPRE_Int         num_cols  = hypre_ParCSRBlockMatrixGlobalNumCols(A);
   HYPRE_Int           num_cols_offd = hypre_CSRBlockMatrixNumCols(offd);


   HYPRE_Int         i, j, index, start, finish, elem, num_sends;
   HYPRE_Int         size, k;
   

   HYPRE_Int         ierr  = 0;

   /*---------------------------------------------------------------------
    *  Check for size compatibility.  MatvecT returns ierr = 1 if
    *  length of X doesn't equal the number of rows of A,
    *  ierr = 2 if the length of Y doesn't equal the number of 
    *  columns of A, and ierr = 3 if both are true.
    *
    *  Because temporary vectors are often used in MatvecT, none of 
    *  these conditions terminates processing, and the ierr flag
    *  is informational only.
    *--------------------------------------------------------------------*/
 
   if (num_rows*blk_size != x_size)
      ierr = 1;

   if (num_cols*blk_size != y_size)
      ierr = 2;

   if (num_rows*blk_size != x_size && num_cols*blk_size != y_size)
      ierr = 3;
   /*-----------------------------------------------------------------------
    *-----------------------------------------------------------------------*/


   y_tmp = hypre_SeqVectorCreate(num_cols_offd*blk_size);
   hypre_SeqVectorInitialize(y_tmp);


   /*---------------------------------------------------------------------
    * If there exists no CommPkg for A, a CommPkg is generated using
    * equally load balanced partitionings
    *--------------------------------------------------------------------*/
   if (!comm_pkg)
   {
      hypre_BlockMatvecCommPkgCreate(A);
      comm_pkg = hypre_ParCSRBlockMatrixCommPkg(A); 
   }

   num_sends = hypre_ParCSRCommPkgNumSends(comm_pkg);
   size = hypre_ParCSRCommPkgSendMapStart(comm_pkg, num_sends)*blk_size;
   y_buf_data = hypre_CTAlloc(HYPRE_Complex, size);

   y_tmp_data = hypre_VectorData(y_tmp);
   y_local_data = hypre_VectorData(y_local);
  
   if (num_cols_offd) hypre_CSRBlockMatrixMatvecT(alpha, offd, x_local, 0.0, y_tmp);

   comm_handle = hypre_ParCSRBlockCommHandleCreate
      ( 2, blk_size, comm_pkg, y_tmp_data, y_buf_data);

  
   hypre_CSRBlockMatrixMatvecT(alpha, diag, x_local, beta, y_local);


   hypre_ParCSRCommHandleDestroy(comm_handle);
   comm_handle = NULL;

   index = 0;
   for (i = 0; i < num_sends; i++)
   {
      start = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i);
      finish = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i+1);
      
      for (j = start; j < finish; j++)
      {
         elem =  hypre_ParCSRCommPkgSendMapElmt(comm_pkg, j)*blk_size;
         for (k = 0; k < blk_size; k++)
         {
            y_local_data[elem++]
               += y_buf_data[index++];
         }
      }
   }
   
   hypre_TFree(y_buf_data);

        
   hypre_SeqVectorDestroy(y_tmp);
   y_tmp = NULL;
   
   return ierr;
}
Esempio n. 5
0
hypre_ParCSRMatrix *
hypre_ParCSRBlockMatrixConvertToParCSRMatrix(hypre_ParCSRBlockMatrix *matrix)
{
   MPI_Comm comm = hypre_ParCSRBlockMatrixComm(matrix);
   hypre_CSRBlockMatrix *diag = hypre_ParCSRBlockMatrixDiag(matrix);
   hypre_CSRBlockMatrix *offd = hypre_ParCSRBlockMatrixOffd(matrix);
   HYPRE_Int block_size = hypre_ParCSRBlockMatrixBlockSize(matrix);
   HYPRE_Int global_num_rows = hypre_ParCSRBlockMatrixGlobalNumRows(matrix);
   HYPRE_Int global_num_cols = hypre_ParCSRBlockMatrixGlobalNumCols(matrix);
   HYPRE_Int *row_starts = hypre_ParCSRBlockMatrixRowStarts(matrix);
   HYPRE_Int *col_starts = hypre_ParCSRBlockMatrixColStarts(matrix);
   HYPRE_Int num_cols_offd = hypre_CSRBlockMatrixNumCols(offd);
   HYPRE_Int num_nonzeros_diag = hypre_CSRBlockMatrixNumNonzeros(diag);
   HYPRE_Int num_nonzeros_offd = hypre_CSRBlockMatrixNumNonzeros(offd);
 
   hypre_ParCSRMatrix *matrix_C;
   HYPRE_Int *matrix_C_row_starts;
   HYPRE_Int *matrix_C_col_starts;

   HYPRE_Int *counter, *new_j_map;
   HYPRE_Int size_j, size_map, index, new_num_cols, removed = 0;
   HYPRE_Int *offd_j, *col_map_offd, *new_col_map_offd;
   

   HYPRE_Int num_procs, i, j;

   hypre_CSRMatrix *diag_nozeros, *offd_nozeros;

   hypre_MPI_Comm_size(comm,&num_procs);

#ifdef HYPRE_NO_GLOBAL_PARTITION
   matrix_C_row_starts = hypre_CTAlloc(HYPRE_Int, 2);
   matrix_C_col_starts = hypre_CTAlloc(HYPRE_Int, 2);
   for(i = 0; i < 2; i++)
   {
      matrix_C_row_starts[i] = row_starts[i]*block_size;
      matrix_C_col_starts[i] = col_starts[i]*block_size;
   }
#else
   matrix_C_row_starts = hypre_CTAlloc(HYPRE_Int, num_procs + 1);
   matrix_C_col_starts = hypre_CTAlloc(HYPRE_Int, num_procs + 1);
   for(i = 0; i < num_procs + 1; i++)
   {
      matrix_C_row_starts[i] = row_starts[i]*block_size;
      matrix_C_col_starts[i] = col_starts[i]*block_size;
   }
#endif

   matrix_C = hypre_ParCSRMatrixCreate(comm, global_num_rows*block_size, 
                                       global_num_cols*block_size, matrix_C_row_starts, 
                                       matrix_C_col_starts, num_cols_offd*block_size, 
                                       num_nonzeros_diag*block_size*block_size, 
                                       num_nonzeros_offd*block_size*block_size);
   hypre_ParCSRMatrixInitialize(matrix_C);

   /* DIAG */
   hypre_CSRMatrixDestroy(hypre_ParCSRMatrixDiag(matrix_C));
   hypre_ParCSRMatrixDiag(matrix_C) = 
      hypre_CSRBlockMatrixConvertToCSRMatrix(diag);

   /* AB - added to delete zeros */
   diag_nozeros = hypre_CSRMatrixDeleteZeros( 
      hypre_ParCSRMatrixDiag(matrix_C), 1e-14);
   if(diag_nozeros) 
   {
      hypre_CSRMatrixDestroy(hypre_ParCSRMatrixDiag(matrix_C));
      hypre_ParCSRMatrixDiag(matrix_C) = diag_nozeros;
   }

   /* OFF-DIAG */
   hypre_CSRMatrixDestroy(hypre_ParCSRMatrixOffd(matrix_C));
   hypre_ParCSRMatrixOffd(matrix_C) = 
      hypre_CSRBlockMatrixConvertToCSRMatrix(offd);

   /* AB - added to delete zeros - this just deletes from data and j arrays */
   offd_nozeros = hypre_CSRMatrixDeleteZeros( 
      hypre_ParCSRMatrixOffd(matrix_C), 1e-14);
   if(offd_nozeros) 
   {
      hypre_CSRMatrixDestroy(hypre_ParCSRMatrixOffd(matrix_C));
      hypre_ParCSRMatrixOffd(matrix_C) = offd_nozeros;
      removed = 1;
       
   }

   /* now convert the col_map_offd */
   for (i = 0; i < num_cols_offd; i++)
      for (j = 0; j < block_size; j++)
         hypre_ParCSRMatrixColMapOffd(matrix_C)[i*block_size + j] = 
            hypre_ParCSRBlockMatrixColMapOffd(matrix)[i]*block_size + j;
 
   /* if we deleted zeros, then it is possible that col_map_offd can be
      compressed as well - this requires some amount of work that could be skipped... */

   if (removed)
   {
      size_map =   num_cols_offd*block_size;
      counter = hypre_CTAlloc(HYPRE_Int, size_map);
      new_j_map = hypre_CTAlloc(HYPRE_Int, size_map);

      offd_j = hypre_CSRMatrixJ(hypre_ParCSRMatrixOffd(matrix_C));
      col_map_offd = hypre_ParCSRMatrixColMapOffd(matrix_C);
      
      size_j = hypre_CSRMatrixNumNonzeros(hypre_ParCSRMatrixOffd(matrix_C));
      /* mark which off_d entries are found in j */
      for (i=0; i < size_j; i++)
      {
         counter[offd_j[i]] = 1;
      }
      /*now find new numbering for columns (we will delete the 
        cols where counter = 0*/
      index = 0;
      for (i=0; i < size_map; i++)
      {
         if (counter[i]) new_j_map[i] = index++;
      }
      new_num_cols = index;
      /* if there are some col entries to remove: */ 
      if (!(index == size_map))
      {
         /* go thru j and adjust entries */         
         for (i=0; i < size_j; i++)
         {
            offd_j[i] = new_j_map[offd_j[i]];
         }
         /*now go thru col map and get rid of non-needed entries */ 
         new_col_map_offd = hypre_CTAlloc(HYPRE_Int, new_num_cols);
         index = 0;
         for (i=0; i < size_map; i++)  
         {
            if (counter[i]) 
            {
               new_col_map_offd[index++] = col_map_offd[i];
            }
         }
         /* set the new col map */ 
         hypre_TFree(col_map_offd);
         hypre_ParCSRMatrixColMapOffd(matrix_C) = new_col_map_offd;
         /* modify the number of cols */
         hypre_CSRMatrixNumCols(hypre_ParCSRMatrixOffd(matrix_C)) = new_num_cols;
      }
      hypre_TFree(new_j_map);
      hypre_TFree(counter);
      
   }
   
   hypre_ParCSRMatrixSetNumNonzeros( matrix_C );
   hypre_ParCSRMatrixSetDNumNonzeros( matrix_C );
   
   /* we will not copy the comm package */  
   hypre_ParCSRMatrixCommPkg(matrix_C) = NULL;

   return matrix_C;
}
Esempio n. 6
0
hypre_ParCSRBlockMatrix *
hypre_ParCSRBlockMatrixCreate( MPI_Comm comm,
                               HYPRE_Int block_size,
                               HYPRE_Int global_num_rows,
                               HYPRE_Int global_num_cols,
                               HYPRE_Int *row_starts,
                               HYPRE_Int *col_starts,
                               HYPRE_Int num_cols_offd,
                               HYPRE_Int num_nonzeros_diag,
                               HYPRE_Int num_nonzeros_offd )
{
   hypre_ParCSRBlockMatrix  *matrix;
   HYPRE_Int  num_procs, my_id;
   HYPRE_Int local_num_rows, local_num_cols;
   HYPRE_Int first_row_index, first_col_diag;

   matrix = hypre_CTAlloc(hypre_ParCSRBlockMatrix, 1);

   hypre_MPI_Comm_rank(comm,&my_id);
   hypre_MPI_Comm_size(comm,&num_procs);

   if (!row_starts)
   {
#ifdef HYPRE_NO_GLOBAL_PARTITION  
      hypre_GenerateLocalPartitioning(global_num_rows, num_procs, my_id, &row_starts);
#else
      hypre_GeneratePartitioning(global_num_rows,num_procs,&row_starts);
#endif
   }

   if (!col_starts)
   {
      if (global_num_rows == global_num_cols)
      {
         col_starts = row_starts;
      }
      else
      {
#ifdef HYPRE_NO_GLOBAL_PARTITION   
         hypre_GenerateLocalPartitioning(global_num_cols, num_procs, my_id, &col_starts);
#else
         hypre_GeneratePartitioning(global_num_cols,num_procs,&col_starts);
#endif
      }
   }
#ifdef HYPRE_NO_GLOBAL_PARTITION
   /* row_starts[0] is start of local rows.  row_starts[1] is start of next 
      processor's rows */
   first_row_index = row_starts[0];
   local_num_rows = row_starts[1]-first_row_index ;
   first_col_diag = col_starts[0];
   local_num_cols = col_starts[1]-first_col_diag;
#else
   first_row_index = row_starts[my_id];
   local_num_rows = row_starts[my_id+1]-first_row_index;
   first_col_diag = col_starts[my_id];
   local_num_cols = col_starts[my_id+1]-first_col_diag;
#endif
   hypre_ParCSRBlockMatrixComm(matrix) = comm;
   hypre_ParCSRBlockMatrixDiag(matrix) = hypre_CSRBlockMatrixCreate(block_size,
                                                                    local_num_rows,local_num_cols,num_nonzeros_diag);
   hypre_ParCSRBlockMatrixOffd(matrix) = hypre_CSRBlockMatrixCreate(block_size,
                                                                    local_num_rows, num_cols_offd, num_nonzeros_offd);
   hypre_ParCSRBlockMatrixBlockSize(matrix) = block_size;
   hypre_ParCSRBlockMatrixGlobalNumRows(matrix) = global_num_rows;
   hypre_ParCSRBlockMatrixGlobalNumCols(matrix) = global_num_cols;
   hypre_ParCSRBlockMatrixFirstRowIndex(matrix) = first_row_index;
   hypre_ParCSRBlockMatrixFirstColDiag(matrix) = first_col_diag;

   hypre_ParCSRBlockMatrixLastRowIndex(matrix) = first_row_index + local_num_rows - 1;
   hypre_ParCSRBlockMatrixLastColDiag(matrix) = first_col_diag + local_num_cols - 1;

   hypre_ParCSRBlockMatrixColMapOffd(matrix) = NULL;

   hypre_ParCSRBlockMatrixAssumedPartition(matrix) = NULL;


/* When NO_GLOBAL_PARTITION is set we could make these null, instead
   of leaving the range.  If that change is made, then when this create
   is called from functions like the matrix-matrix multiply, be careful
   not to generate a new partition */
   hypre_ParCSRBlockMatrixRowStarts(matrix) = row_starts;
   hypre_ParCSRBlockMatrixColStarts(matrix) = col_starts;


   hypre_ParCSRBlockMatrixCommPkg(matrix) = NULL;
   hypre_ParCSRBlockMatrixCommPkgT(matrix) = NULL;

   /* set defaults */
   hypre_ParCSRBlockMatrixOwnsData(matrix) = 1;
   hypre_ParCSRBlockMatrixOwnsRowStarts(matrix) = 1;
   hypre_ParCSRBlockMatrixOwnsColStarts(matrix) = 1;
   if (row_starts == col_starts)
      hypre_ParCSRBlockMatrixOwnsColStarts(matrix) = 0;

   return matrix;
}
Esempio n. 7
0
HYPRE_Int
hypre_BoomerAMGBlockCreateNodalA(hypre_ParCSRBlockMatrix *A,
                                 HYPRE_Int                option,
                                 HYPRE_Int                diag_option,
                                 hypre_ParCSRMatrix     **AN_ptr)
{
   MPI_Comm                 comm         = hypre_ParCSRBlockMatrixComm(A);
   hypre_CSRBlockMatrix    *A_diag       = hypre_ParCSRBlockMatrixDiag(A);
   HYPRE_Int               *A_diag_i     = hypre_CSRBlockMatrixI(A_diag);
   HYPRE_Real              *A_diag_data  = hypre_CSRBlockMatrixData(A_diag);

   HYPRE_Int                block_size = hypre_CSRBlockMatrixBlockSize(A_diag);
   HYPRE_Int                bnnz = block_size*block_size;

   hypre_CSRBlockMatrix    *A_offd          = hypre_ParCSRMatrixOffd(A);
   HYPRE_Int               *A_offd_i        = hypre_CSRBlockMatrixI(A_offd);
   HYPRE_Real              *A_offd_data     = hypre_CSRBlockMatrixData(A_offd);
   HYPRE_Int               *A_diag_j        = hypre_CSRBlockMatrixJ(A_diag);
   HYPRE_Int               *A_offd_j        = hypre_CSRBlockMatrixJ(A_offd);

   HYPRE_Int               *row_starts      = hypre_ParCSRBlockMatrixRowStarts(A);
   HYPRE_Int               *col_map_offd    = hypre_ParCSRBlockMatrixColMapOffd(A);
   HYPRE_Int                num_nonzeros_diag;
   HYPRE_Int                num_nonzeros_offd = 0;
   HYPRE_Int                num_cols_offd = 0;
                  
   hypre_ParCSRMatrix *AN;
   hypre_CSRMatrix    *AN_diag;
   HYPRE_Int          *AN_diag_i;
   HYPRE_Int          *AN_diag_j=NULL;
   HYPRE_Real         *AN_diag_data = NULL; 
   hypre_CSRMatrix    *AN_offd;
   HYPRE_Int          *AN_offd_i;
   HYPRE_Int          *AN_offd_j = NULL;
   HYPRE_Real         *AN_offd_data = NULL; 
   HYPRE_Int          *col_map_offd_AN = NULL;
   HYPRE_Int          *row_starts_AN;

                 
   hypre_ParCSRCommPkg *comm_pkg = hypre_ParCSRBlockMatrixCommPkg(A);
   HYPRE_Int            num_sends;
   HYPRE_Int            num_recvs;
   HYPRE_Int           *send_procs;
   HYPRE_Int           *send_map_starts;
   HYPRE_Int           *send_map_elmts;
   HYPRE_Int           *recv_procs;
   HYPRE_Int           *recv_vec_starts;

   hypre_ParCSRCommPkg *comm_pkg_AN = NULL;
   HYPRE_Int           *send_procs_AN = NULL;
   HYPRE_Int           *send_map_starts_AN = NULL;
   HYPRE_Int           *send_map_elmts_AN = NULL;
   HYPRE_Int           *recv_procs_AN = NULL;
   HYPRE_Int           *recv_vec_starts_AN = NULL;

   HYPRE_Int            i;
                      
   HYPRE_Int            ierr = 0;

   HYPRE_Int            num_procs;
   HYPRE_Int            cnt;
   HYPRE_Int            norm_type;

   HYPRE_Int            global_num_nodes;
   HYPRE_Int            num_nodes;

   HYPRE_Int            index, k;
   
   HYPRE_Real           tmp;
   HYPRE_Real           sum;

   hypre_MPI_Comm_size(comm,&num_procs);

   if (!comm_pkg)
   {
      hypre_BlockMatvecCommPkgCreate(A);
      comm_pkg = hypre_ParCSRBlockMatrixCommPkg(A);
   }

   norm_type = fabs(option);


/* Set up the new matrix AN */


#ifdef HYPRE_NO_GLOBAL_PARTITION
   row_starts_AN = hypre_CTAlloc(HYPRE_Int, 2);
   for (i=0; i < 2; i++)
   {
      row_starts_AN[i] = row_starts[i];
   }
#else
   row_starts_AN = hypre_CTAlloc(HYPRE_Int, num_procs+1);
   for (i=0; i < num_procs+1; i++)
   {
      row_starts_AN[i] = row_starts[i];
   }
#endif

   global_num_nodes = hypre_ParCSRBlockMatrixGlobalNumRows(A);
   num_nodes = hypre_CSRBlockMatrixNumRows(A_diag);

   /* the diag part */

   num_nonzeros_diag = A_diag_i[num_nodes];
   AN_diag_i = hypre_CTAlloc(HYPRE_Int, num_nodes+1);

   for (i=0; i <= num_nodes; i++)
   {
      AN_diag_i[i] = A_diag_i[i];
   }

   AN_diag_j = hypre_CTAlloc(HYPRE_Int, num_nonzeros_diag);     
   AN_diag_data = hypre_CTAlloc(HYPRE_Real, num_nonzeros_diag);      


   AN_diag = hypre_CSRMatrixCreate(num_nodes, num_nodes, num_nonzeros_diag);
   hypre_CSRMatrixI(AN_diag) = AN_diag_i;
   hypre_CSRMatrixJ(AN_diag) = AN_diag_j;
   hypre_CSRMatrixData(AN_diag) = AN_diag_data;

   for (i=0; i< num_nonzeros_diag; i++)
   {
      AN_diag_j[i]  = A_diag_j[i];
      hypre_CSRBlockMatrixBlockNorm(norm_type, &A_diag_data[i*bnnz], 
                                    &tmp, block_size);
      AN_diag_data[i] = tmp;
   }
   

   if (diag_option ==1 )
   {
      /* make the diag entry the negative of the sum of off-diag entries (NEED
       * to get more below!)*/
      /* the diagonal is the first element listed in each row - */
      for (i=0; i < num_nodes; i++)
      {
         index = AN_diag_i[i]; 
         sum = 0.0;
         for (k = AN_diag_i[i]+1; k < AN_diag_i[i+1]; k++)
         {
            sum += AN_diag_data[k];
            
         }

         AN_diag_data[index] = -sum;
      }
      
   }
   else if (diag_option == 2)
   {
      
      /*  make all diagonal entries negative */
      /* the diagonal is the first element listed in each row - */
      
      for (i=0; i < num_nodes; i++)
      {
         index = AN_diag_i[i];
         AN_diag_data[index] = -AN_diag_data[index];
      }
   }

   /* copy the commpkg */
   if (comm_pkg)
   {
      comm_pkg_AN = hypre_CTAlloc(hypre_ParCSRCommPkg,1);
      hypre_ParCSRCommPkgComm(comm_pkg_AN) = comm;

      num_sends = hypre_ParCSRCommPkgNumSends(comm_pkg);
      hypre_ParCSRCommPkgNumSends(comm_pkg_AN) = num_sends;

      num_recvs = hypre_ParCSRCommPkgNumRecvs(comm_pkg);
      hypre_ParCSRCommPkgNumRecvs(comm_pkg_AN) = num_recvs;

      send_procs = hypre_ParCSRCommPkgSendProcs(comm_pkg);
      send_map_starts = hypre_ParCSRCommPkgSendMapStarts(comm_pkg);
      send_map_elmts = hypre_ParCSRCommPkgSendMapElmts(comm_pkg);
      if (num_sends) 
      {
         send_procs_AN = hypre_CTAlloc(HYPRE_Int, num_sends);
         send_map_elmts_AN = hypre_CTAlloc(HYPRE_Int, send_map_starts[num_sends]);
      }
      send_map_starts_AN = hypre_CTAlloc(HYPRE_Int, num_sends+1);
      send_map_starts_AN[0] = 0;
      for (i=0; i < num_sends; i++)
      {
         send_procs_AN[i] = send_procs[i];
         send_map_starts_AN[i+1] = send_map_starts[i+1];
      }
      cnt = send_map_starts_AN[num_sends];
      for (i=0; i< cnt; i++)
      {
         send_map_elmts_AN[i] = send_map_elmts[i];
      }
      hypre_ParCSRCommPkgSendProcs(comm_pkg_AN) = send_procs_AN;
      hypre_ParCSRCommPkgSendMapStarts(comm_pkg_AN) = send_map_starts_AN;
      hypre_ParCSRCommPkgSendMapElmts(comm_pkg_AN) = send_map_elmts_AN;

      recv_procs = hypre_ParCSRCommPkgRecvProcs(comm_pkg);
      recv_vec_starts = hypre_ParCSRCommPkgRecvVecStarts(comm_pkg);
      recv_vec_starts_AN = hypre_CTAlloc(HYPRE_Int, num_recvs+1);
      if (num_recvs) recv_procs_AN = hypre_CTAlloc(HYPRE_Int, num_recvs);

      recv_vec_starts_AN[0] = recv_vec_starts[0];
      for (i=0; i < num_recvs; i++)
      {
         recv_procs_AN[i] = recv_procs[i];
         recv_vec_starts_AN[i+1] = recv_vec_starts[i+1];
         
      }
      hypre_ParCSRCommPkgRecvProcs(comm_pkg_AN) = recv_procs_AN;
      hypre_ParCSRCommPkgRecvVecStarts(comm_pkg_AN) = recv_vec_starts_AN;

   }

   /* the off-diag part */

   num_cols_offd = hypre_CSRBlockMatrixNumCols(A_offd);
   col_map_offd_AN = hypre_CTAlloc(HYPRE_Int, num_cols_offd);
   for (i=0; i < num_cols_offd; i++)
   {
      col_map_offd_AN[i] = col_map_offd[i];
   }

   num_nonzeros_offd = A_offd_i[num_nodes];
   AN_offd_i = hypre_CTAlloc(HYPRE_Int, num_nodes+1);
   for (i=0; i <= num_nodes; i++)
   {
      AN_offd_i[i] = A_offd_i[i];
   }
      
   AN_offd_j = hypre_CTAlloc(HYPRE_Int, num_nonzeros_offd);     
   AN_offd_data = hypre_CTAlloc(HYPRE_Real, num_nonzeros_offd);

   for (i=0; i< num_nonzeros_offd; i++)
   {
      AN_offd_j[i]  = A_offd_j[i];
      hypre_CSRBlockMatrixBlockNorm(norm_type, &A_offd_data[i*bnnz], 
                                    &tmp, block_size);
      AN_offd_data[i] = tmp;
   }
   
   AN_offd = hypre_CSRMatrixCreate(num_nodes, num_cols_offd, num_nonzeros_offd);
  
   hypre_CSRMatrixI(AN_offd) = AN_offd_i;
   hypre_CSRMatrixJ(AN_offd) = AN_offd_j;
   hypre_CSRMatrixData(AN_offd) = AN_offd_data;
   
   if (diag_option ==1 )
   {
      /* make the diag entry the negative of the sum of off-diag entries (here
         we are adding the off_diag contribution)*/
      /* the diagonal is the first element listed in each row of AN_diag_data - */
      for (i=0; i < num_nodes; i++)
      {
         sum = 0.0;
         for (k = AN_offd_i[i]; k < AN_offd_i[i+1]; k++)
         {
            sum += AN_offd_data[k];
            
         }
         index = AN_diag_i[i];/* location of diag entry in data */ 
         AN_diag_data[index] -= sum; /* subtract from current value */
      }
      
   }

   /* now create AN */   
    
   AN = hypre_ParCSRMatrixCreate(comm, global_num_nodes, global_num_nodes,
                                 row_starts_AN, row_starts_AN, num_cols_offd,
                                 num_nonzeros_diag, num_nonzeros_offd);

   /* we already created the diag and offd matrices - so we don't need the ones
      created above */
   hypre_CSRMatrixDestroy(hypre_ParCSRMatrixDiag(AN));
   hypre_CSRMatrixDestroy(hypre_ParCSRMatrixOffd(AN));
   hypre_ParCSRMatrixDiag(AN) = AN_diag;
   hypre_ParCSRMatrixOffd(AN) = AN_offd;


   hypre_ParCSRMatrixColMapOffd(AN) = col_map_offd_AN;
   hypre_ParCSRMatrixCommPkg(AN) = comm_pkg_AN;

   *AN_ptr        = AN;

   return (ierr);
}