Esempio n. 1
0
hypre_ParVector *
hypre_ParVectorCloneShallow( hypre_ParVector *x )
{
   hypre_ParVector * y = hypre_ParVectorCreate(
      hypre_ParVectorComm(x), hypre_ParVectorGlobalSize(x), hypre_ParVectorPartitioning(x) );

   hypre_ParVectorOwnsData(y) = 1;
   /* ...This vector owns its local vector, although the local vector doesn't own _its_ data */
   hypre_ParVectorOwnsPartitioning(y) = 0;
   hypre_SeqVectorDestroy( hypre_ParVectorLocalVector(y) );
   hypre_ParVectorLocalVector(y) = hypre_SeqVectorCloneShallow(
      hypre_ParVectorLocalVector(x) );
   hypre_ParVectorFirstIndex(y) = hypre_ParVectorFirstIndex(x);

   return y;
}
Esempio n. 2
0
HYPRE_Int 
hypre_ParVectorDestroy( hypre_ParVector *vector )
{
   if (vector)
   {
      if ( hypre_ParVectorOwnsData(vector) )
      {
         hypre_SeqVectorDestroy(hypre_ParVectorLocalVector(vector));
      }
      if ( hypre_ParVectorOwnsPartitioning(vector) )
      {
         hypre_TFree(hypre_ParVectorPartitioning(vector));
      }

      if (hypre_ParVectorAssumedPartition(vector))
         hypre_ParVectorDestroyAssumedPartition(vector);



      hypre_TFree(vector);
   }

   return hypre_error_flag;
}
Esempio n. 3
0
HYPRE_Int
main( HYPRE_Int   argc,
      char *argv[] )
{
   hypre_ParVector   *vector1;
   hypre_ParVector   *vector2;
   hypre_ParVector   *tmp_vector;

   HYPRE_Int          num_procs, my_id;
   HYPRE_Int	 	global_size = 20;
   HYPRE_Int		local_size;
   HYPRE_Int		first_index;
   HYPRE_Int          num_vectors, vecstride, idxstride;
   HYPRE_Int 		i, j;
   HYPRE_Int 		*partitioning;
   double	prod;
   double 	*data, *data2;
   hypre_Vector *vector; 
   hypre_Vector *local_vector; 
   hypre_Vector *local_vector2;
 
   /* Initialize MPI */
   hypre_MPI_Init(&argc, &argv);

   hypre_MPI_Comm_size(hypre_MPI_COMM_WORLD, &num_procs );
   hypre_MPI_Comm_rank(hypre_MPI_COMM_WORLD, &my_id );

   hypre_printf(" my_id: %d num_procs: %d\n", my_id, num_procs);
 
   partitioning = NULL;
   num_vectors = 3;
   vector1 = hypre_ParMultiVectorCreate
      ( hypre_MPI_COMM_WORLD, global_size, partitioning, num_vectors );
   partitioning = hypre_ParVectorPartitioning(vector1);

   hypre_ParVectorInitialize(vector1);
   local_vector = hypre_ParVectorLocalVector(vector1);
   data = hypre_VectorData(local_vector);
   local_size = hypre_VectorSize(local_vector);
   vecstride = hypre_VectorVectorStride(local_vector);
   idxstride = hypre_VectorIndexStride(local_vector);
   first_index = partitioning[my_id];

   hypre_printf("vecstride=%i idxstride=%i local_size=%i num_vectors=%i",
          vecstride, idxstride, local_size, num_vectors );
   for (j=0; j<num_vectors; ++j )
      for (i=0; i < local_size; i++)
         data[ j*vecstride + i*idxstride ] = first_index+i + 100*j;

   hypre_ParVectorPrint(vector1, "Vector");

   local_vector2 = hypre_SeqMultiVectorCreate( global_size, num_vectors );
   hypre_SeqVectorInitialize(local_vector2);
   data2 = hypre_VectorData(local_vector2);
   vecstride = hypre_VectorVectorStride(local_vector2);
   idxstride = hypre_VectorIndexStride(local_vector2);
   for (j=0; j<num_vectors; ++j )
      for (i=0; i < global_size; i++)
         data2[ j*vecstride + i*idxstride ] = i + 100*j;

/*   partitioning = hypre_CTAlloc(HYPRE_Int,4);
   partitioning[0] = 0;
   partitioning[1] = 10;
   partitioning[2] = 10;
   partitioning[3] = 20;
*/
   partitioning = hypre_CTAlloc(HYPRE_Int,1+num_procs);
   hypre_GeneratePartitioning( global_size, num_procs, &partitioning );

   vector2 = hypre_VectorToParVector(hypre_MPI_COMM_WORLD,local_vector2,partitioning);
   hypre_ParVectorSetPartitioningOwner(vector2,0);

   hypre_ParVectorPrint(vector2, "Convert");

   vector = hypre_ParVectorToVectorAll(vector2);

   /*-----------------------------------------------------------
    * Copy the vector into tmp_vector
    *-----------------------------------------------------------*/

/* Read doesn't work for multivectors yet...
   tmp_vector = hypre_ParVectorRead(hypre_MPI_COMM_WORLD, "Convert");*/
   tmp_vector = hypre_ParMultiVectorCreate
      ( hypre_MPI_COMM_WORLD, global_size, partitioning, num_vectors );
   hypre_ParVectorInitialize( tmp_vector );
   hypre_ParVectorCopy( vector2, tmp_vector );
/*
   tmp_vector = hypre_ParVectorCreate(hypre_MPI_COMM_WORLD,global_size,partitioning);
   hypre_ParVectorSetPartitioningOwner(tmp_vector,0);
   hypre_ParVectorInitialize(tmp_vector);
   hypre_ParVectorCopy(vector1, tmp_vector);

   hypre_ParVectorPrint(tmp_vector,"Copy");
*/
   /*-----------------------------------------------------------
    * Scale tmp_vector
    *-----------------------------------------------------------*/

   hypre_ParVectorScale(2.0, tmp_vector);
   hypre_ParVectorPrint(tmp_vector,"Scale");

   /*-----------------------------------------------------------
    * Do an Axpy (2*vector - vector) = vector
    *-----------------------------------------------------------*/

   hypre_ParVectorAxpy(-1.0, vector1, tmp_vector);
   hypre_ParVectorPrint(tmp_vector,"Axpy");

   /*-----------------------------------------------------------
    * Do an inner product vector* tmp_vector
    *-----------------------------------------------------------*/

   prod = hypre_ParVectorInnerProd(vector1, tmp_vector);

   hypre_printf (" prod: %8.2f \n", prod);

   /*-----------------------------------------------------------
    * Finalize things
    *-----------------------------------------------------------*/

   hypre_ParVectorDestroy(vector1);
   hypre_ParVectorDestroy(vector2); 
   hypre_ParVectorDestroy(tmp_vector);
   hypre_SeqVectorDestroy(local_vector2); 
   if (vector) hypre_SeqVectorDestroy(vector); 

   /* Finalize MPI */
   hypre_MPI_Finalize();

   return 0;
}
Esempio n. 4
0
/*--------------------------------------------------------------------------
 * hypre_ParCSRMatrixMatvec_FF
 *--------------------------------------------------------------------------*/
                                                                                    HYPRE_Int
hypre_ParCSRMatrixMatvec_FF( HYPRE_Complex       alpha,
                             hypre_ParCSRMatrix *A,
                             hypre_ParVector    *x,
                             HYPRE_Complex       beta,
                             hypre_ParVector    *y,
                             HYPRE_Int          *CF_marker,
                             HYPRE_Int           fpt )
{
   MPI_Comm                comm = hypre_ParCSRMatrixComm(A);
   hypre_ParCSRCommHandle *comm_handle;
   hypre_ParCSRCommPkg    *comm_pkg = hypre_ParCSRMatrixCommPkg(A);
   hypre_CSRMatrix        *diag   = hypre_ParCSRMatrixDiag(A);
   hypre_CSRMatrix        *offd   = hypre_ParCSRMatrixOffd(A);
   hypre_Vector           *x_local  = hypre_ParVectorLocalVector(x);
   hypre_Vector           *y_local  = hypre_ParVectorLocalVector(y);
   HYPRE_Int               num_rows = hypre_ParCSRMatrixGlobalNumRows(A);
   HYPRE_Int               num_cols = hypre_ParCSRMatrixGlobalNumCols(A);

   hypre_Vector      *x_tmp;
   HYPRE_Int          x_size = hypre_ParVectorGlobalSize(x);
   HYPRE_Int          y_size = hypre_ParVectorGlobalSize(y);
   HYPRE_Int          num_cols_offd = hypre_CSRMatrixNumCols(offd);
   HYPRE_Int          ierr = 0;
   HYPRE_Int          num_sends, i, j, index, start, num_procs;
   HYPRE_Int         *int_buf_data = NULL;
   HYPRE_Int         *CF_marker_offd = NULL;

   HYPRE_Complex     *x_tmp_data = NULL;
   HYPRE_Complex     *x_buf_data = NULL;
   HYPRE_Complex     *x_local_data = hypre_VectorData(x_local);
   /*---------------------------------------------------------------------
    *  Check for size compatibility.  ParMatvec returns ierr = 11 if
    *  length of X doesn't equal the number of columns of A,
    *  ierr = 12 if the length of Y doesn't equal the number of rows
    *  of A, and ierr = 13 if both are true.
    *
    *  Because temporary vectors are often used in ParMatvec, none of
    *  these conditions terminates processing, and the ierr flag
    *  is informational only.
    *--------------------------------------------------------------------*/

   hypre_MPI_Comm_size(comm,&num_procs);

   if (num_cols != x_size)
      ierr = 11;

   if (num_rows != y_size)
      ierr = 12;

   if (num_cols != x_size && num_rows != y_size)
      ierr = 13;

   if (num_procs > 1)
   {
      if (num_cols_offd)
      {
         x_tmp = hypre_SeqVectorCreate( num_cols_offd );
         hypre_SeqVectorInitialize(x_tmp);
         x_tmp_data = hypre_VectorData(x_tmp);
      }

      /*---------------------------------------------------------------------
       * If there exists no CommPkg for A, a CommPkg is generated using
       * equally load balanced partitionings
       *--------------------------------------------------------------------*/
      if (!comm_pkg)
      {
         hypre_MatvecCommPkgCreate(A);
         comm_pkg = hypre_ParCSRMatrixCommPkg(A);
      }

      num_sends = hypre_ParCSRCommPkgNumSends(comm_pkg);
      if (num_sends)
         x_buf_data = hypre_CTAlloc(HYPRE_Complex, hypre_ParCSRCommPkgSendMapStart
                                    (comm_pkg, num_sends));

      index = 0;
      for (i = 0; i < num_sends; i++)
      {
         start = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i);
         for (j = start; j < hypre_ParCSRCommPkgSendMapStart(comm_pkg, i+1); j++)
            x_buf_data[index++]
               = x_local_data[hypre_ParCSRCommPkgSendMapElmt(comm_pkg,j)];
      }
      comm_handle =
         hypre_ParCSRCommHandleCreate ( 1, comm_pkg, x_buf_data, x_tmp_data );
   }
   hypre_CSRMatrixMatvec_FF( alpha, diag, x_local, beta, y_local, CF_marker,
                             CF_marker, fpt);

   if (num_procs > 1)
   {
      hypre_ParCSRCommHandleDestroy(comm_handle);
      comm_handle = NULL;

      if (num_sends)
         int_buf_data = hypre_CTAlloc(HYPRE_Int, hypre_ParCSRCommPkgSendMapStart
                                      (comm_pkg, num_sends));
      if (num_cols_offd) CF_marker_offd = hypre_CTAlloc(HYPRE_Int, num_cols_offd);
      index = 0;
      for (i = 0; i < num_sends; i++)
      {
         start = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i);
         for (j = start; j < hypre_ParCSRCommPkgSendMapStart(comm_pkg, i+1); j++)
            int_buf_data[index++]
               = CF_marker[hypre_ParCSRCommPkgSendMapElmt(comm_pkg,j)];
      }
      comm_handle =
         hypre_ParCSRCommHandleCreate(11,comm_pkg,int_buf_data,CF_marker_offd );

      hypre_ParCSRCommHandleDestroy(comm_handle);
      comm_handle = NULL;

      if (num_cols_offd) hypre_CSRMatrixMatvec_FF( alpha, offd, x_tmp, 1.0, y_local,
                                                   CF_marker, CF_marker_offd, fpt);

      hypre_SeqVectorDestroy(x_tmp);
      x_tmp = NULL;
      hypre_TFree(x_buf_data);
      hypre_TFree(int_buf_data);
      hypre_TFree(CF_marker_offd);
   }

   return ierr;
}
Esempio n. 5
0
HYPRE_Int
hypre_ParCSRMatrixMatvec( HYPRE_Complex       alpha,
                          hypre_ParCSRMatrix *A,
                          hypre_ParVector    *x,
                          HYPRE_Complex       beta,
                          hypre_ParVector    *y )
{
   hypre_ParCSRCommHandle **comm_handle;
   hypre_ParCSRCommPkg *comm_pkg = hypre_ParCSRMatrixCommPkg(A);
   hypre_CSRMatrix   *diag   = hypre_ParCSRMatrixDiag(A);
   hypre_CSRMatrix   *offd   = hypre_ParCSRMatrixOffd(A);
   hypre_Vector      *x_local  = hypre_ParVectorLocalVector(x);   
   hypre_Vector      *y_local  = hypre_ParVectorLocalVector(y);   
   HYPRE_Int          num_rows = hypre_ParCSRMatrixGlobalNumRows(A);
   HYPRE_Int          num_cols = hypre_ParCSRMatrixGlobalNumCols(A);

   hypre_Vector      *x_tmp;
   HYPRE_Int          x_size = hypre_ParVectorGlobalSize(x);
   HYPRE_Int          y_size = hypre_ParVectorGlobalSize(y);
   HYPRE_Int          num_vectors = hypre_VectorNumVectors(x_local);
   HYPRE_Int          num_cols_offd = hypre_CSRMatrixNumCols(offd);
   HYPRE_Int          ierr = 0;
   HYPRE_Int          num_sends, i, j, jv, index, start;

   HYPRE_Int          vecstride = hypre_VectorVectorStride( x_local );
   HYPRE_Int          idxstride = hypre_VectorIndexStride( x_local );

   HYPRE_Complex     *x_tmp_data, **x_buf_data;
   HYPRE_Complex     *x_local_data = hypre_VectorData(x_local);

   /*---------------------------------------------------------------------
    *  Check for size compatibility.  ParMatvec returns ierr = 11 if
    *  length of X doesn't equal the number of columns of A,
    *  ierr = 12 if the length of Y doesn't equal the number of rows
    *  of A, and ierr = 13 if both are true.
    *
    *  Because temporary vectors are often used in ParMatvec, none of 
    *  these conditions terminates processing, and the ierr flag
    *  is informational only.
    *--------------------------------------------------------------------*/
 
   hypre_assert( idxstride>0 );

   if (num_cols != x_size)
      ierr = 11;

   if (num_rows != y_size)
      ierr = 12;

   if (num_cols != x_size && num_rows != y_size)
      ierr = 13;

   hypre_assert( hypre_VectorNumVectors(y_local)==num_vectors );

   if ( num_vectors==1 )
      x_tmp = hypre_SeqVectorCreate( num_cols_offd );
   else
   {
      hypre_assert( num_vectors>1 );
      x_tmp = hypre_SeqMultiVectorCreate( num_cols_offd, num_vectors );
   }
   hypre_SeqVectorInitialize(x_tmp);
   x_tmp_data = hypre_VectorData(x_tmp);
   
   comm_handle = hypre_CTAlloc(hypre_ParCSRCommHandle*,num_vectors);

   /*---------------------------------------------------------------------
    * If there exists no CommPkg for A, a CommPkg is generated using
    * equally load balanced partitionings
    *--------------------------------------------------------------------*/
   if (!comm_pkg)
   {
      hypre_MatvecCommPkgCreate(A);
      comm_pkg = hypre_ParCSRMatrixCommPkg(A); 
   }

   num_sends = hypre_ParCSRCommPkgNumSends(comm_pkg);
   x_buf_data = hypre_CTAlloc( HYPRE_Complex*, num_vectors );
   for ( jv=0; jv<num_vectors; ++jv )
      x_buf_data[jv] = hypre_CTAlloc(HYPRE_Complex, hypre_ParCSRCommPkgSendMapStart
                                     (comm_pkg, num_sends));

   if ( num_vectors==1 )
   {
      index = 0;
      for (i = 0; i < num_sends; i++)
      {
         start = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i);
         for (j = start; j < hypre_ParCSRCommPkgSendMapStart(comm_pkg, i+1); j++)
            x_buf_data[0][index++] 
               = x_local_data[hypre_ParCSRCommPkgSendMapElmt(comm_pkg,j)];
      }
   }
   else
      for ( jv=0; jv<num_vectors; ++jv )
      {
         index = 0;
         for (i = 0; i < num_sends; i++)
         {
            start = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i);
            for (j = start; j < hypre_ParCSRCommPkgSendMapStart(comm_pkg, i+1); j++)
               x_buf_data[jv][index++] 
                  = x_local_data[
                     jv*vecstride +
                     idxstride*hypre_ParCSRCommPkgSendMapElmt(comm_pkg,j) ];
         }
      }

   hypre_assert( idxstride==1 );
   /* ... The assert is because the following loop only works for 'column'
      storage of a multivector. This needs to be fixed to work more generally,
      at least for 'row' storage. This in turn, means either change CommPkg so
      num_sends is no.zones*no.vectors (not no.zones) or, less dangerously, put
      a stride in the logic of CommHandleCreate (stride either from a new arg or
      a new variable inside CommPkg).  Or put the num_vector iteration inside
      CommHandleCreate (perhaps a new multivector variant of it).
   */
   for ( jv=0; jv<num_vectors; ++jv )
   {
      comm_handle[jv] = hypre_ParCSRCommHandleCreate
         ( 1, comm_pkg, x_buf_data[jv], &(x_tmp_data[jv*num_cols_offd]) );
   }

   hypre_CSRMatrixMatvec( alpha, diag, x_local, beta, y_local);
   
   for ( jv=0; jv<num_vectors; ++jv )
   {
      hypre_ParCSRCommHandleDestroy(comm_handle[jv]);
      comm_handle[jv] = NULL;
   }
   hypre_TFree(comm_handle);

   if (num_cols_offd) hypre_CSRMatrixMatvec( alpha, offd, x_tmp, 1.0, y_local);    

   hypre_SeqVectorDestroy(x_tmp);
   x_tmp = NULL;
   for ( jv=0; jv<num_vectors; ++jv ) hypre_TFree(x_buf_data[jv]);
   hypre_TFree(x_buf_data);
  
   return ierr;
}
Esempio n. 6
0
HYPRE_Int
hypre_ParCSRMatrixMatvecT( HYPRE_Complex       alpha,
                           hypre_ParCSRMatrix *A,
                           hypre_ParVector    *x,
                           HYPRE_Complex       beta,
                           hypre_ParVector    *y )
{
   hypre_ParCSRCommHandle **comm_handle;
   hypre_ParCSRCommPkg *comm_pkg = hypre_ParCSRMatrixCommPkg(A);
   hypre_CSRMatrix     *diag = hypre_ParCSRMatrixDiag(A);
   hypre_CSRMatrix     *offd = hypre_ParCSRMatrixOffd(A);
   hypre_Vector        *x_local = hypre_ParVectorLocalVector(x);
   hypre_Vector        *y_local = hypre_ParVectorLocalVector(y);
   hypre_Vector        *y_tmp;
   HYPRE_Int            vecstride = hypre_VectorVectorStride( y_local );
   HYPRE_Int            idxstride = hypre_VectorIndexStride( y_local );
   HYPRE_Complex       *y_tmp_data, **y_buf_data;
   HYPRE_Complex       *y_local_data = hypre_VectorData(y_local);

   HYPRE_Int         num_rows  = hypre_ParCSRMatrixGlobalNumRows(A);
   HYPRE_Int         num_cols  = hypre_ParCSRMatrixGlobalNumCols(A);
   HYPRE_Int         num_cols_offd = hypre_CSRMatrixNumCols(offd);
   HYPRE_Int         x_size = hypre_ParVectorGlobalSize(x);
   HYPRE_Int         y_size = hypre_ParVectorGlobalSize(y);
   HYPRE_Int         num_vectors = hypre_VectorNumVectors(y_local);

   HYPRE_Int         i, j, jv, index, start, num_sends;

   HYPRE_Int         ierr  = 0;

   /*---------------------------------------------------------------------
    *  Check for size compatibility.  MatvecT returns ierr = 1 if
    *  length of X doesn't equal the number of rows of A,
    *  ierr = 2 if the length of Y doesn't equal the number of 
    *  columns of A, and ierr = 3 if both are true.
    *
    *  Because temporary vectors are often used in MatvecT, none of 
    *  these conditions terminates processing, and the ierr flag
    *  is informational only.
    *--------------------------------------------------------------------*/
 
   if (num_rows != x_size)
      ierr = 1;

   if (num_cols != y_size)
      ierr = 2;

   if (num_rows != x_size && num_cols != y_size)
      ierr = 3;
   /*-----------------------------------------------------------------------
    *-----------------------------------------------------------------------*/

   comm_handle = hypre_CTAlloc(hypre_ParCSRCommHandle*,num_vectors);

   if ( num_vectors==1 )
   {
      y_tmp = hypre_SeqVectorCreate(num_cols_offd);
   }
   else
   {
      y_tmp = hypre_SeqMultiVectorCreate(num_cols_offd,num_vectors);
   }
   hypre_SeqVectorInitialize(y_tmp);

   /*---------------------------------------------------------------------
    * If there exists no CommPkg for A, a CommPkg is generated using
    * equally load balanced partitionings
    *--------------------------------------------------------------------*/
   if (!comm_pkg)
   {
      hypre_MatvecCommPkgCreate(A);
      comm_pkg = hypre_ParCSRMatrixCommPkg(A); 
   }

   num_sends = hypre_ParCSRCommPkgNumSends(comm_pkg);
   y_buf_data = hypre_CTAlloc( HYPRE_Complex*, num_vectors );
   for ( jv=0; jv<num_vectors; ++jv )
      y_buf_data[jv] = hypre_CTAlloc(HYPRE_Complex, hypre_ParCSRCommPkgSendMapStart
                                     (comm_pkg, num_sends));
   y_tmp_data = hypre_VectorData(y_tmp);
   y_local_data = hypre_VectorData(y_local);

   hypre_assert( idxstride==1 ); /* only 'column' storage of multivectors
                                  * implemented so far */

   if (num_cols_offd) hypre_CSRMatrixMatvecT(alpha, offd, x_local, 0.0, y_tmp);

   for ( jv=0; jv<num_vectors; ++jv )
   {
      /* this is where we assume multivectors are 'column' storage */
      comm_handle[jv] = hypre_ParCSRCommHandleCreate
         ( 2, comm_pkg, &(y_tmp_data[jv*num_cols_offd]), y_buf_data[jv] );
   }

   hypre_CSRMatrixMatvecT(alpha, diag, x_local, beta, y_local);

   for ( jv=0; jv<num_vectors; ++jv )
   {
      hypre_ParCSRCommHandleDestroy(comm_handle[jv]);
      comm_handle[jv] = NULL;
   }
   hypre_TFree(comm_handle);

   if ( num_vectors==1 )
   {
      index = 0;
      for (i = 0; i < num_sends; i++)
      {
         start = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i);
         for (j = start; j < hypre_ParCSRCommPkgSendMapStart(comm_pkg, i+1); j++)
            y_local_data[hypre_ParCSRCommPkgSendMapElmt(comm_pkg,j)]
               += y_buf_data[0][index++];
      }
   }
   else
      for ( jv=0; jv<num_vectors; ++jv )
      {
         index = 0;
         for (i = 0; i < num_sends; i++)
         {
            start = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i);
            for (j = start; j < hypre_ParCSRCommPkgSendMapStart(comm_pkg, i+1); j++)
               y_local_data[ jv*vecstride +
                             idxstride*hypre_ParCSRCommPkgSendMapElmt(comm_pkg,j) ]
                  += y_buf_data[jv][index++];
         }
      }
        
   hypre_SeqVectorDestroy(y_tmp);
   y_tmp = NULL;
   for ( jv=0; jv<num_vectors; ++jv ) hypre_TFree(y_buf_data[jv]);
   hypre_TFree(y_buf_data);

   return ierr;
}
Esempio n. 7
0
HYPRE_Int  hypre_BoomerAMGRelaxT( hypre_ParCSRMatrix *A,
                        hypre_ParVector    *f,
                        HYPRE_Int                *cf_marker,
                        HYPRE_Int                 relax_type,
                        HYPRE_Int                 relax_points,
                        HYPRE_Real          relax_weight,
                        hypre_ParVector    *u,
                        hypre_ParVector    *Vtemp )
{
   hypre_CSRMatrix *A_diag = hypre_ParCSRMatrixDiag(A);
   HYPRE_Real     *A_diag_data  = hypre_CSRMatrixData(A_diag);
   HYPRE_Int            *A_diag_i     = hypre_CSRMatrixI(A_diag);

   HYPRE_Int             n_global= hypre_ParCSRMatrixGlobalNumRows(A);
   HYPRE_Int             n       = hypre_CSRMatrixNumRows(A_diag);
   HYPRE_Int	      	   first_index = hypre_ParVectorFirstIndex(u);
   
   hypre_Vector   *u_local = hypre_ParVectorLocalVector(u);
   HYPRE_Real     *u_data  = hypre_VectorData(u_local);

   hypre_Vector   *Vtemp_local = hypre_ParVectorLocalVector(Vtemp);
   HYPRE_Real     *Vtemp_data = hypre_VectorData(Vtemp_local);

   hypre_CSRMatrix *A_CSR;
   HYPRE_Int		   *A_CSR_i;   
   HYPRE_Int		   *A_CSR_j;
   HYPRE_Real	   *A_CSR_data;
   
   hypre_Vector    *f_vector;
   HYPRE_Real	   *f_vector_data;

   HYPRE_Int             i;
   HYPRE_Int             jj;
   HYPRE_Int             column;
   HYPRE_Int             relax_error = 0;

   HYPRE_Real     *A_mat;
   HYPRE_Real     *b_vec;

   HYPRE_Real      zero = 0.0;
  
   /*-----------------------------------------------------------------------
    * Switch statement to direct control based on relax_type:
    *     relax_type = 7 -> Jacobi (uses ParMatvec)
    *     relax_type = 9 -> Direct Solve
    *-----------------------------------------------------------------------*/
   
   switch (relax_type)
   {            

      case 7: /* Jacobi (uses ParMatvec) */
      {
 
         /*-----------------------------------------------------------------
          * Copy f into temporary vector.
          *-----------------------------------------------------------------*/
        
         hypre_ParVectorCopy(f,Vtemp); 
 
         /*-----------------------------------------------------------------
          * Perform MatvecT Vtemp=f-A^Tu
          *-----------------------------------------------------------------*/
 
            hypre_ParCSRMatrixMatvecT(-1.0,A, u, 1.0, Vtemp);
            for (i = 0; i < n; i++)
            {
 
               /*-----------------------------------------------------------
                * If diagonal is nonzero, relax point i; otherwise, skip it.
                *-----------------------------------------------------------*/
           
               if (A_diag_data[A_diag_i[i]] != zero)
               {
                  u_data[i] += relax_weight * Vtemp_data[i] 
				/ A_diag_data[A_diag_i[i]];
               }
            }
      }
      break;
      
      
      case 9: /* Direct solve: use gaussian elimination */
      {

         /*-----------------------------------------------------------------
          *  Generate CSR matrix from ParCSRMatrix A
          *-----------------------------------------------------------------*/

	 if (n)
	 {
	    A_CSR = hypre_ParCSRMatrixToCSRMatrixAll(A);
	    f_vector = hypre_ParVectorToVectorAll(f);
 	    A_CSR_i = hypre_CSRMatrixI(A_CSR);
 	    A_CSR_j = hypre_CSRMatrixJ(A_CSR);
 	    A_CSR_data = hypre_CSRMatrixData(A_CSR);
   	    f_vector_data = hypre_VectorData(f_vector);

            A_mat = hypre_CTAlloc(HYPRE_Real, n_global*n_global);
            b_vec = hypre_CTAlloc(HYPRE_Real, n_global);    

            /*---------------------------------------------------------------
             *  Load transpose of CSR matrix into A_mat.
             *---------------------------------------------------------------*/

            for (i = 0; i < n_global; i++)
            {
               for (jj = A_CSR_i[i]; jj < A_CSR_i[i+1]; jj++)
               {
                  column = A_CSR_j[jj];
                  A_mat[column*n_global+i] = A_CSR_data[jj];
               }
               b_vec[i] = f_vector_data[i];
            }

            relax_error = gselim(A_mat,b_vec,n_global);

            for (i = 0; i < n; i++)
            {
               u_data[i] = b_vec[first_index+i];
            }

	    hypre_TFree(A_mat); 
            hypre_TFree(b_vec);
            hypre_CSRMatrixDestroy(A_CSR);
            A_CSR = NULL;
            hypre_SeqVectorDestroy(f_vector);
            f_vector = NULL;
         
         }
      }
      break;   
   }

   return(relax_error); 
}
HYPRE_Int
hypre_ParCSRBlockMatrixMatvec(HYPRE_Complex alpha,
                              hypre_ParCSRBlockMatrix *A,
                              hypre_ParVector *x,
                              HYPRE_Complex beta,
                              hypre_ParVector *y)
{
   hypre_ParCSRCommHandle *comm_handle;
   hypre_ParCSRCommPkg    *comm_pkg;
   hypre_CSRBlockMatrix   *diag, *offd;
   hypre_Vector           *x_local, *y_local, *x_tmp;
   HYPRE_Int               i, j, k, index, num_rows, num_cols;
   HYPRE_Int               blk_size, x_size, y_size, size;
   HYPRE_Int               num_cols_offd, start, finish, elem;
   HYPRE_Int               ierr = 0, nprocs, num_sends, mypid;
   HYPRE_Complex          *x_tmp_data, *x_buf_data, *x_local_data;

   hypre_MPI_Comm_size(hypre_ParCSRBlockMatrixComm(A), &nprocs);
   hypre_MPI_Comm_rank(hypre_ParCSRBlockMatrixComm(A), &mypid);
   comm_pkg = hypre_ParCSRBlockMatrixCommPkg(A);
   num_rows = hypre_ParCSRBlockMatrixGlobalNumRows(A);
   num_cols = hypre_ParCSRBlockMatrixGlobalNumCols(A);
   blk_size = hypre_ParCSRBlockMatrixBlockSize(A);
   diag   = hypre_ParCSRBlockMatrixDiag(A);
   offd   = hypre_ParCSRBlockMatrixOffd(A);
   num_cols_offd = hypre_CSRBlockMatrixNumCols(offd);
   x_local  = hypre_ParVectorLocalVector(x);   
   y_local  = hypre_ParVectorLocalVector(y);   
   x_size = hypre_ParVectorGlobalSize(x);
   y_size = hypre_ParVectorGlobalSize(y);
   x_local_data = hypre_VectorData(x_local);

   /*---------------------------------------------------------------------
    *  Check for size compatibility.  
    *--------------------------------------------------------------------*/
 
   if (num_cols*blk_size != x_size) ierr = 11;
   if (num_rows*blk_size != y_size) ierr = 12;
   if (num_cols*blk_size != x_size && num_rows*blk_size != y_size) ierr = 13;

   if (nprocs > 1)
   {
      x_tmp = hypre_SeqVectorCreate(num_cols_offd*blk_size);
      hypre_SeqVectorInitialize(x_tmp);
      x_tmp_data = hypre_VectorData(x_tmp);

      if (!comm_pkg)
      {
         hypre_BlockMatvecCommPkgCreate(A);
         comm_pkg = hypre_ParCSRBlockMatrixCommPkg(A); 
      }
      num_sends = hypre_ParCSRCommPkgNumSends(comm_pkg);
      size = hypre_ParCSRCommPkgSendMapStart(comm_pkg,num_sends)*blk_size;
      x_buf_data = hypre_CTAlloc(HYPRE_Complex, size);
      index = 0;
      for (i = 0; i < num_sends; i++)
      {
         start = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i);
         finish = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i+1);
         for (j = start; j < finish; j++)
         {
            elem = hypre_ParCSRCommPkgSendMapElmt(comm_pkg,j)*blk_size;
            for (k = 0; k < blk_size; k++)
               x_buf_data[index++] = x_local_data[elem++];
         }
      }
      comm_handle = hypre_ParCSRBlockCommHandleCreate(1, blk_size,comm_pkg,
                                                      x_buf_data, x_tmp_data);
   }
   hypre_CSRBlockMatrixMatvec(alpha, diag, x_local, beta, y_local);
   if (nprocs > 1)
   {
      hypre_ParCSRBlockCommHandleDestroy(comm_handle);
      comm_handle = NULL;
      if (num_cols_offd) 
         hypre_CSRBlockMatrixMatvec(alpha,offd,x_tmp,1.0,y_local);    
      hypre_SeqVectorDestroy(x_tmp);
      x_tmp = NULL;
      hypre_TFree(x_buf_data);
   }
   return ierr;
}
HYPRE_Int
hypre_ParCSRBlockMatrixMatvecT( HYPRE_Complex    alpha,
                                hypre_ParCSRBlockMatrix *A,
                                hypre_ParVector    *x,
                                HYPRE_Complex    beta,
                                hypre_ParVector    *y     )
{
   hypre_ParCSRCommHandle       *comm_handle;
   hypre_ParCSRCommPkg  *comm_pkg = hypre_ParCSRBlockMatrixCommPkg(A);
   hypre_CSRBlockMatrix *diag = hypre_ParCSRBlockMatrixDiag(A);
   hypre_CSRBlockMatrix *offd = hypre_ParCSRBlockMatrixOffd(A);
   hypre_Vector *x_local = hypre_ParVectorLocalVector(x);
   hypre_Vector *y_local = hypre_ParVectorLocalVector(y);
   hypre_Vector *y_tmp;

   HYPRE_Complex    *y_local_data;
   HYPRE_Int         blk_size = hypre_ParCSRBlockMatrixBlockSize(A);
   HYPRE_Int         x_size = hypre_ParVectorGlobalSize(x);
   HYPRE_Int         y_size = hypre_ParVectorGlobalSize(y);
   HYPRE_Complex    *y_tmp_data, *y_buf_data;
   

   HYPRE_Int         num_rows  = hypre_ParCSRBlockMatrixGlobalNumRows(A);
   HYPRE_Int         num_cols  = hypre_ParCSRBlockMatrixGlobalNumCols(A);
   HYPRE_Int           num_cols_offd = hypre_CSRBlockMatrixNumCols(offd);


   HYPRE_Int         i, j, index, start, finish, elem, num_sends;
   HYPRE_Int         size, k;
   

   HYPRE_Int         ierr  = 0;

   /*---------------------------------------------------------------------
    *  Check for size compatibility.  MatvecT returns ierr = 1 if
    *  length of X doesn't equal the number of rows of A,
    *  ierr = 2 if the length of Y doesn't equal the number of 
    *  columns of A, and ierr = 3 if both are true.
    *
    *  Because temporary vectors are often used in MatvecT, none of 
    *  these conditions terminates processing, and the ierr flag
    *  is informational only.
    *--------------------------------------------------------------------*/
 
   if (num_rows*blk_size != x_size)
      ierr = 1;

   if (num_cols*blk_size != y_size)
      ierr = 2;

   if (num_rows*blk_size != x_size && num_cols*blk_size != y_size)
      ierr = 3;
   /*-----------------------------------------------------------------------
    *-----------------------------------------------------------------------*/


   y_tmp = hypre_SeqVectorCreate(num_cols_offd*blk_size);
   hypre_SeqVectorInitialize(y_tmp);


   /*---------------------------------------------------------------------
    * If there exists no CommPkg for A, a CommPkg is generated using
    * equally load balanced partitionings
    *--------------------------------------------------------------------*/
   if (!comm_pkg)
   {
      hypre_BlockMatvecCommPkgCreate(A);
      comm_pkg = hypre_ParCSRBlockMatrixCommPkg(A); 
   }

   num_sends = hypre_ParCSRCommPkgNumSends(comm_pkg);
   size = hypre_ParCSRCommPkgSendMapStart(comm_pkg, num_sends)*blk_size;
   y_buf_data = hypre_CTAlloc(HYPRE_Complex, size);

   y_tmp_data = hypre_VectorData(y_tmp);
   y_local_data = hypre_VectorData(y_local);
  
   if (num_cols_offd) hypre_CSRBlockMatrixMatvecT(alpha, offd, x_local, 0.0, y_tmp);

   comm_handle = hypre_ParCSRBlockCommHandleCreate
      ( 2, blk_size, comm_pkg, y_tmp_data, y_buf_data);

  
   hypre_CSRBlockMatrixMatvecT(alpha, diag, x_local, beta, y_local);


   hypre_ParCSRCommHandleDestroy(comm_handle);
   comm_handle = NULL;

   index = 0;
   for (i = 0; i < num_sends; i++)
   {
      start = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i);
      finish = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i+1);
      
      for (j = start; j < finish; j++)
      {
         elem =  hypre_ParCSRCommPkgSendMapElmt(comm_pkg, j)*blk_size;
         for (k = 0; k < blk_size; k++)
         {
            y_local_data[elem++]
               += y_buf_data[index++];
         }
      }
   }
   
   hypre_TFree(y_buf_data);

        
   hypre_SeqVectorDestroy(y_tmp);
   y_tmp = NULL;
   
   return ierr;
}
Esempio n. 10
0
int 
HYPRE_VectorDestroy( HYPRE_Vector vector )
{
   return ( hypre_SeqVectorDestroy( (hypre_Vector *) vector ) );
}
Esempio n. 11
0
HYPRE_Int
hypre_CSRMatrixMatvecT( HYPRE_Complex    alpha,
                        hypre_CSRMatrix *A,
                        hypre_Vector    *x,
                        HYPRE_Complex    beta,
                        hypre_Vector    *y     )
{
   HYPRE_Complex    *A_data    = hypre_CSRMatrixData(A);
   HYPRE_Int        *A_i       = hypre_CSRMatrixI(A);
   HYPRE_Int        *A_j       = hypre_CSRMatrixJ(A);
   HYPRE_Int         num_rows  = hypre_CSRMatrixNumRows(A);
   HYPRE_Int         num_cols  = hypre_CSRMatrixNumCols(A);

   HYPRE_Complex    *x_data = hypre_VectorData(x);
   HYPRE_Complex    *y_data = hypre_VectorData(y);
   HYPRE_Int         x_size = hypre_VectorSize(x);
   HYPRE_Int         y_size = hypre_VectorSize(y);
   HYPRE_Int         num_vectors = hypre_VectorNumVectors(x);
   HYPRE_Int         idxstride_y = hypre_VectorIndexStride(y);
   HYPRE_Int         vecstride_y = hypre_VectorVectorStride(y);
   HYPRE_Int         idxstride_x = hypre_VectorIndexStride(x);
   HYPRE_Int         vecstride_x = hypre_VectorVectorStride(x);

   HYPRE_Complex     temp;

   HYPRE_Complex    *y_data_expand;
   HYPRE_Int         my_thread_num = 0, offset = 0;
   
   HYPRE_Int         i, j, jv, jj;
   HYPRE_Int         num_threads;

   HYPRE_Int         ierr  = 0;

   hypre_Vector     *x_tmp = NULL;

   /*---------------------------------------------------------------------
    *  Check for size compatibility.  MatvecT returns ierr = 1 if
    *  length of X doesn't equal the number of rows of A,
    *  ierr = 2 if the length of Y doesn't equal the number of 
    *  columns of A, and ierr = 3 if both are true.
    *
    *  Because temporary vectors are often used in MatvecT, none of 
    *  these conditions terminates processing, and the ierr flag
    *  is informational only.
    *--------------------------------------------------------------------*/

   hypre_assert( num_vectors == hypre_VectorNumVectors(y) );
 
   if (num_rows != x_size)
      ierr = 1;

   if (num_cols != y_size)
      ierr = 2;

   if (num_rows != x_size && num_cols != y_size)
      ierr = 3;
   /*-----------------------------------------------------------------------
    * Do (alpha == 0.0) computation - RDF: USE MACHINE EPS
    *-----------------------------------------------------------------------*/

   if (alpha == 0.0)
   {
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
      for (i = 0; i < num_cols*num_vectors; i++)
         y_data[i] *= beta;

      return ierr;
   }

   if (x == y)
   {
      x_tmp = hypre_SeqVectorCloneDeep(x);
      x_data = hypre_VectorData(x_tmp);
   }

   /*-----------------------------------------------------------------------
    * y = (beta/alpha)*y
    *-----------------------------------------------------------------------*/

   temp = beta / alpha;
   
   if (temp != 1.0)
   {
      if (temp == 0.0)
      {
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
         for (i = 0; i < num_cols*num_vectors; i++)
            y_data[i] = 0.0;
      }
      else
      {
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
         for (i = 0; i < num_cols*num_vectors; i++)
            y_data[i] *= temp;
      }
   }

   /*-----------------------------------------------------------------
    * y += A^T*x
    *-----------------------------------------------------------------*/
   num_threads = hypre_NumThreads();
   if (num_threads > 1)
   {
      y_data_expand = hypre_CTAlloc(HYPRE_Complex, num_threads*y_size);

      if ( num_vectors==1 )
      {

#ifdef HYPRE_USING_OPENMP
#pragma omp parallel private(i,jj,j,my_thread_num,offset)
#endif
         {                                      
            my_thread_num = hypre_GetThreadNum();
            offset =  y_size*my_thread_num;
#ifdef HYPRE_USING_OPENMP
#pragma omp for HYPRE_SMP_SCHEDULE
#endif
            for (i = 0; i < num_rows; i++)
            {
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  j = A_j[jj];
                  y_data_expand[offset + j] += A_data[jj] * x_data[i];
               }
            }

            /* implied barrier (for threads)*/           
#ifdef HYPRE_USING_OPENMP
#pragma omp for HYPRE_SMP_SCHEDULE
#endif
            for (i = 0; i < y_size; i++)
            {
               for (j = 0; j < num_threads; j++)
               {
                  y_data[i] += y_data_expand[j*y_size + i];
                  
               }
            }

         } /* end parallel threaded region */
      }
      else
      {
         /* multiple vector case is not threaded */
         for (i = 0; i < num_rows; i++)
         {
            for ( jv=0; jv<num_vectors; ++jv )
            {
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  j = A_j[jj];
                  y_data[ j*idxstride_y + jv*vecstride_y ] +=
                     A_data[jj] * x_data[ i*idxstride_x + jv*vecstride_x];
               }
            }
         }
      }

      hypre_TFree(y_data_expand);

   }
   else 
   {
      for (i = 0; i < num_rows; i++)
      {
         if ( num_vectors==1 )
         {
            for (jj = A_i[i]; jj < A_i[i+1]; jj++)
            {
               j = A_j[jj];
               y_data[j] += A_data[jj] * x_data[i];
            }
         }
         else
         {
            for ( jv=0; jv<num_vectors; ++jv )
            {
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  j = A_j[jj];
                  y_data[ j*idxstride_y + jv*vecstride_y ] +=
                     A_data[jj] * x_data[ i*idxstride_x + jv*vecstride_x ];
               }
            }
         }
      }
   }
   /*-----------------------------------------------------------------
    * y = alpha*y
    *-----------------------------------------------------------------*/

   if (alpha != 1.0)
   {
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
      for (i = 0; i < num_cols*num_vectors; i++)
         y_data[i] *= alpha;
   }

   if (x == y) hypre_SeqVectorDestroy(x_tmp);

   return ierr;
}
Esempio n. 12
0
/* y[offset:end] = alpha*A[offset:end,:]*x + beta*b[offset:end] */
HYPRE_Int
hypre_CSRMatrixMatvecOutOfPlace( HYPRE_Complex    alpha,
                                 hypre_CSRMatrix *A,
                                 hypre_Vector    *x,
                                 HYPRE_Complex    beta,
                                 hypre_Vector    *b,
                                 hypre_Vector    *y,
                                 HYPRE_Int        offset     )
{
#ifdef HYPRE_PROFILE
   HYPRE_Real time_begin = hypre_MPI_Wtime();
#endif

   HYPRE_Complex    *A_data   = hypre_CSRMatrixData(A);
   HYPRE_Int        *A_i      = hypre_CSRMatrixI(A) + offset;
   HYPRE_Int        *A_j      = hypre_CSRMatrixJ(A);
   HYPRE_Int         num_rows = hypre_CSRMatrixNumRows(A) - offset;
   HYPRE_Int         num_cols = hypre_CSRMatrixNumCols(A);
   /*HYPRE_Int         num_nnz  = hypre_CSRMatrixNumNonzeros(A);*/

   HYPRE_Int        *A_rownnz = hypre_CSRMatrixRownnz(A);
   HYPRE_Int         num_rownnz = hypre_CSRMatrixNumRownnz(A);

   HYPRE_Complex    *x_data = hypre_VectorData(x);
   HYPRE_Complex    *b_data = hypre_VectorData(b) + offset;
   HYPRE_Complex    *y_data = hypre_VectorData(y);
   HYPRE_Int         x_size = hypre_VectorSize(x);
   HYPRE_Int         b_size = hypre_VectorSize(b) - offset;
   HYPRE_Int         y_size = hypre_VectorSize(y) - offset;
   HYPRE_Int         num_vectors = hypre_VectorNumVectors(x);
   HYPRE_Int         idxstride_y = hypre_VectorIndexStride(y);
   HYPRE_Int         vecstride_y = hypre_VectorVectorStride(y);
   /*HYPRE_Int         idxstride_b = hypre_VectorIndexStride(b);
   HYPRE_Int         vecstride_b = hypre_VectorVectorStride(b);*/
   HYPRE_Int         idxstride_x = hypre_VectorIndexStride(x);
   HYPRE_Int         vecstride_x = hypre_VectorVectorStride(x);

   HYPRE_Complex     temp, tempx;

   HYPRE_Int         i, j, jj;

   HYPRE_Int         m;

   HYPRE_Real        xpar=0.7;

   HYPRE_Int         ierr = 0;
   hypre_Vector	    *x_tmp = NULL;

   /*---------------------------------------------------------------------
    *  Check for size compatibility.  Matvec returns ierr = 1 if
    *  length of X doesn't equal the number of columns of A,
    *  ierr = 2 if the length of Y doesn't equal the number of rows
    *  of A, and ierr = 3 if both are true.
    *
    *  Because temporary vectors are often used in Matvec, none of 
    *  these conditions terminates processing, and the ierr flag
    *  is informational only.
    *--------------------------------------------------------------------*/
 
   hypre_assert( num_vectors == hypre_VectorNumVectors(y) );
   hypre_assert( num_vectors == hypre_VectorNumVectors(b) );

   if (num_cols != x_size)
      ierr = 1;

   if (num_rows != y_size || num_rows != b_size)
      ierr = 2;

   if (num_cols != x_size && (num_rows != y_size || num_rows != b_size))
      ierr = 3;

   /*-----------------------------------------------------------------------
    * Do (alpha == 0.0) computation - RDF: USE MACHINE EPS
    *-----------------------------------------------------------------------*/

   if (alpha == 0.0)
   {
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
      for (i = 0; i < num_rows*num_vectors; i++)
         y_data[i] *= beta;

#ifdef HYPRE_PROFILE
      hypre_profile_times[HYPRE_TIMER_ID_MATVEC] += hypre_MPI_Wtime() - time_begin;
#endif

      return ierr;
   }

   if (x == y)
   {
      x_tmp = hypre_SeqVectorCloneDeep(x);
      x_data = hypre_VectorData(x_tmp);
   }

   /*-----------------------------------------------------------------------
    * y = (beta/alpha)*y
    *-----------------------------------------------------------------------*/
   
   temp = beta / alpha;
   
/* use rownnz pointer to do the A*x multiplication  when num_rownnz is smaller than num_rows */

   if (num_rownnz < xpar*(num_rows) || num_vectors > 1)
   {
      /*-----------------------------------------------------------------------
       * y = (beta/alpha)*y
       *-----------------------------------------------------------------------*/
     
      if (temp != 1.0)
      {
         if (temp == 0.0)
         {
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
            for (i = 0; i < num_rows*num_vectors; i++)
               y_data[i] = 0.0;
         }
         else
         {
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
            for (i = 0; i < num_rows*num_vectors; i++)
               y_data[i] = b_data[i]*temp;
         }
      }


      /*-----------------------------------------------------------------
       * y += A*x
       *-----------------------------------------------------------------*/

      if (num_rownnz < xpar*(num_rows))
      {
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i,j,jj,m,tempx) HYPRE_SMP_SCHEDULE
#endif

         for (i = 0; i < num_rownnz; i++)
         {
            m = A_rownnz[i];

            /*
             * for (jj = A_i[m]; jj < A_i[m+1]; jj++)
             * {
             *         j = A_j[jj];
             *  y_data[m] += A_data[jj] * x_data[j];
             * } */
            if ( num_vectors==1 )
            {
               tempx = 0;
               for (jj = A_i[m]; jj < A_i[m+1]; jj++)
                  tempx +=  A_data[jj] * x_data[A_j[jj]];
               y_data[m] += tempx;
            }
            else
               for ( j=0; j<num_vectors; ++j )
               {
                  tempx = 0;
                  for (jj = A_i[m]; jj < A_i[m+1]; jj++) 
                     tempx +=  A_data[jj] * x_data[ j*vecstride_x + A_j[jj]*idxstride_x ];
                  y_data[ j*vecstride_y + m*idxstride_y] += tempx;
               }
         }
      }
      else // num_vectors > 1
      {
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i,j,jj,tempx) HYPRE_SMP_SCHEDULE
#endif
         for (i = 0; i < num_rows; i++)
         {
            for (j = 0; j < num_vectors; ++j)
            {
               tempx = 0;
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  tempx += A_data[jj] * x_data[ j*vecstride_x + A_j[jj]*idxstride_x ];
               }
               y_data[ j*vecstride_y + i*idxstride_y ] += tempx;
            }
         }
      }

      /*-----------------------------------------------------------------
       * y = alpha*y
       *-----------------------------------------------------------------*/

      if (alpha != 1.0)
      {
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel for private(i) HYPRE_SMP_SCHEDULE
#endif
         for (i = 0; i < num_rows*num_vectors; i++)
            y_data[i] *= alpha;
      }
   }
   else
   { // JSP: this is currently the only path optimized
#ifdef HYPRE_USING_OPENMP
#pragma omp parallel private(i,jj,tempx)
#endif
      {
      HYPRE_Int iBegin = hypre_CSRMatrixGetLoadBalancedPartitionBegin(A);
      HYPRE_Int iEnd = hypre_CSRMatrixGetLoadBalancedPartitionEnd(A);
      hypre_assert(iBegin <= iEnd);
      hypre_assert(iBegin >= 0 && iBegin <= num_rows);
      hypre_assert(iEnd >= 0 && iEnd <= num_rows);

      if (0 == temp)
      {
         if (1 == alpha) // JSP: a common path
         {
            for (i = iBegin; i < iEnd; i++)
            {
               tempx = 0.0;
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  tempx += A_data[jj] * x_data[A_j[jj]];
               }
               y_data[i] = tempx;
            }
         } // y = A*x
         else if (-1 == alpha)
         {
            for (i = iBegin; i < iEnd; i++)
            {
               tempx = 0.0;
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  tempx -= A_data[jj] * x_data[A_j[jj]];
               }
               y_data[i] = tempx;
            }
         } // y = -A*x
         else
         {
            for (i = iBegin; i < iEnd; i++)
            {
               tempx = 0.0;
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  tempx += A_data[jj] * x_data[A_j[jj]];
               }
               y_data[i] = alpha*tempx;
            }
         } // y = alpha*A*x
      } // temp == 0
      else if (-1 == temp) // beta == -alpha
      {
         if (1 == alpha) // JSP: a common path
         {
            for (i = iBegin; i < iEnd; i++)
            {
               tempx = -b_data[i];
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  tempx += A_data[jj] * x_data[A_j[jj]];
               }
               y_data[i] = tempx;
            }
         } // y = A*x - y
         else if (-1 == alpha) // JSP: a common path
         {
            for (i = iBegin; i < iEnd; i++)
            {
               tempx = b_data[i];
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  tempx -= A_data[jj] * x_data[A_j[jj]];
               }
               y_data[i] = tempx;
            }
         } // y = -A*x + y
         else
         {
            for (i = iBegin; i < iEnd; i++)
            {
               tempx = -b_data[i];
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  tempx += A_data[jj] * x_data[A_j[jj]];
               }
               y_data[i] = alpha*tempx;
            }
         } // y = alpha*(A*x - y)
      } // temp == -1
      else if (1 == temp)
      {
         if (1 == alpha) // JSP: a common path
         {
            for (i = iBegin; i < iEnd; i++)
            {
               tempx = b_data[i];
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  tempx += A_data[jj] * x_data[A_j[jj]];
               }
               y_data[i] = tempx;
            }
         } // y = A*x + y
         else if (-1 == alpha)
         {
            for (i = iBegin; i < iEnd; i++)
            {
               tempx = -b_data[i];
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  tempx -= A_data[jj] * x_data[A_j[jj]];
               }
               y_data[i] = tempx;
            }
         } // y = -A*x - y
         else
         {
            for (i = iBegin; i < iEnd; i++)
            {
               tempx = b_data[i];
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  tempx += A_data[jj] * x_data[A_j[jj]];
               }
               y_data[i] = alpha*tempx;
            }
         } // y = alpha*(A*x + y)
      }
      else
      {
         if (1 == alpha) // JSP: a common path
         {
            for (i = iBegin; i < iEnd; i++)
            {
               tempx = b_data[i]*temp;
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  tempx += A_data[jj] * x_data[A_j[jj]];
               }
               y_data[i] = tempx;
            }
         } // y = A*x + temp*y
         else if (-1 == alpha)
         {
            for (i = iBegin; i < iEnd; i++)
            {
               tempx = -b_data[i]*temp;
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  tempx -= A_data[jj] * x_data[A_j[jj]];
               }
               y_data[i] = tempx;
            }
         } // y = -A*x - temp*y
         else
         {
            for (i = iBegin; i < iEnd; i++)
            {
               tempx = b_data[i]*temp;
               for (jj = A_i[i]; jj < A_i[i+1]; jj++)
               {
                  tempx += A_data[jj] * x_data[A_j[jj]];
               }
               y_data[i] = alpha*tempx;
            }
         } // y = alpha*(A*x + temp*y)
      } // temp != 0 && temp != -1 && temp != 1
      } // omp parallel
   }

   if (x == y) hypre_SeqVectorDestroy(x_tmp);

#ifdef HYPRE_PROFILE
   hypre_profile_times[HYPRE_TIMER_ID_MATVEC] += hypre_MPI_Wtime() - time_begin;
#endif
   return ierr;
}
Esempio n. 13
0
HYPRE_Int
main( HYPRE_Int   argc,
      char *argv[] )
{
   hypre_ParVector   *vector1;
   hypre_ParVector   *vector2;
   hypre_ParVector   *tmp_vector;

   HYPRE_Int          num_procs, my_id;
   HYPRE_Int	 	global_size = 20;
   HYPRE_Int		local_size;
   HYPRE_Int		first_index;
   HYPRE_Int 		i;
   HYPRE_Int 		*partitioning;
   HYPRE_Complex	prod;
   HYPRE_Complex 	*data, *data2;
   hypre_Vector *vector; 
   hypre_Vector *local_vector; 
   hypre_Vector *local_vector2;
 
   /* Initialize MPI */
   hypre_MPI_Init(&argc, &argv);

   hypre_MPI_Comm_size(hypre_MPI_COMM_WORLD, &num_procs );
   hypre_MPI_Comm_rank(hypre_MPI_COMM_WORLD, &my_id );

   hypre_printf(" my_id: %d num_procs: %d\n", my_id, num_procs);
 
   partitioning = NULL;
   vector1 = hypre_ParVectorCreate(hypre_MPI_COMM_WORLD,global_size,partitioning);
   partitioning = hypre_ParVectorPartitioning(vector1);
   hypre_ParVectorInitialize(vector1);
   local_vector = hypre_ParVectorLocalVector(vector1);
   data = hypre_VectorData(local_vector);
   local_size = hypre_VectorSize(local_vector);
   first_index = partitioning[my_id];

   for (i=0; i < local_size; i++)
   	data[i] = first_index+i;
/*
   hypre_ParVectorPrint(vector1, "Vector");
*/
   local_vector2 = hypre_SeqVectorCreate(global_size);
   hypre_SeqVectorInitialize(local_vector2);
   data2 = hypre_VectorData(local_vector2);
   for (i=0; i < global_size; i++)
	data2[i] = i+1;

/*   partitioning = hypre_CTAlloc(HYPRE_Int,4);
   partitioning[0] = 0;
   partitioning[1] = 10;
   partitioning[2] = 10;
   partitioning[3] = 20;
*/
   vector2 = hypre_VectorToParVector(hypre_MPI_COMM_WORLD,local_vector2,partitioning);
   hypre_ParVectorSetPartitioningOwner(vector2,0);

   hypre_ParVectorPrint(vector2, "Convert");

   vector = hypre_ParVectorToVectorAll(vector2);

   /*-----------------------------------------------------------
    * Copy the vector into tmp_vector
    *-----------------------------------------------------------*/

   tmp_vector = hypre_ParVectorRead(hypre_MPI_COMM_WORLD, "Convert");
/*
   tmp_vector = hypre_ParVectorCreate(hypre_MPI_COMM_WORLD,global_size,partitioning);
   hypre_ParVectorSetPartitioningOwner(tmp_vector,0);
   hypre_ParVectorInitialize(tmp_vector);
   hypre_ParVectorCopy(vector1, tmp_vector);

   hypre_ParVectorPrint(tmp_vector,"Copy");
*/
   /*-----------------------------------------------------------
    * Scale tmp_vector
    *-----------------------------------------------------------*/

   hypre_ParVectorScale(2.0, tmp_vector);
/*
   hypre_ParVectorPrint(tmp_vector,"Scale");
*/
   /*-----------------------------------------------------------
    * Do an Axpy (2*vector - vector) = vector
    *-----------------------------------------------------------*/

   hypre_ParVectorAxpy(-1.0, vector1, tmp_vector);
/*
   hypre_ParVectorPrint(tmp_vector,"Axpy");
*/
   /*-----------------------------------------------------------
    * Do an inner product vector* tmp_vector
    *-----------------------------------------------------------*/

   prod = hypre_ParVectorInnerProd(vector1, tmp_vector);

   hypre_printf (" prod: %8.2f \n", prod);

   /*-----------------------------------------------------------
    * Finalize things
    *-----------------------------------------------------------*/

   hypre_ParVectorDestroy(vector1);
   hypre_ParVectorDestroy(vector2); 
   hypre_ParVectorDestroy(tmp_vector);
   hypre_SeqVectorDestroy(local_vector2); 
   if (vector) hypre_SeqVectorDestroy(vector); 

   /* Finalize MPI */
   hypre_MPI_Finalize();

   return 0;
}
Esempio n. 14
0
/**************************************************************
 *
 *      Coarsening routine
 *
 **************************************************************/
HYPRE_Int
hypre_AMGCoarsenCR( hypre_CSRMatrix    *A,
                  double              strength_threshold,
                  double	      relax_weight,
                  HYPRE_Int		      relax_type,
                  HYPRE_Int		      num_relax_steps,
                  HYPRE_Int               **CF_marker_ptr,
                  HYPRE_Int                *coarse_size_ptr     )
{
   HYPRE_Int              num_variables = hypre_CSRMatrixNumRows(A);
                  
   HYPRE_Int             *CF_marker;
   HYPRE_Int              coarse_size;

   double          *measure_array;
   hypre_Vector    *measure_vector;
   hypre_Vector    *zero_vector;
   hypre_Vector    *tmp_vector;
   HYPRE_Int             *graph_array;
   /* HYPRE_Int             *tmp_array; */
   HYPRE_Int              graph_size;
   /* HYPRE_Int              tmp_size; */

   HYPRE_Int              i, ig;

   HYPRE_Int              ierr = 0;

#if 0 /* debugging */
   char  filename[256];
   FILE *fp;
   HYPRE_Int   iter = 0;
#endif

   /*---------------------------------------------------
    * Initialize the C/F marker array
    *---------------------------------------------------*/

   CF_marker = hypre_CTAlloc(HYPRE_Int, num_variables);

   measure_vector = hypre_SeqVectorCreate(num_variables);
   zero_vector = hypre_SeqVectorCreate(num_variables);
   tmp_vector = hypre_SeqVectorCreate(num_variables);
   hypre_SeqVectorInitialize(measure_vector);
   hypre_SeqVectorInitialize(zero_vector);
   hypre_SeqVectorInitialize(tmp_vector);
   hypre_SeqVectorSetConstantValues(measure_vector, 1.0);
   measure_array = hypre_VectorData(measure_vector);

   for (i=0; i < num_relax_steps; i++)
   {
      hypre_AMGRelax (A, zero_vector, CF_marker, relax_type, 0, relax_weight, 
			measure_vector, tmp_vector);
   }

   /*---------------------------------------------------
    * Initialize the graph array
    *---------------------------------------------------*/

   graph_array   = hypre_CTAlloc(HYPRE_Int, num_variables);
   coarse_size = 0;
   graph_size = 0;
 
   /* intialize measure array and graph array */

   for (i = 0; i < num_variables; i++)
   {
      if (measure_array[i] < strength_threshold)
      {
	 measure_array[i] = 0;
	 CF_marker[i] = -1;
      }
      else
 	 graph_array[graph_size++] = i;
   }

/*  for second path of coarse point determination if needed */
/*   tmp_array   = hypre_CTAlloc(HYPRE_Int, graph_size);  */

   while (graph_size)
   {

      hypre_InitAMGIndepSet(A, measure_array, 0.001);
      hypre_AMGIndepSet (A, measure_array, 0.001,
			graph_array, graph_size, CF_marker);

/*  for second path of coarse point determination if needed */
/*      tmp_size = 0;
      for (ig = 0; ig < graph_size; ig++)
      {
         i = graph_array[ig];
         if (CF_marker[i] == 1)
         {
            tmp_array[tmp_size++] = i;
         }
      }

      hypre_AMGIndepSet (A, measure_array, 0.001,
			tmp_array, tmp_size, CF_marker);
*/

      hypre_SeqVectorSetConstantValues(measure_vector, 0.0);

      for (i = 0; i < num_variables; i++)
      {
         if (CF_marker[i] == 0) 
         {
   	    CF_marker[i] = -2;  
   	    measure_array[i] = 1.0;
         }
      }

      for (i=0; i < num_relax_steps; i++)
      {
         hypre_AMGRelax (A, zero_vector, CF_marker, relax_type, -2, 
			relax_weight, measure_vector, tmp_vector);
      }

      for (ig = 0; ig < graph_size; ig++)
      {
         i = graph_array[ig];
         if (CF_marker[i] == 1)
         {
	    measure_array[i] = 0;
 	    graph_size--;
 	    coarse_size++;
	    graph_array[ig] = graph_array[graph_size];
	    ig--;
         }
         else if (measure_array[i] < strength_threshold)
         {
	    measure_array[i] = 0;
	    CF_marker[i] = -1;
 	    graph_size--;
	    graph_array[ig] = graph_array[graph_size];
   	    ig--;
         }
	 else
	    CF_marker[i] = 0;
      }
   }

   /*---------------------------------------------------
    * Clean up and return
    *---------------------------------------------------*/

   hypre_SeqVectorDestroy(measure_vector);
   hypre_SeqVectorDestroy(zero_vector);
   hypre_SeqVectorDestroy(tmp_vector);
   hypre_TFree(graph_array);
/*    hypre_TFree(tmp_array); */

   *CF_marker_ptr   = CF_marker;
   *coarse_size_ptr = coarse_size;

   return (ierr);
}