int main() {
  
  igraph_t g;
  igraph_vs_t vertices;
  igraph_vector_t result;
  long int i;
  
  igraph_vs_seq(&vertices, 1, 101);
  igraph_barabasi_game(&g, 100000, /*power=*/ 1, 3, 0, 0, /*A=*/ 1,
		       IGRAPH_DIRECTED, IGRAPH_BARABASI_BAG, 
		       /*start_from=*/ 0);
  igraph_vector_init(&result, 0);
  
  for (i=0; i<1; i++) {
    igraph_transitivity_local_undirected2(&g, &result, igraph_vss_all(),
			IGRAPH_TRANSITIVITY_NAN);
  }

  for (i=0; i<1; i++) {
    igraph_transitivity_local_undirected4(&g, &result, igraph_vss_all(),
			IGRAPH_TRANSITIVITY_NAN);
  }
  
/*   for (i=0; i<igraph_vector_size(&result); i++) { */
/*     printf("%f ", VECTOR(result)[i]); */
/*   } */
/*   printf("\n"); */
  
  igraph_vector_destroy(&result);
  igraph_vs_destroy(&vertices);
  igraph_destroy(&g);
  
  return 0;
}
Esempio n. 2
0
int main() {
  
  igraph_t g;
  igraph_integer_t result;
  igraph_integer_t from, to;
  igraph_vector_t path;
  igraph_rng_t rng;
  igraph_rng_init(&rng, &igraph_rngtype_mt19937);
  
  igraph_barabasi_game(&g, 30, /*power=*/ 1, 30, 0, 0, /*A=*/ 1, 
		       IGRAPH_DIRECTED, IGRAPH_BARABASI_BAG, 
		       /*start_from=*/ 0, &rng);
  igraph_diameter(&g, &result, 0, 0, 0, IGRAPH_UNDIRECTED, 1);
  
/*   printf("Diameter: %li\n", (long int) result); */
  
  igraph_destroy(&g);

  igraph_ring(&g, 10, IGRAPH_DIRECTED, 0, 0);
  igraph_vector_init(&path, 0);
  igraph_diameter(&g, &result, &from, &to, &path, IGRAPH_DIRECTED, 1);
  printf("diameter: %li, from %li to %li\n", (long int) result,
	 (long int) from, (long int) to);
  print_vector(&path);
  
  igraph_vector_destroy(&path);
  igraph_destroy(&g);
  igraph_rng_destroy(&rng);

  return 0;
}
/* call-seq:
 *   IGraph::GenerateRandom.barabasi_game(n,m,outpref,directed) -> IGraph
 *
 * Generates a graph based on the Barab�si-Albert model.
 *
 * n: The number of vertices in the graph.
 * m: The number of outgoing edges generated for each vertex.
 *
 * outpref: Boolean, if true not only the in- but also the out-degree of a
 * vertex increases its citation probability. Ie. the citation probability is
 * determined by the total degree of the vertices.
 *
 * directed: Boolean, whether to generate a directed graph.
 */
VALUE cIGraph_barabasi_game(VALUE self, VALUE nodes, VALUE m, VALUE outpref, VALUE directed) {

    igraph_t *graph;
    VALUE new_graph;

    new_graph = cIGraph_alloc(cIGraph);
    Data_Get_Struct(new_graph, igraph_t, graph);

    igraph_destroy(graph);
    igraph_barabasi_game(graph, NUM2INT(nodes), NUM2INT(m), NULL,
                         outpref == Qtrue ? 1: 0, directed == Qtrue ? 1: 0);

    return new_graph;

}
int main() {
  
  igraph_t g;
  igraph_real_t result;
  igraph_rng_t rng;
  igraph_rng_init(&rng, &igraph_rngtype_mt19937);
  
  igraph_barabasi_game(&g, 30, /*power=*/ 1, 30, 0, 0, /*A=*/ 1, 
		       IGRAPH_DIRECTED, IGRAPH_BARABASI_BAG,
		       /*start_from=*/ 0, &rng);
  igraph_average_path_length(&g, &result, IGRAPH_UNDIRECTED, 1);
  
/*   printf("Length of the average shortest paths: %f\n", (float) result); */
  
  igraph_destroy(&g);
  igraph_rng_destroy(&rng);
  return 0;
}
int main() {

    igraph_t g;
    igraph_vector_t v, v2;
    int i, ret;

    igraph_barabasi_game(&g, 10, 2, 0, 0, 1);
    if (igraph_ecount(&g) != 18) {
        return 1;
    }
    if (igraph_vcount(&g) != 10) {
        return 2;
    }
    if (!igraph_is_directed(&g)) {
        return 3;
    }

    igraph_vector_init(&v, 0);
    igraph_get_edgelist(&g, &v, 0);
    for (i=0; i<igraph_ecount(&g); i++) {
        if (VECTOR(v)[2*i] <= VECTOR(v)[2*i+1]) {
            return 4;
        }
    }
    igraph_destroy(&g);

    /* out degree sequence */
    igraph_vector_resize(&v, 10);
    VECTOR(v)[0]=0;
    VECTOR(v)[1]=1;
    VECTOR(v)[2]=3;
    VECTOR(v)[3]=3;
    VECTOR(v)[4]=4;
    VECTOR(v)[5]=5;
    VECTOR(v)[6]=6;
    VECTOR(v)[7]=7;
    VECTOR(v)[8]=8;
    VECTOR(v)[9]=9;

    igraph_barabasi_game(&g, 10, 0, &v, 0, 1);
    if (igraph_ecount(&g) != igraph_vector_sum(&v)) {
        return 5;
    }
    igraph_vector_init(&v2, 0);
    igraph_degree(&g, &v2, igraph_vss_all(), IGRAPH_OUT, 1);
    for (i=0; i<igraph_vcount(&g); i++) {
        if (VECTOR(v)[i] != VECTOR(v2)[i]) {
            return 6;
        }
    }
    igraph_vector_destroy(&v);
    igraph_vector_destroy(&v2);
    igraph_destroy(&g);

    /* outpref, we cannot really test this quantitatively,
       would need to set random seed */
    igraph_barabasi_game(&g, 10, 2, 0, 1, 1);
    igraph_vector_init(&v, 0);
    igraph_get_edgelist(&g, &v, 0);
    for (i=0; i<igraph_ecount(&g); i++) {
        if (VECTOR(v)[2*i] <= VECTOR(v)[2*i+1]) {
            return 7;
        }
    }
    if (!igraph_is_directed(&g)) {
        return 8;
    }
    igraph_vector_destroy(&v);
    igraph_destroy(&g);

    /* Error tests */
    igraph_set_error_handler(igraph_error_handler_ignore);
    ret=igraph_barabasi_game(&g, -10, 1, 0, 0, 0);
    if (ret != IGRAPH_EINVAL) {
        return 9;
    }
    ret=igraph_barabasi_game(&g, 10, -2, 0, 0, 0);
    if (ret != IGRAPH_EINVAL) {
        return 10;
    }
    igraph_vector_init(&v, 9);
    ret=igraph_barabasi_game(&g, 10, 0, &v, 0, 0);
    if (ret != IGRAPH_EINVAL) {
        return 11;
    }
    igraph_vector_destroy(&v);

    return 0;
}
Esempio n. 6
0
int main() {
  
  igraph_t g;
  igraph_vector_t bet, bet2, weights, edges;
  igraph_vector_t bbet, bbet2;
  
  igraph_real_t nontriv[] = { 0, 19, 0, 16, 0, 20, 1, 19, 2, 5, 3, 7, 3, 8, 
			      4, 15, 4, 11, 5, 8, 5, 19, 6, 7, 6, 10, 6, 8, 
			      6, 9, 7, 20, 9, 10, 9, 20, 10, 19, 
			      11, 12, 11, 20, 12, 15, 13, 15, 
			      14, 18, 14, 16, 14, 17, 15, 16, 17, 18 };
  
  igraph_real_t nontriv_weights[] = { 0.5249, 1, 0.1934, 0.6274, 0.5249, 
				      0.0029, 0.3831, 0.05, 0.6274, 0.3831, 
				      0.5249, 0.0587, 0.0579, 0.0562, 0.0562, 
				      0.1934, 0.6274, 0.6274, 0.6274, 0.0418, 
				      0.6274, 0.3511, 0.3511, 0.1486, 1, 1, 
				      0.0711, 0.2409 };

  igraph_real_t nontriv_res[] = { 20, 0, 0, 0, 0, 19, 80, 85, 32, 0, 10, 
				  75, 70, 0, 36, 81, 60, 0, 19, 19, 86 };

  /*******************************************************/

  igraph_barabasi_game(/* graph= */    &g,
		       /* n= */        1000,
		       /* power= */    1,
		       /* m= */        3,
		       /* outseq= */   0,
		       /* outpref= */  0,
		       /* A= */        1,
		       /* directed= */ 0, 
		       /* algo= */     IGRAPH_BARABASI_BAG,
		       /* start_from= */ 0);
  
  igraph_simplify(&g, /* multiple= */ 1, /* loops= */ 1, /*edge_comb=*/ 0);
  
  igraph_vector_init(&bet, 0);
  igraph_vector_init(&bbet, 0);
  
  igraph_betweenness_estimate(/* graph=     */ &g,
			      /* res=       */ &bet,
			      /* vids=      */ igraph_vss_all(),
			      /* directed = */ 0,
			      /* cutoff=    */ 2,
			      /* weights=   */ 0, 
			      /* nobigint=  */ 1);

  igraph_betweenness_estimate(/* graph=     */ &g,
			      /* res=       */ &bbet,
			      /* vids=      */ igraph_vss_all(),
			      /* directed = */ 0,
			      /* cutoff=    */ 2,
			      /* weights=   */ 0, 
			      /* nobigint=  */ 0);  

  check(&bet, &bbet, 10);

  igraph_vector_destroy(&bet);
  igraph_vector_destroy(&bbet);
  igraph_destroy(&g);

  /*******************************************************/

  igraph_tree(&g, 20000, 10, IGRAPH_TREE_UNDIRECTED);
  
  igraph_vector_init(&bet, 0);
  igraph_vector_init(&bbet, 0);
  
  igraph_betweenness_estimate(/* graph=     */ &g,
			      /* res=       */ &bet,
			      /* vids=      */ igraph_vss_all(),
			      /* directed = */ 0,
			      /* cutoff=    */ 3,
			      /* weights=   */ 0, 
			      /* nobigint=  */ 1);

  igraph_betweenness_estimate(/* graph=     */ &g,
			      /* res=       */ &bbet,
			      /* vids=      */ igraph_vss_all(),
			      /* directed = */ 0,
			      /* cutoff=    */ 3,
			      /* weights=   */ 0, 
			      /* nobigint=  */ 0);

  check(&bet, &bbet, 20);

  igraph_vector_init(&bet2, 0);
  igraph_vector_init(&bbet2, 0);
  igraph_vector_init(&weights, igraph_ecount(&g));
  igraph_vector_fill(&weights, 1.0);
  
  igraph_betweenness_estimate(/* graph=     */ &g,
			      /* res=       */ &bet2,
			      /* vids=      */ igraph_vss_all(),
			      /* directed = */ 0,
			      /* cutoff=    */ 3,
			      /* weights=   */ &weights, 
			      /* nobigint=  */ 1);

  igraph_betweenness_estimate(/* graph=     */ &g,
			      /* res=       */ &bbet2,
			      /* vids=      */ igraph_vss_all(),
			      /* directed = */ 0,
			      /* cutoff=    */ 3,
			      /* weights=   */ &weights, 
			      /* nobigint=  */ 0);

  if (!igraph_vector_all_e(&bet, &bet2)) {
    return 1;
  }

/*   if (!igraph_vector_all_e(&bbet, &bbet2)) { */
/*     return 2; */
/*   } */

  check(&bet, &bbet, 30);
  check(&bet2, &bbet2, 40);

  igraph_vector_destroy(&bet);
  igraph_vector_destroy(&bet2);
  igraph_vector_destroy(&bbet);
  igraph_vector_destroy(&bbet2);
  igraph_vector_destroy(&weights);
  igraph_destroy(&g);

  /* Non-trivial weighted graph */
  igraph_vector_view(&edges, nontriv, sizeof(nontriv)/sizeof(igraph_real_t));
  igraph_create(&g, &edges, 0, /* directed= */ 0);
  igraph_vector_view(&weights, nontriv_weights, 
		     sizeof(nontriv_weights)/sizeof(igraph_real_t));
  igraph_vector_init(&bet, 0);
  igraph_vector_init(&bbet, 0);

  igraph_betweenness(/*graph=*/ &g, /*res=*/ &bet, /*vids=*/ igraph_vss_all(), 
		     /*directed=*/0, /*weights=*/ &weights, /*nobigint=*/ 1);

  igraph_betweenness(/*graph=*/ &g, /*res=*/ &bbet, /*vids=*/ igraph_vss_all(), 
		     /*directed=*/0, /*weights=*/ &weights, /*nobigint=*/ 0);

  igraph_vector_view(&bet2, nontriv_res, 
		     sizeof(nontriv_res)/sizeof(igraph_real_t));

  if (!igraph_vector_all_e(&bet, &bet2)) {
    return 2;
  }

  check(&bet, &bbet, 50);
  
  igraph_vector_destroy(&bet);
  igraph_vector_destroy(&bbet);
  igraph_destroy(&g);

  if (IGRAPH_FINALLY_STACK_SIZE() != 0) return 3;

  return 0;
}
Esempio n. 7
0
int main(int argc, char* argv[])
{
    if (argc != 9)
    {
        cout << "Usage: ./release/fixating <Update Rule: \"Bd\", \"dB\"> <integer: population size> <\"directed\" or \"undirected\"> <double: fitness of mutant> <category of graph: \"complete\", \"ER\", \"BB\", \"WS\", \"geo\", or \"custom\" > <secondary parameter for the category of graph: \"GNM\" or \"GNP\" for Erdos Reny, double power of preference for Barabasi, int dimension for small world, bool periodic for geometric, , adjacency matrix for custom> <tertiary parameter for the category of graph: probability for every edge in Erdos-Reny GNP and geometric, number of edges for Erdos-Reny GNM, m for barabasi, probability of rewiring for small world, 0 for custom> <output: \"probability\", \"conditional\", \"unconditional\", or \"all\">" << endl;
        return -1;
    }
    //   ---------- If you want to stop time, uncomment all comments with //CLOCK//
    //CLOCK//
    std::clock_t start;
    //CLOCK//
    double bt = 0;
    //CLOCK//
    double st = 0;
    //counting variable for the graph generators
    int counts = 0;
    const unsigned int popSize = atoi(argv[2]);
    if (popSize > 23)
    {
        cout << "Code only possible for population size up to 23... aborting..." << endl;
        return -1;
    }
    const unsigned int numStates = 1 << popSize;

    string update = argv[1];
    if (update != "dB" && update != "Bd")
    {
        cout << "Only \"Bd\" or \"dB\" possible for update rule!... aborting..." << endl;
        return -1;
    }

    float fitnessMutants = atof(argv[4]);
    string direction = argv[3];
    string category = argv[5];
    igraph_t graph;
    int admat[popSize * popSize];

    string output = argv[8];
    if (output != "probability" && output != "conditional" && output != "unconditional" && output != "all")
    {
        cout << "Only \"probability\", \"unconditional\", \"conditional\" or \"all\" possible for output!... aborting..." << endl;
        return -1;
    }



    // ----------   Code snippet for fully connected graph   ----------
    if (category == "complete")
    {
        if (direction == "undirected")
        {
            igraph_full(&graph, popSize, false, false);
        }
        else if (direction == "directed")
        {
            igraph_full(&graph, popSize, true, false);
        }
        else
        {
            cout << "Only \"directed\" and \"undirected\" possible for direction of graph!... aborting..." << endl;
            return -1;
        }
    }


    // ----------   Code snippet for random graph   ----------
    else if (category == "ER")
    {
        string gn = argv[6];

        igraph_rng_seed(igraph_rng_default(), std::clock());
        igraph_bool_t isConnected = 0;

        if (direction == "directed")
        {
            while ((isConnected == 0) & (counts < maxcount))
            {
                if (gn == "GNP")
                {
                    double edgeprob = atof(argv[7]);
                    if ((edgeprob > 1) || (edgeprob < 0))
                    {
                        cout << "probabilities larger than 1 or smaller than 0 ...aborting..." << endl;
                        return -1;
                    }
                    igraph_erdos_renyi_game(&graph, IGRAPH_ERDOS_RENYI_GNP,
                                            popSize, edgeprob,
                                            true, false);
                }
                else if (gn == "GNM")
                {
                    int edgenumber = atoi(argv[7]);
                    if ((edgenumber < 1) || (edgenumber > popSize*(popSize-1)))
                    {
                        cout << "number of edges must be greater than 1 and smaller than N*(N-1) ...aborting..." << endl;
                        return -1;
                    }

                    igraph_erdos_renyi_game(&graph, IGRAPH_ERDOS_RENYI_GNM,
                                            popSize, edgenumber,
                                            true, false);
                }
                else
                {
                    cout << "Only \"GNM\" and \"GNP\" possible ... aborting..." << endl;
                }
                igraph_is_connected(&graph, &isConnected, IGRAPH_STRONG);

                counts++;
            }
            if (counts == maxcount)
            {
                cout << "Probability or number of edges too low... Did not find a connected graph after "<< maxcount <<" attempts... aborting..." << endl;
                return -1;
            }
        }
        else if (direction == "undirected")
        {
            int counts = 0;
            while ((isConnected == 0) & (counts < maxcount))
            {
                if (gn == "GNP")
                {
                    double edgeprob = atof(argv[7]);
                    if ((edgeprob > 1) || (edgeprob < 0))
                    {
                        cout << "probabilities larger than 1 or smaller than 0 ...aborting..." << endl;
                        return -1;
                    }
                    igraph_erdos_renyi_game(&graph, IGRAPH_ERDOS_RENYI_GNP,
                                            popSize, edgeprob,
                                            false, false);
                }
                else if (gn == "GNM")
                {
                    int edgenumber = atoi(argv[7]);
                    if ((edgenumber < 1) || (edgenumber > popSize*(popSize-1)/2))
                    {
                        cout << "number of edges must be greater than 1 and smaller than N*(N-1)/2 ...aborting..." << endl;
                        return -1;
                    }
                    igraph_erdos_renyi_game(&graph, IGRAPH_ERDOS_RENYI_GNM,
                                            popSize, edgenumber,
                                            false, false);
                }
                else
                {
                    cout << "Only \"GNM\" and \"GNP\" possible ... aborting..." << endl;
                }
                igraph_is_connected(&graph, &isConnected, IGRAPH_STRONG);
                counts++;
            }
            if (counts == maxcount)
            {
                cout << "Probability or number of edges too low... Did not find a connected graph after "<< maxcount <<" attempts... aborting..." << endl;
                return -1;
            }
        }
        else
        {
            cout << "Only \"directed\" and \"undirected\" possible for direction of graph!... aborting..." << endl;
            return -1;
        }
    }

//---------------------------- Code snippet for small world network --------------------------------//
    else if (category == "WS")
    {
        igraph_rng_seed(igraph_rng_default(), std::clock());
        igraph_bool_t isConnected = 0;

        double edgeprob = atof(argv[7]);
        if ((edgeprob > 1) || (edgeprob < 0))
        {
            cout << "probabilities larger than 1 or smaller than 0 ...aborting..." << endl;
            return -1;
        }

        int dim = atoi(argv[6]);
        int latSize = pow(popSize,1/double(dim));

        if (direction == "directed")
        {
            while ((isConnected == 0) & (counts < maxcount))
            {
                igraph_watts_strogatz_game(&graph, dim,
                                           latSize, 1,
                                           edgeprob, 0,
                                           0);
                igraph_is_connected(&graph, &isConnected, IGRAPH_STRONG);
                counts++;
            }
        }
        else if (direction == "undirected")
        {
            while ((isConnected == 0) & (counts < maxcount))
            {
                igraph_watts_strogatz_game(&graph, dim,
                                           latSize, 1,
                                           edgeprob, 0,
                                           0);
                igraph_is_connected(&graph, &isConnected, IGRAPH_STRONG);
                counts++;
            }
        }
        else
        {
            cout << "Only \"directed\" and \"undirected\" possible for direction of graph!... aborting..." << endl;
            return -1;
        }
        if (counts == maxcount)
        {
            cout << "Did not find a connected graph after "<< maxcount <<" attempts... aborting..." << endl;
            return -1;
        }
    }

//---------------------------- Code snippet for geometric generator --------------------------------//
    else if(category == "geo")
    {
        igraph_rng_seed(igraph_rng_default(), std::clock());
        igraph_bool_t isConnected = 0;
        double edgeprob = atof(argv[7]);
        if ((edgeprob > 1) || (edgeprob < 0))
        {
            cout << "probabilities larger than 1 or smaller than 0 ...aborting..." << endl;
            return -1;
        }
        bool torus = (atoi(argv[6]) == 1);
        double radius = sqrt(edgeprob/3.14);
        if (direction == "directed")
        {
            while ((isConnected == 0) & (counts < maxcount))
            {
                igraph_grg_game(&graph, popSize,
                                radius, torus,
                                0, 0);
                igraph_is_connected(&graph, &isConnected, IGRAPH_STRONG);
                counts++;
            }
        }
        else if (direction == "undirected")
        {
            while ((isConnected == 0) & (counts < maxcount))
            {
                igraph_grg_game(&graph, popSize,
                                radius, torus,
                                0, 0);
                igraph_is_connected(&graph, &isConnected, IGRAPH_STRONG);
                counts++;
            }
        }
        else
        {
            cout << "Only \"directed\" and \"undirected\" possible for direction of graph!... aborting..." << endl;
            return -1;
        }
        if (counts == maxcount)
        {
            cout << "Probability or number of edges too low... Did not find a connected graph after "<< maxcount <<" attempts... aborting..." << endl;
            return -1;
        }
    }
//---------------------------- Code snippet for barabasi generator --------------------------------//
    else if(category == "BB")
    {
        double power = atof(argv[6]);
        int m = atoi(argv[7]);

        igraph_rng_seed(igraph_rng_default(), std::clock());
        igraph_bool_t isConnected = 0;
        if (direction == "directed")
        {
            cout << "directed Barabasi-Albert never creates connected graphs, use undirected instead! aborting..." << endl;
            return -1;

        }
        else if (direction == "undirected")
        {
            while ((isConnected == 0) & (counts < maxcount))
            {
                igraph_barabasi_game(&graph, popSize,
                                     power,
                                     m,
                                     0,
                                     0,
                                     1.0,
                                     false,
                                     IGRAPH_BARABASI_PSUMTREE,
                                     0);
                igraph_is_connected(&graph, &isConnected, IGRAPH_STRONG);
                counts++;
            }
        }
        else
        {
            cout << "Only \"directed\" and \"undirected\" possible for direction of graph!... aborting..." << endl;
            return -1;
        }
        if (counts == maxcount)
        {
            cout << "Did not find a connected graph after "<< maxcount <<" attempts... aborting..." << endl;
            return -1;
        }
    }
    // ----------   Code snippet for custom graph   ----------
    else if(category == "custom")
    {
        std::string admats = argv[6];
        if (admats.size() != popSize*popSize)
        {
            cout << "adjacency matrix has the wrong size... aborting..." << endl;
            return -1;
        }
        std::vector<int> ints;
        std::transform(std::begin(admats), std::end(admats), std::back_inserter(ints),
                       [](char c)
        {
            return c - '0';
        }
                      );
        std::copy(ints.begin(), ints.end(), admat);
    }

    else
    {
        cout << "Only \"complete\", \"ER\", \"BB\", \"WS\", or \"geo\" as categories... aborting..." << endl;
        return -1;
    }


    // ----------   Here the adjacency matrix gets copied into an array  ----------

    if(category!="custom")
    {
        igraph_matrix_t admatv;
        igraph_matrix_init(&admatv, 0,0);
        igraph_get_adjacency( &graph, &admatv,IGRAPH_GET_ADJACENCY_BOTH,false);
        for(unsigned int i = 0 ; i < popSize ; i++)
        {
            for(unsigned int k = 0 ; k < popSize ; k++)
            {
                admat[ i*popSize + k] = MATRIX(admatv,i,k );
            }
        }

        igraph_destroy(&graph);
        igraph_matrix_destroy(&admatv);
    }
    for (unsigned int i=0; i<popSize; i++) {

        for (unsigned int j=0; j<popSize; j++) {
            // If you want to print the adjacency matrix:
            cout<<admat[i * popSize + j]<<" ";
        }
    }
    cout<<endl;
    t_vectorFP data;
    t_vectorInt row;
    t_vectorInt col;
    data.reserve(popSize * numStates);
    row.reserve(popSize * numStates);
    col.reserve(popSize * numStates);

    //CLOCK//
    start = std::clock();
    createTransitionMatrix(popSize, numStates, fitnessMutants, update, admat, data, row, col);


    std::vector<T> tripletList;
    tripletList.reserve(popSize * numStates);

    for( unsigned int j = 0 ; j < data.size() ; j++)
    {
        tripletList.push_back(T(col.at(j),row.at(j),data.at(j)));
    }

    SpMat mat(numStates,numStates);
    mat.setFromTriplets(tripletList.begin(), tripletList.end());

    // Stopping time after creating transition matrix
    //CLOCK//
    bt = ( std::clock() - start ) / (double) CLOCKS_PER_SEC;

    //for (int i = 0; i<data.size(); i++)
    //    cout<<"unconditional: transition prob from state "<<row[i]<<" to state "<<col[i]<<" is "<<data[i]<<endl;
    string s1;



    /*   ----------   No distinguishing between "probability", "unconditional" time, and "conditional" time   ----------    */

    float * fixProbAllStates = static_cast<float*> (malloc(numStates * sizeof(float)));
    fixProb(mat, popSize, numStates, fixProbAllStates);

    // Stopping time after solving fixation probabilities
    //CLOCK//
    st = ( std::clock() - start) / (double) CLOCKS_PER_SEC - bt;

    float probOne = 0.0;
    for(unsigned int i = 0; i < popSize; i++)
    {
        int j = 1 << i;

        probOne = probOne + fixProbAllStates[j];

    }
    probOne = probOne / (float)(popSize);

    cout << "fixation probability:" << probOne << endl;
    /*   ----------   Printing the fixation probability starting from all states   ----------    */
    /*
    for(unsigned int i = 0; i < numStates; i++)
    {
        bitset<23> b1(i);
        s1 =  b1.to_string();
        cout<<"fixation probability in state ";
        cout<< s1.substr(23-popSize,popSize);
        cout <<" is "<<fixProbAllStates[i]<<endl;
    }
    */
    if((output == "unconditional")||(output == "all"))
    {
        float * uncondFixTimeAllStates = static_cast<float*> (malloc(numStates * sizeof(float)));
        // Stopping the time for solving for unconditional fixation time
        //CLOCK// start = std::clock();
        //CLOCK// bt = ( std::clock() - start ) / (double) CLOCKS_PER_SEC;
        time(mat, popSize, numStates, uncondFixTimeAllStates);
        //CLOCK//

        float avUncondTime = 0.0;
        for(unsigned int i = 0 ; i < popSize ; i++)
        {
            int j = 1 << i;
            avUncondTime = avUncondTime + uncondFixTimeAllStates[j];
        }
        avUncondTime = avUncondTime / (float)(popSize);

        free(uncondFixTimeAllStates);

        cout<< "unconditional fixation time:" << avUncondTime << endl;
    }
    /*   ----------   Printing the average unconditional fixation time starting from all states   ----------    */

    //for(unsigned int i = 0; i < numStates; i++)
    //{
    //    bitset<23> b1(i);
    //    s1 =  b1.to_string();
    //cout<<"Unconditional fixation time in state ";
    //cout<< s1.substr (23-popSize,popSize);
    //cout <<" is "<<uncondFixTimeAllStates[i]<<endl;
    //}

    //float * fixProbAllStates = (float*) malloc(numStates * sizeof(float));
    //fixProb(mat, popSize, numStates, fixProbAllStates);
    if((output == "conditional")||(output == "all"))
    {
        createConditionalTransitionMatrix(popSize, numStates, fixProbAllStates, data, row, col);

        std::vector<T> tripletListCond;
        tripletListCond.reserve(popSize * numStates);

        for( unsigned int j = 0 ; j < data.size() ; j++)
        {
            tripletListCond.push_back(T(col.at(j),row.at(j),data.at(j)));
        }

        SpMat conditionalMatrix(numStates,numStates);
        conditionalMatrix.setFromTriplets(tripletListCond.begin(), tripletListCond.end());


        float * condFixTimeAllStates = static_cast<float*> (malloc(numStates * sizeof(float)));
        time(conditionalMatrix, popSize, numStates, condFixTimeAllStates);


        float avCondTime = 0.0;
        for(unsigned int i = 0 ; i < popSize ; i++)
        {
            int j = 1 << i;
            avCondTime = avCondTime + condFixTimeAllStates[j];
        }
        avCondTime = avCondTime / (float)(popSize);

        free(condFixTimeAllStates);
        cout << "conditional fixation time:" << avCondTime << endl;
    }

    free(fixProbAllStates);
    /*   ----------   Printing the average conditional fixation time starting from all states   ----------    */

    //for(unsigned int i = 0; i < numStates; i++)
    //{
    //bitset<23> b1(i);
    //s1 =  b1.to_string();
    //cout<<"Conditional fixation time in state ";
    //cout<< s1.substr (23-popSize,popSize);
    //cout <<" is "<<condFixTimeAllStates[i]<<endl;
    //}

    st = ( std::clock() - start) / (double) CLOCKS_PER_SEC - bt;
    //CLOCK//
    cout<<"building time: "<< bt <<'\n';
    //CLOCK//
    cout<<"solving time: "<< st << "\n\n";

}
Esempio n. 8
0
main (int argc,char *argv[])
{
    int ia,ib,ic,id,it,inow,ineigh,icont;
    int in,ia2,ia3,irun,icurrent,ORTOGONALFLAG;
    int RP, P,L,N,NRUNS,next,sweep,SHOWFLAG;
    double u,field1,field2,field0,q,aux1,aux2;
    double alfa,aux,Q1,Q2,QZ,RZQ,rho,R;
    double pm,D,wmax,mQ,wx,wy,h_sigma,h_mean;	
    double TOL,MINLOGF,E;
    double DELTA;
    double E_new,Ex,DeltaE,ER;
    double EW,meanhist,hvalue,wE,aratio;
    double logG_old,logG_new,lf;	
    size_t  i_old,i_new;	
    long seed;
    double lGvR,lGv,DlG;
    size_t iL,iR,i1,i2;
    int I_endpoint[NBINS];
    double lower,upper;
    size_t i0;		
	
    FILE * wlsrange; 
    FILE * dos;
    FILE * thermodynamics;
    FILE * canonical; 
    FILE * logfile;
    //FILE * pajek;
    	     	
//***********************************
// Help
//*********************************** 
   if (argc<15){
	   help();
	   return(1);
   }
   else{
    	DELTA = atof(argv[1]);
   	P = atoi(argv[2]);
        RP = atoi(argv[3]);
	L = atoi(argv[4]); 
	N = atoi(argv[5]);
	TOL = atof(argv[6]);
	MINLOGF = atof(argv[7]);
   }  	  
   wlsrange=fopen(argv[8],"w");	
   dos=fopen(argv[9],"w");  
   thermodynamics=fopen(argv[10],"w");
   canonical=fopen(argv[11],"w");
   logfile=fopen(argv[12],"w");	
   SHOWFLAG = atoi(argv[13]);
   ORTOGONALFLAG = atoi(argv[14]);

   if ((ORTOGONALFLAG==1) && (P>L)) P=L; 
   //maximum number of orthogonal issues 

   if (SHOWFLAG==1){
  	printf("# parameters are DELTA=%1.2f P=%d ",DELTA,P);
        printf("D=%d L=%d M=%d TOL=%1.2f MINLOGF=%g \n",L,N,RP,TOL,MINLOGF);
   }

  fprintf(logfile,"# parameters are DELTA=%1.2f P=%d D=%d",DELTA,P,L);
  fprintf(logfile,"L=%d M=%d TOL=%1.2f MINLOGF=%g\n",L,RP,TOL,MINLOGF);

//**********************************************************************
// Alocate matrices                                              
//**********************************************************************
    gsl_matrix * sociedade = gsl_matrix_alloc(SIZE,L);
    gsl_matrix * issue = gsl_matrix_alloc(P,L);
    gsl_vector * current_issue = gsl_vector_alloc(L);
    gsl_vector * v0 = gsl_vector_alloc(L);
    gsl_vector * v1 = gsl_vector_alloc(L);
    gsl_vector * Z = gsl_vector_alloc(L);  
    gsl_vector * E_borda = gsl_vector_alloc(NBINS);  	
     

//**********************************************************************
// Inicialization                                                
//**********************************************************************
    const gsl_rng_type * T;
    gsl_rng * r; 
  
    gsl_rng_env_setup();   
    T = gsl_rng_default;
    r=gsl_rng_alloc (T);

    seed = time (NULL) * getpid();
    //seed = 13188839657852;
    gsl_rng_set(r,seed);
   	
    igraph_t graph;
    igraph_vector_t neighbors;
    igraph_vector_t result;
    igraph_vector_t dim_vector;
    igraph_real_t res;
    igraph_bool_t C;

    igraph_vector_init(&neighbors,1000); 
    igraph_vector_init(&result,0);
    igraph_vector_init(&dim_vector,DIMENSION);
    for(ic=0;ic<DIMENSION;ic++) VECTOR(dim_vector)[ic]=N;

    gsl_histogram * HE = gsl_histogram_alloc (NBINS);
    gsl_histogram * logG = gsl_histogram_alloc (NBINS);
    gsl_histogram * LG = gsl_histogram_alloc (NBINS);

  //********************************************************************
  // Social Graph
  //********************************************************************
   //Barabasi-Alberts network
    igraph_barabasi_game(&graph,SIZE,RP,&result,1,0);

    /* for (inow=0;inow<SIZE;inow++){
         igraph_neighbors(&graph,&neighbors,inow,IGRAPH_OUT);
         printf("%d ",inow);
         for(ic=0;ic<igraph_vector_size(&neighbors);ic++)
         {
                ineigh=(int)VECTOR(neighbors)[ic];
                printf("%d ",ineigh);
         }
          printf("\n");
     }*/

     //pajek=fopen("graph.xml","w");
    // igraph_write_graph_graphml(&graph,pajek);

     //igraph_write_graph_pajek(&graph, pajek);
     //fclose(pajek);


//**********************************************************************
//Quenched issues set and Zeitgeist
//**********************************************************************	 
    gsl_vector_set_zero(Z);  
    gera_config(Z,issue,P,L,r,1.0);
     
    if (ORTOGONALFLAG==1) gsl_matrix_set_identity(issue);
   	 
    for (ib=0;ib<P;ib++)
    {
	gsl_matrix_get_row(current_issue,issue,ib);
	gsl_blas_ddot(current_issue,current_issue,&Q1);
	gsl_vector_scale(current_issue,1/sqrt(Q1));	
	gsl_vector_add(Z,current_issue);
     }
     gsl_blas_ddot(Z,Z,&QZ);
     gsl_vector_scale(Z,1/sqrt(QZ));			  
	
//**********************************************************************
// Ground state energy
//**********************************************************************
     double E0; 	
     gera_config(Z,sociedade,SIZE,L,r,0);  									
     E0 = hamiltoneana(sociedade,issue,SIZE,L,P,DELTA,graph);
    
     double EMIN=E0;	
     double EMAX=-E0; 	
     double E_old=E0;
     		
     gsl_histogram_set_ranges_uniform (HE,EMIN,EMAX);
     gsl_histogram_set_ranges_uniform (logG,EMIN,EMAX); 
       
     if (SHOWFLAG==1) printf("# ground state: %3.0f\n",E0);
     fprintf(logfile,"# ground state: %3.0f\n",E0); 

//**********************************************************************		      	
//  Find sampling interval
//**********************************************************************    
     //printf("#finding the sampling interval...\n");

     lf=1;
     sweep=0;
     icont=0;	
     int iflag=0;
     int TMAX=NSWEEPS;	

     while(sweep<=TMAX){
	if (icont==10000) {
			//printf("%d sweeps\n",sweep);
			icont=0;
	}	
	for(it=0;it<SIZE;it++){

                        igraph_vector_init(&neighbors,SIZE);
                        
                        //choose a  random site
                        do{
              		 	inow=gsl_rng_uniform_int(r,SIZE);
			 }while((inow<0)||(inow>=SIZE)); 
	      		 gsl_matrix_get_row(v1,sociedade,inow);
	      		 igraph_neighbors(&graph,&neighbors,inow,IGRAPH_OUT); 
		
	      		 //generates  a random vector  v1
	      		 gsl_vector_memcpy(v0,v1);	
			 gera_vetor(v1,L,r);

			 //calculates energy change when v0->v1
			 // in site inow
			 DeltaE=variacaoE(v0,v1,inow,sociedade,
					  issue,N,L,P,DELTA,graph,neighbors);	      		
			 E_new=E_old+DeltaE;
			
			 //WL: accepts in [EMIN,EMAX]
			 if ((E_new>EMIN) && (E_new<EMAX))
	      		 {
		   		gsl_histogram_find(logG,E_old,&i_old);
		   		logG_old=gsl_histogram_get(logG,i_old);
		   		gsl_histogram_find(logG,E_new,&i_new);
		   		logG_new=gsl_histogram_get(logG,i_new); 	
		  		wE = GSL_MIN(exp(logG_old-logG_new),1);		
		   		if (gsl_rng_uniform(r)<wE){
					E_old=E_new;
					gsl_matrix_set_row(sociedade,inow,v1);
		   		}
	      		 }
			 //WL: update histograms
			 gsl_histogram_increment(HE,E_old); 
	     		 gsl_histogram_accumulate(logG,E_old,lf); 
                         igraph_vector_destroy(&neighbors);
		 }	
		sweep++;
		icont++;	
     }		 
     	
     gsl_histogram_fprintf(wlsrange,HE,"%g","%g");
    
     double maxH=gsl_histogram_max_val(HE);
     	
     //printf("ok\n");
     Ex=0;
     hvalue=maxH;		
     while((hvalue>TOL*maxH)&&(Ex>EMIN)){
	gsl_histogram_find(HE,Ex,&i0);
	hvalue=gsl_histogram_get(HE,i0);
	Ex-=1;
	if(Ex<=EMAX)TMAX+=10000;
     }		
     EMIN=Ex;
	
     Ex=0;	
     hvalue=maxH;	
     while((hvalue>TOL*maxH)&&(Ex<EMAX)) {
	gsl_histogram_find(HE,Ex,&i0);
	hvalue=gsl_histogram_get(HE,i0);
	Ex+=1;
	if(Ex>=EMAX)TMAX+=10000;
     }		
     EMAX=Ex;	   
     EMAX=GSL_MIN(10.0,Ex);
     if (SHOWFLAG==1) 
       printf("# the sampling interval is [%3.0f,%3.0f] found in %d sweeps \n\n"
	                                                      ,EMIN,EMAX,sweep);

     fprintf(logfile,
	"# the sampling interval is [%3.0f,%3.0f] found in %d sweeps \n\n"
	                                                      ,EMIN,EMAX,sweep);
     
     gsl_histogram_set_ranges_uniform (HE,EMIN-1,EMAX+1);
     gsl_histogram_set_ranges_uniform (logG,EMIN-1,EMAX+1); 
     gsl_histogram_set_ranges_uniform (LG,EMIN-1,EMAX+1); 		
     
//**********************************************************************		      	
// WLS
//**********************************************************************		
     int iE,itera=0;
     double endpoints[NBINS];		
     double w = WINDOW; //(EMAX-EMIN)/10.0;	
     //printf("W=%f\n",w);	
     lf=1;

//RESOLUTION ---->                                <------RESOLUTION*****            
    do{
	int iverify=0,iborda=0,flat=0; 
	sweep=0;
	Ex=EMAX; 
	EW=EMAX;
	E_old=EMAX+1;
	iE=0;
	endpoints[iE]=EMAX;
	iE++;
	gsl_histogram_reset(LG);		

//WINDOWS -->                                          <--WINDOWS*******           
	while((Ex>EMIN)&&(sweep<MAXSWEEPS)){	 
	   //initial config
	   gera_config(Z,sociedade,SIZE,L,r,0);
           E_old = hamiltoneana(sociedade,issue,SIZE,L,P,DELTA,graph);
	   while( (E_old<EMIN+1)||(E_old>Ex) ){
		//printf("%d %3.1f\n",E_old);

		do{
              		inow=gsl_rng_uniform_int(r,SIZE);
		  }while((inow<0)||(inow>=SIZE)); 	
                gsl_matrix_get_row(v0,sociedade,inow);
	   	gera_vetor(v1,L,r); 	
		gsl_matrix_set_row(sociedade,inow,v1);					
                E_old = hamiltoneana(sociedade,issue,SIZE,L,P,DELTA,graph);
                if (E_old>Ex){
                    gsl_matrix_set_row(sociedade,inow,v0);
                    E_old = hamiltoneana(sociedade,issue,SIZE,L,P,DELTA,graph);
                }
                //printf("%3.1f %3.1f %3.1f\n",EMIN+1,E_old, Ex);
	   }
	   
	   if (SHOWFLAG==1){
		printf("# sampling [%f,%f]\n",EMIN,Ex);
	   	printf("# walking from E=%3.0f\n",E_old);
	   }
	   
	   fprintf(logfile,"# sampling [%f,%f]\n",EMIN,Ex);
	   fprintf(logfile,"# walking from E=%3.0f\n",E_old);

	   do{	//FLAT WINDOW------>                 <------FLAT WINDOW*****
//MC sweep ---->                                 <------MC sweep********	
		
	    	for(it=0;it<SIZE;it++){
                         igraph_vector_init(&neighbors,SIZE);
			 //escolhe sítio aleatoriamente
			 do{
              		 	inow=gsl_rng_uniform_int(r,SIZE);
			 }while((inow<0)||(inow>=SIZE)); 
	      		 gsl_matrix_get_row(v1,sociedade,inow);
	      		 igraph_neighbors(&graph,&neighbors,inow,IGRAPH_OUT); 
		
	      		 //gera vetor aleatorio v1
	      		 gsl_vector_memcpy(v0,v1);	
			 gera_vetor(v1,L,r);

			 //calculates energy change when
			 //v0->v1 in site inow
			 DeltaE=variacaoE(v0,v1,inow,sociedade,issue,
					  N,L,P,DELTA,graph,neighbors);	      		
			 E_new=E_old+DeltaE;
			
			 //WL: accepts in [EMIN,Ex]
			 if ((E_new>EMIN) && (E_new<Ex))
	      		 {
		   		gsl_histogram_find(logG,E_old,&i_old);
		   		logG_old=gsl_histogram_get(logG,i_old);
		    		gsl_histogram_find(logG,E_new,&i_new);
		   		logG_new=gsl_histogram_get(logG,i_new); 	
		  		wE = GSL_MIN(exp(logG_old-logG_new),1);		
		   		if (gsl_rng_uniform(r)<wE){
					E_old=E_new;
					gsl_matrix_set_row(sociedade,inow,v1);
		   		}
	      		 }
			 //WL: updates histograms
			 gsl_histogram_increment(HE,E_old); 
	     		 gsl_histogram_accumulate(logG,E_old,lf); 
			 itera++;
                         igraph_vector_destroy(&neighbors);
		 }
//MC sweep ---->                                   <--------MC sweep**** 
		sweep++; iverify++;   

		if( (EMAX-EMIN)<NDE*DE ) {
			EW=EMIN;
		}else{	    
	   		EW=GSL_MAX(Ex-w,EMIN);
		}	

	   	if (iverify==CHECK){//Verify flatness 
			if (SHOWFLAG==1)  
			    printf(" #verificando flatness em [%f,%f]\n",EW,Ex);
	
			fprintf(logfile," #verificando flatness em [%f,%f]\n"
				                                        ,EW,Ex);
	   		iverify=0;
			flat=flatness(HE,EW,Ex,TOL,itera,meanhist,hvalue);
			if (SHOWFLAG==1) 
			    printf("#minH= %8.0f\t k<H>=%8.0f\t %d sweeps\t ",
				                hvalue,TOL*meanhist,sweep,flat);

			fprintf(logfile,
				"#minH= %8.0f\t k<H>=%8.0f\t %d sweeps\t ",
			                        hvalue,TOL*meanhist,sweep,flat);
	   	}

	    }while(flat==0);//                      <------FLAT WINDOW******	 	  
            flat=0;
  
	    //Find ER
            //printf("# EMAX=%f EMIN = %f Ex =%f\n",EMAX, EMIN, Ex);
	    if( (EMAX-EMIN)<NDE*DE ) {
		Ex=EMIN;
		endpoints[iE]=EMIN;
	    } 
	    else {		
	    	if (EW>EMIN){
			 ER=flatwindow(HE,EW,TOL,meanhist);
			 if (SHOWFLAG==1)  
			      printf("# extending flatness to[%f,%f]\n",ER,Ex);

			 fprintf(logfile,
				"# extending flatness to [%f,%f]\n",ER,Ex);

			 if((ER-EMIN)<1){
				ER=EMIN;
				Ex=EMIN;
				endpoints[iE]=EMIN;
		 	}else{
		 		endpoints[iE]=GSL_MIN(ER+DE,EMAX);
				Ex=GSL_MIN(ER+2*DE,EMAX);
			}
	     	}
	     	else{
			 endpoints[iE]=EMIN;
			 Ex=EMIN;	
			 ER=EMIN;	   			
	    	} 	 	
	    }	    
	   
	    if (SHOWFLAG==1) 
		 printf("# window %d [%3.0f,%3.0f] is flat after %d sweeps \n",
					iE,endpoints[iE],endpoints[iE-1],sweep);

	  fprintf(logfile,"# window %d [%3.0f,%3.0f] is flat after %d sweeps\n",
			iE,endpoints[iE],endpoints[iE-1],sweep);	
	   		
	  	     
	    //saves histogram
	    if (iE==1){
		gsl_histogram_find(logG,endpoints[iE],&i1);
		gsl_histogram_find(logG,endpoints[iE-1],&i2);
		for(i0=i1;i0<=i2;i0++){
			lGv=gsl_histogram_get(logG,i0);
			gsl_histogram_get_range(logG,i0,&lower,&upper);
			E=0.5*(upper+lower);
			gsl_histogram_accumulate(LG,E,lGv);
		}				
	    }else{
		gsl_histogram_find(logG,endpoints[iE],&i1);
		gsl_histogram_find(logG,endpoints[iE-1],&i2);
		lGv=gsl_histogram_get(logG,i2);
		lGvR=gsl_histogram_get(LG,i2);
		DlG=lGvR-lGv;
	  //printf("i1=%d i2=%d lGv=%f lGvR=%f DlG=%f\n",i1,i2,lGv,lGvR,DlG);
		for(i0=i1;i0<i2;i0++){
			lGv=gsl_histogram_get(logG,i0);
			lGv=lGv+DlG;
			gsl_histogram_get_range(logG,i0,&lower,&upper);
			E=(upper+lower)*0.5;
			//printf("i0=%d E=%f lGv=%f\n",i0,E,lGv);
			gsl_histogram_accumulate(LG,E,lGv);
		}		
	    }	
				 
	    //printf("#########################################\n");		
	    //gsl_histogram_fprintf(stdout,LG,"%g","%g");		
	    //printf("#########################################\n");			

	    iE++;
            if((Ex-EMIN)>NDE*DE) {
		if (SHOWFLAG==1) 
		     printf("# random walk is now restricted to [%3.0f,%3.0f]\n"
			    					      ,EMIN,Ex);
	    fprintf(logfile,"# random walk is now restricted to [%3.0f,%3.0f]\n"
			                                              ,EMIN,Ex);
	    }
	    gsl_histogram_reset(HE);
	   		     	 		
      }  
//WINDOWS -->

     if(sweep<MAXSWEEPS){	
     	if (SHOWFLAG==1) 
		  printf("# log(f)=%f converged within %d sweeps\n\n",lf,sweep);	
	fprintf(logfile,"# log(f)=%f converged within %d sweeps\n\n",lf,sweep);		 	
     	lf=lf/2.0;	 
     	gsl_histogram_reset(HE);
     	gsl_histogram_memcpy(logG,LG);
     }else {
	if (SHOWFLAG==1) 
		printf("# FAILED: no convergence has been attained.");
	fprintf(logfile,
           "# FAILED: no convergence has been attained. Simulation ABANDONED.");
	return(1);
     }	 			
	     
    }while(lf>MINLOGF); 
//RESOLUTION -->                                    <-----RESOLUTION****

     //***************************************************************** 	
     //Density of states	     	
     //*****************************************************************
     double minlogG=gsl_histogram_min_val(logG);	
     gsl_histogram_shift(logG,-minlogG);	
     gsl_histogram_fprintf(dos,logG,"%g","%g");	

     //***************************************************************** 
     //Thermodynamics    	
     //***************************************************************** 
     double beta,A,wT,Zmin_beta;
     double lGvalue,maxA,betaC,CTMAX=0;	
     double Z_beta,U,U2,CT,F,S;
     
     for (beta=0.01;beta<=30;beta+=0.01)
     {
	//****************************************************************** 	
	//Energy, free-energy, entropy, specific heat and Tc
 	//****************************************************************** 
	maxA=0;
	for (ia2=0; ia2<NBINS;ia2++)
	{
		lGvalue=gsl_histogram_get(logG,ia2);
		gsl_histogram_get_range(logG,ia2,&lower,&upper);
		E=(lower+upper)/2;
		A=lGvalue-beta*E;
		if (A>maxA) maxA=A;
	}       

        gsl_histogram_find(logG,EMIN,&i0); 

	Z_beta=0;U=0;U2=0;
	for (ia2=0; ia2<NBINS;ia2++)
	{
			lGvalue=gsl_histogram_get(logG,ia2);
			gsl_histogram_get_range(logG,ia2,&lower,&upper);
			E=(lower+upper)/2;
			A=lGvalue-beta*E-maxA;
			Z_beta+=exp(A);  
			U+=E*exp(A);
			U2+=E*E*exp(A);  
			if(ia2==i0) Zmin_beta=exp(A);
	}	
	wT=Zmin_beta/Z_beta;

	F=-log(Z_beta)/beta - maxA/beta; 
	U=U/Z_beta;
	S= (U-F)*beta;
	U2=U2/Z_beta;
	CT=(U2-U*U)*beta*beta;	
			
	if(CT>CTMAX){
		CTMAX=CT;
		betaC=beta;
	}

	fprintf(thermodynamics,"%f %f %f %f %f %f %f \n"
		,beta,1/beta,F/(double)(SIZE),S/(double)(SIZE),
		 U/(double)(SIZE),CT/(double)(SIZE),wT);
     }
     
     if (SHOWFLAG==1) printf("# BETAc: %f  Tc:%f \n",betaC,1/betaC); 
     fprintf(logfile,"# BETAc: %f  Tc:%f \n",betaC,1/betaC); 	
		
    //******************************************************************	
    //canonical distribuition at Tc
    //******************************************************************	
     beta=betaC; 
     double distr_canonica;	
     
      maxA=0;
      for (ia2=0; ia2<NBINS;ia2++)
      {
		lGvalue=gsl_histogram_get(logG,ia2);
		gsl_histogram_get_range(logG,ia2,&lower,&upper);
		E=(lower+upper)/2;
		A=lGvalue-beta*E;
		if (A>maxA) maxA=A;
      }       

      for (ia2=0; ia2<NBINS;ia2++)
      {
	  lGvalue=gsl_histogram_get(logG,ia2);
	  gsl_histogram_get_range(logG,ia2,&lower,&upper);
	  E=(lower+upper)/2;
	  A=lGvalue-beta*E-maxA;
	  distr_canonica=exp(A);
	  fprintf(canonical,"%f %f %f\n",
		  E/(double)(SIZE),distr_canonica,A);  
      }			

     //*****************************************************************
     // Finalization                                                    
     //*****************************************************************
     igraph_destroy(&graph);
     igraph_vector_destroy(&neighbors);
     igraph_vector_destroy(&result);  
     gsl_matrix_free(issue);
     gsl_vector_free(current_issue);
     gsl_vector_free(v1);
     gsl_vector_free(v0);
     gsl_matrix_free(sociedade);     	   	
     gsl_rng_free(r);
	
     fclose(wlsrange);
     fclose(dos);
     fclose(thermodynamics);
     fclose(canonical);   
     fclose(logfile);   	
   
     return(0);
}
Esempio n. 9
0
int check_multi() {

  igraph_t g;
  igraph_vector_t vec;
  igraph_vector_t eids, eids2;
  int ret;
  long int i;

  igraph_real_t q1[] = { 0,1, 0,1 };
  igraph_real_t q2[] = { 0,1, 0,1, 0,1 };
  igraph_real_t q3[] = { 1,0, 3,4, 1,0, 0,1, 3,4, 0,1 };

  igraph_vector_init(&eids, 0);

  /*********************************/
  igraph_small(&g, /*n=*/ 10, /*directed=*/ 1, 
	       0,1, 0,1, 1,0, 1,2, 3,4, 3,4, 3,4, 3,5, 3,7, 
	       9,8,
	       -1);

  igraph_vector_view(&vec, q1, sizeof(q1) / sizeof(igraph_real_t));
  igraph_get_eids_multi(&g, &eids, &vec, 0, /*directed=*/ 1, /*error=*/ 1);
  igraph_vector_sort(&eids);
  print_vector(&eids, stdout);

  igraph_vector_view(&vec, q2, sizeof(q2) / sizeof(igraph_real_t));
  igraph_get_eids_multi(&g, &eids, &vec, 0, /*directed=*/ 0, /*error=*/ 1);
  igraph_vector_sort(&eids);
  print_vector(&eids, stdout);

  igraph_vector_view(&vec, q2, sizeof(q2) / sizeof(igraph_real_t));
  igraph_set_error_handler(igraph_error_handler_ignore);
  ret=igraph_get_eids_multi(&g, &eids, &vec, 0, /*directed=*/ 1, /*error=*/1);
  if (ret != IGRAPH_EINVAL) { return 1; } 
  igraph_set_error_handler(igraph_error_handler_abort);

  igraph_destroy(&g);
  /*********************************/

  /*********************************/
  igraph_small(&g, /*n=*/10, /*directed=*/0, 
	       0,1, 1,0, 0,1, 3,4, 3,4, 5,4, 9,8, 
	       -1);
  
  igraph_vector_view(&vec, q1, sizeof(q1) / sizeof(igraph_real_t));
  igraph_get_eids_multi(&g, &eids, &vec, 0, /*directed=*/1, /*error=*/ 1);
  igraph_vector_sort(&eids);
  print_vector(&eids, stdout);

  igraph_vector_view(&vec, q3, sizeof(q3) / sizeof(igraph_real_t));
  igraph_set_error_handler(igraph_error_handler_ignore);
  ret=igraph_get_eids_multi(&g, &eids, &vec, 0, /*directed=*/0, /*error=*/ 1);
  if (ret != IGRAPH_EINVAL) { return 2; }
  igraph_set_error_handler(igraph_error_handler_abort);
  
  igraph_destroy(&g);

  /*********************************/

  igraph_vector_destroy(&eids);

  /*********************************/
  /* Speed tests */

#define NODES 10000
  igraph_barabasi_game(&g, /*n=*/ NODES, /*power=*/ 1.0, /*m=*/ 3, 
		       /*outseq=*/ 0, /*outpref=*/ 0, /*A=*/ 1,
		       /*directed=*/ 1, IGRAPH_BARABASI_BAG,
		       /*start_from=*/ 0);
  igraph_simplify(&g, /*multiple=*/ 1, /*loops=*/ 0, /*edge_comb=*/ 0);

  igraph_vector_init(&eids, NODES/2);
  igraph_random_sample(&eids, 0, igraph_ecount(&g)-1, NODES/2);
  igraph_vector_init(&vec, NODES);
  for (i=0; i<NODES/2; i++) {
    VECTOR(vec)[2*i]   = IGRAPH_FROM(&g, VECTOR(eids)[i]);
    VECTOR(vec)[2*i+1] = IGRAPH_TO(&g, VECTOR(eids)[i]);
  }
  igraph_vector_init(&eids2, 0);
  igraph_get_eids_multi(&g, &eids2, &vec, 0, /*directed=*/ 1, /*error=*/ 1);
  if (!igraph_vector_all_e(&eids, &eids2)) {
    return 3;
  }

  /**/

  for (i=0; i<NODES/2; i++) {
    VECTOR(vec)[2*i]   = IGRAPH_TO(&g, VECTOR(eids)[i]);
    VECTOR(vec)[2*i+1] = IGRAPH_FROM(&g, VECTOR(eids)[i]);
  }
  igraph_get_eids_multi(&g, &eids2, &vec, 0, /*directed=*/ 0, /*error=*/ 1);
  if (!igraph_vector_all_e(&eids, &eids2)) {
    return 4;
  }

  igraph_vector_destroy(&eids);
  igraph_vector_destroy(&eids2);
  igraph_vector_destroy(&vec);
  igraph_destroy(&g);
		  
  /*********************************/

  return 0;
}