int igraph_dot_product_game(igraph_t *graph, const igraph_matrix_t *vecs, igraph_bool_t directed) { igraph_integer_t nrow=igraph_matrix_nrow(vecs); igraph_integer_t ncol=igraph_matrix_ncol(vecs); int i, j; igraph_vector_t edges; igraph_bool_t warned_neg=0, warned_big=0; IGRAPH_VECTOR_INIT_FINALLY(&edges, 0); RNG_BEGIN(); for (i = 0; i < ncol; i++) { int from=directed ? 0 : i+1; igraph_vector_t v1; igraph_vector_view(&v1, &MATRIX(*vecs, 0, i), nrow); for (j = from; j < ncol; j++) { igraph_real_t prob; igraph_vector_t v2; if (i==j) { continue; } igraph_vector_view(&v2, &MATRIX(*vecs, 0, j), nrow); igraph_lapack_ddot(&v1, &v2, &prob); if (prob < 0 && ! warned_neg) { warned_neg=1; IGRAPH_WARNING("Negative connection probability in " "dot-product graph"); } else if (prob > 1 && ! warned_big) { warned_big=1; IGRAPH_WARNING("Greater than 1 connection probability in " "dot-product graph"); IGRAPH_CHECK(igraph_vector_push_back(&edges, i)); IGRAPH_CHECK(igraph_vector_push_back(&edges, j)); } else if (RNG_UNIF01() < prob) { IGRAPH_CHECK(igraph_vector_push_back(&edges, i)); IGRAPH_CHECK(igraph_vector_push_back(&edges, j)); } } } RNG_END(); igraph_create(graph, &edges, ncol, directed); igraph_vector_destroy(&edges); IGRAPH_FINALLY_CLEAN(1); return 0; }
int check_ev(const igraph_matrix_t *A, const igraph_vector_t *values, const igraph_matrix_t *vectors) { int i, n=igraph_matrix_nrow(A); int ne=igraph_matrix_ncol(vectors); igraph_vector_t v, lhs, rhs; if (ne != igraph_vector_size(values)) { printf("'values' and 'vectors' sizes do not match\n"); exit(1); } igraph_vector_init(&lhs, n); igraph_vector_init(&rhs, n); for (i=0; i<ne; i++) { igraph_vector_view(&v, &MATRIX(*vectors, 0, i), n); igraph_blas_dgemv(/*transpose=*/ 0, /*alpha=*/ 1, A, &v, /*beta=*/ 0, &lhs); igraph_vector_update(&rhs, &v); igraph_vector_scale(&rhs, VECTOR(*values)[i]); if (igraph_vector_maxdifference(&lhs, &rhs) > 1e-10) { printf("LHS: "); igraph_vector_print(&lhs); printf("RHS: "); igraph_vector_print(&rhs); exit(2); } } igraph_vector_destroy(&rhs); igraph_vector_destroy(&lhs); return 0; }
int main() { igraph_t g; igraph_vector_t weights; igraph_real_t weights_data[] = { 0,2,1, 0,5,2, 1,1,0, 2,2,8, 1,1,3, 1,1,4, 2,1 }; igraph_matrix_t res; igraph_small(&g, 10, IGRAPH_DIRECTED, 0,1, 0,2, 0,3, 1,2, 1,4, 1,5, 2,3, 2,6, 3,2, 3,6, 4,5, 4,7, 5,6, 5,8, 5,9, 7,5, 7,8, 8,9, 5,2, 2,1, -1); igraph_vector_view(&weights, weights_data, sizeof(weights_data)/sizeof(igraph_real_t)); igraph_matrix_init(&res, 0, 0); igraph_shortest_paths_dijkstra(&g, &res, igraph_vss_all(), igraph_vss_all(), &weights, IGRAPH_OUT); print_matrix(&res); igraph_matrix_destroy(&res); igraph_destroy(&g); return 0; }
int check_ring(const ring_test_t *test) { igraph_t graph, othergraph; igraph_vector_t otheredges; igraph_bool_t iso; int ret; /* Create ring */ igraph_ring(&graph, test->n, test->directed, test->mutual, test->circular); /* Check its properties */ if ((ret=check_ring_properties(&graph, test->directed, test->mutual, test->circular))) { return ret;} /* Check that it is isomorphic to the stored graph */ igraph_vector_view(&otheredges, test->edges, test->m * 2); igraph_create(&othergraph, &otheredges, test->n, test->directed); igraph_isomorphic(&graph, &othergraph, &iso); if (!iso) { return 50; } /* Clean up */ igraph_destroy(&graph); igraph_destroy(&othergraph); return 0; }
int igraph_sample_dirichlet(igraph_integer_t n, const igraph_vector_t *alpha, igraph_matrix_t *res) { igraph_integer_t len=igraph_vector_size(alpha); igraph_integer_t i; igraph_vector_t vec; if (n < 0) { IGRAPH_ERROR("Number of samples should be non-negative", IGRAPH_EINVAL); } if (len < 2) { IGRAPH_ERROR("Dirichlet parameter vector too short, must " "have at least two entries", IGRAPH_EINVAL); } if (igraph_vector_min(alpha) <= 0) { IGRAPH_ERROR("Dirichlet concentration parameters must be positive", IGRAPH_EINVAL); } IGRAPH_CHECK(igraph_matrix_resize(res, len, n)); RNG_BEGIN(); for (i = 0; i < n; i++) { igraph_vector_view(&vec, &MATRIX(*res, 0, i), len); igraph_rng_get_dirichlet(igraph_rng_default(), alpha, &vec); } RNG_END(); return 0; }
int main() { igraph_t g; igraph_vector_t v=IGRAPH_VECTOR_NULL; igraph_real_t edges[] = { 0,1, 1,2, 2,2, 2,3, 2,4, 3,4 }; igraph_vector_t v2; long int i; igraph_vit_t vit; igraph_vs_t vs; igraph_integer_t size; igraph_vector_view(&v, edges, sizeof(edges)/sizeof(igraph_real_t)); igraph_create(&g, &v, 0, IGRAPH_DIRECTED); /* Create iterator based on a vector (view) */ igraph_vector_init(&v2, 6); VECTOR(v2)[0]=0; VECTOR(v2)[1]=2; VECTOR(v2)[2]=4; VECTOR(v2)[3]=0; VECTOR(v2)[4]=2; VECTOR(v2)[5]=4; igraph_vit_create(&g, igraph_vss_vector(&v2), &vit); i=0; while (!IGRAPH_VIT_END(vit)) { if (IGRAPH_VIT_GET(vit) != VECTOR(v2)[i]) { return 1; } IGRAPH_VIT_NEXT(vit); i++; } if (i != igraph_vector_size(&v2)) { return 2; } igraph_vit_destroy(&vit); igraph_vector_destroy(&v2); /* Create small vector iterator */ igraph_vs_vector_small(&vs, 0, 2, 4, 0, 2, 4, 2, -1); igraph_vit_create(&g, vs, &vit); igraph_vs_size(&g, &vs, &size); printf("%li ", (long int) size); for (; !IGRAPH_VIT_END(vit); IGRAPH_VIT_NEXT(vit)) { printf("%li ", (long int) IGRAPH_VIT_GET(vit)); } printf("\n"); igraph_vit_destroy(&vit); igraph_vs_destroy(&vs); /* Clean up */ igraph_destroy(&g); return 0; }
int igraph_i_eigen_matrix_sym_arpack_cb(igraph_real_t *to, const igraph_real_t *from, int n, void *extra) { igraph_i_eigen_matrix_sym_arpack_data_t *data= (igraph_i_eigen_matrix_sym_arpack_data_t *) extra; if (data->A) { igraph_blas_dgemv_array(/*transpose=*/ 0, /*alpha=*/ 1.0, data->A, from, /*beta=*/ 0.0, to); } else { /* data->sA */ igraph_vector_t vto, vfrom; igraph_vector_view(&vto, to, n); igraph_vector_view(&vfrom, to, n); igraph_vector_null(&vto); igraph_sparsemat_gaxpy(data->sA, &vfrom, &vto); } return 0; }
igraph_bool_t check_ev(const igraph_matrix_t *A, const igraph_vector_t *values_real, const igraph_vector_t *values_imag, const igraph_matrix_t *vectors_left, const igraph_matrix_t *vectors_right, igraph_real_t tol) { int n=igraph_matrix_nrow(A); igraph_vector_t v_real, v_imag; igraph_vector_t AV_real, AV_imag, lv_real, lv_imag; igraph_vector_t null; int i; if (igraph_matrix_ncol(A) != n) { return 1; } if (igraph_vector_size(values_real) != n) { return 1; } if (igraph_vector_size(values_imag) != n) { return 1; } if (igraph_matrix_nrow(vectors_left) != n) { return 1; } if (igraph_matrix_ncol(vectors_left) != n) { return 1; } if (igraph_matrix_nrow(vectors_right) != n) { return 1; } if (igraph_matrix_ncol(vectors_right) != n) { return 1; } igraph_vector_init(&AV_real, n); igraph_vector_init(&AV_imag, n); igraph_vector_init(&lv_real, n); igraph_vector_init(&lv_imag, n); igraph_vector_init(&null, n); igraph_vector_null(&null); for (i=0; i<n; i++) { if (VECTOR(*values_imag)[i]==0.0) { igraph_vector_view(&v_real, &MATRIX(*vectors_right, 0, i), n); igraph_vector_view(&v_imag, VECTOR(null), n); } else if (VECTOR(*values_imag)[i] > 0.0) { igraph_vector_view(&v_real, &MATRIX(*vectors_right, 0, i), n); igraph_vector_view(&v_imag, &MATRIX(*vectors_right, 0, i+1), n); } else if (VECTOR(*values_imag)[i] < 0.0) { igraph_vector_view(&v_real, &MATRIX(*vectors_right, 0, i-1), n); igraph_vector_view(&v_imag, &MATRIX(*vectors_right, 0, i), n); igraph_vector_scale(&v_imag, -1.0); } real_cplx_mult(A, &v_real, &v_imag, &AV_real, &AV_imag); sc_cplx_cplx_mult(VECTOR(*values_real)[i], VECTOR(*values_imag)[i], &v_real, &v_imag, &lv_real, &lv_imag); if (igraph_vector_maxdifference(&AV_real, &lv_real) > tol || igraph_vector_maxdifference(&AV_imag, &lv_imag) > tol) { igraph_vector_print(&AV_real); igraph_vector_print(&AV_imag); igraph_vector_print(&lv_real); igraph_vector_print(&lv_imag); return 1; } } igraph_vector_destroy(&null); igraph_vector_destroy(&AV_imag); igraph_vector_destroy(&AV_real); igraph_vector_destroy(&lv_imag); igraph_vector_destroy(&lv_real); return 0; }
int check_lattice(const lat_test_t *test) { igraph_t graph, othergraph; igraph_vector_t otheredges; igraph_vector_t dimvector; igraph_bool_t iso; int ret; /* Create lattice */ igraph_vector_view(&dimvector, test->dimedges, test->dim); igraph_lattice(&graph, &dimvector, test->nei, test->directed, test->mutual, test->circular); /* Check its properties */ if ((ret=check_lattice_properties(&graph, &dimvector, test->directed, test->mutual, test->circular))) { igraph_destroy(&graph); printf("Lattice properties are not satisfied\n"); return ret; } /* Check that it is isomorphic to the stored graph */ igraph_vector_view(&otheredges, test->dimedges+test->dim, test->m * 2); igraph_create(&othergraph, &otheredges, igraph_vector_prod(&dimvector), test->directed); igraph_isomorphic(&graph, &othergraph, &iso); if (!iso) { printf("--\n"); igraph_write_graph_edgelist(&graph, stdout); printf("--\n"); igraph_write_graph_edgelist(&othergraph, stdout); igraph_destroy(&graph); igraph_destroy(&othergraph); return 50; } igraph_destroy(&graph); igraph_destroy(&othergraph); return 0; }
int main() { igraph_t g; igraph_vector_ptr_t vecs; long int i; igraph_real_t weights[] = { 1, 2, 3, 4, 5, 1, 1, 1, 1, 1 }; igraph_real_t weights2[] = { 0,2,1, 0,5,2, 1,1,0, 2,2,8, 1,1,3, 1,1,4, 2,1 }; igraph_vector_t weights_vec; igraph_vs_t vs; /* Simple ring graph without weights */ igraph_ring(&g, 10, IGRAPH_UNDIRECTED, 0, 1); igraph_vector_ptr_init(&vecs, 5); for (i=0; i<igraph_vector_ptr_size(&vecs); i++) { VECTOR(vecs)[i] = calloc(1, sizeof(igraph_vector_t)); igraph_vector_init(VECTOR(vecs)[i], 0); } igraph_vs_vector_small(&vs, 1, 3, 5, 2, 1, -1); igraph_get_shortest_paths_dijkstra(&g, &vecs, 0, vs, 0, IGRAPH_OUT); for (i=0; i<igraph_vector_ptr_size(&vecs); i++) print_vector(VECTOR(vecs)[i]); /* Same ring, but with weights */ igraph_vector_view(&weights_vec, weights, sizeof(weights)/sizeof(igraph_real_t)); igraph_get_shortest_paths_dijkstra(&g, &vecs, 0, vs, &weights_vec, IGRAPH_OUT); for (i=0; i<igraph_vector_ptr_size(&vecs); i++) print_vector(VECTOR(vecs)[i]); igraph_destroy(&g); /* More complicated example */ igraph_small(&g, 10, IGRAPH_DIRECTED, 0,1, 0,2, 0,3, 1,2, 1,4, 1,5, 2,3, 2,6, 3,2, 3,6, 4,5, 4,7, 5,6, 5,8, 5,9, 7,5, 7,8, 8,9, 5,2, 2,1, -1); igraph_vector_view(&weights_vec, weights2, sizeof(weights2)/sizeof(igraph_real_t)); igraph_get_shortest_paths_dijkstra(&g, &vecs, 0, vs, &weights_vec, IGRAPH_OUT); for (i=0; i<igraph_vector_ptr_size(&vecs); i++) { print_vector(VECTOR(vecs)[i]); igraph_vector_destroy(VECTOR(vecs)[i]); free(VECTOR(vecs)[i]); } igraph_vector_ptr_destroy(&vecs); igraph_vs_destroy(&vs); igraph_destroy(&g); if (!IGRAPH_FINALLY_STACK_EMPTY) return 1; return 0; }
int main() { igraph_t g; igraph_vector_t bet, bet2, weights, edges; igraph_vector_t bbet, bbet2; igraph_real_t nontriv[] = { 0, 19, 0, 16, 0, 20, 1, 19, 2, 5, 3, 7, 3, 8, 4, 15, 4, 11, 5, 8, 5, 19, 6, 7, 6, 10, 6, 8, 6, 9, 7, 20, 9, 10, 9, 20, 10, 19, 11, 12, 11, 20, 12, 15, 13, 15, 14, 18, 14, 16, 14, 17, 15, 16, 17, 18 }; igraph_real_t nontriv_weights[] = { 0.5249, 1, 0.1934, 0.6274, 0.5249, 0.0029, 0.3831, 0.05, 0.6274, 0.3831, 0.5249, 0.0587, 0.0579, 0.0562, 0.0562, 0.1934, 0.6274, 0.6274, 0.6274, 0.0418, 0.6274, 0.3511, 0.3511, 0.1486, 1, 1, 0.0711, 0.2409 }; igraph_real_t nontriv_res[] = { 20, 0, 0, 0, 0, 19, 80, 85, 32, 0, 10, 75, 70, 0, 36, 81, 60, 0, 19, 19, 86 }; /*******************************************************/ igraph_barabasi_game(/* graph= */ &g, /* n= */ 1000, /* power= */ 1, /* m= */ 3, /* outseq= */ 0, /* outpref= */ 0, /* A= */ 1, /* directed= */ 0, /* algo= */ IGRAPH_BARABASI_BAG, /* start_from= */ 0); igraph_simplify(&g, /* multiple= */ 1, /* loops= */ 1, /*edge_comb=*/ 0); igraph_vector_init(&bet, 0); igraph_vector_init(&bbet, 0); igraph_betweenness_estimate(/* graph= */ &g, /* res= */ &bet, /* vids= */ igraph_vss_all(), /* directed = */ 0, /* cutoff= */ 2, /* weights= */ 0, /* nobigint= */ 1); igraph_betweenness_estimate(/* graph= */ &g, /* res= */ &bbet, /* vids= */ igraph_vss_all(), /* directed = */ 0, /* cutoff= */ 2, /* weights= */ 0, /* nobigint= */ 0); check(&bet, &bbet, 10); igraph_vector_destroy(&bet); igraph_vector_destroy(&bbet); igraph_destroy(&g); /*******************************************************/ igraph_tree(&g, 20000, 10, IGRAPH_TREE_UNDIRECTED); igraph_vector_init(&bet, 0); igraph_vector_init(&bbet, 0); igraph_betweenness_estimate(/* graph= */ &g, /* res= */ &bet, /* vids= */ igraph_vss_all(), /* directed = */ 0, /* cutoff= */ 3, /* weights= */ 0, /* nobigint= */ 1); igraph_betweenness_estimate(/* graph= */ &g, /* res= */ &bbet, /* vids= */ igraph_vss_all(), /* directed = */ 0, /* cutoff= */ 3, /* weights= */ 0, /* nobigint= */ 0); check(&bet, &bbet, 20); igraph_vector_init(&bet2, 0); igraph_vector_init(&bbet2, 0); igraph_vector_init(&weights, igraph_ecount(&g)); igraph_vector_fill(&weights, 1.0); igraph_betweenness_estimate(/* graph= */ &g, /* res= */ &bet2, /* vids= */ igraph_vss_all(), /* directed = */ 0, /* cutoff= */ 3, /* weights= */ &weights, /* nobigint= */ 1); igraph_betweenness_estimate(/* graph= */ &g, /* res= */ &bbet2, /* vids= */ igraph_vss_all(), /* directed = */ 0, /* cutoff= */ 3, /* weights= */ &weights, /* nobigint= */ 0); if (!igraph_vector_all_e(&bet, &bet2)) { return 1; } /* if (!igraph_vector_all_e(&bbet, &bbet2)) { */ /* return 2; */ /* } */ check(&bet, &bbet, 30); check(&bet2, &bbet2, 40); igraph_vector_destroy(&bet); igraph_vector_destroy(&bet2); igraph_vector_destroy(&bbet); igraph_vector_destroy(&bbet2); igraph_vector_destroy(&weights); igraph_destroy(&g); /* Non-trivial weighted graph */ igraph_vector_view(&edges, nontriv, sizeof(nontriv)/sizeof(igraph_real_t)); igraph_create(&g, &edges, 0, /* directed= */ 0); igraph_vector_view(&weights, nontriv_weights, sizeof(nontriv_weights)/sizeof(igraph_real_t)); igraph_vector_init(&bet, 0); igraph_vector_init(&bbet, 0); igraph_betweenness(/*graph=*/ &g, /*res=*/ &bet, /*vids=*/ igraph_vss_all(), /*directed=*/0, /*weights=*/ &weights, /*nobigint=*/ 1); igraph_betweenness(/*graph=*/ &g, /*res=*/ &bbet, /*vids=*/ igraph_vss_all(), /*directed=*/0, /*weights=*/ &weights, /*nobigint=*/ 0); igraph_vector_view(&bet2, nontriv_res, sizeof(nontriv_res)/sizeof(igraph_real_t)); if (!igraph_vector_all_e(&bet, &bet2)) { return 2; } check(&bet, &bbet, 50); igraph_vector_destroy(&bet); igraph_vector_destroy(&bbet); igraph_destroy(&g); if (IGRAPH_FINALLY_STACK_SIZE() != 0) return 3; return 0; }
int main() { igraph_t g; FILE *karate, *neural; igraph_real_t res; igraph_vector_t types; igraph_vector_t degree, outdegree, indegree; igraph_real_t football_types[] = { 7,0,2,3,7,3,2,8,8,7,3,10,6,2,6,2,7,9,6,1,9,8,8,7,10,0,6,9, 11,1,1,6,2,0,6,1,5,0,6,2,3,7,5,6,4,0,11,2,4,11,10,8,3,11,6, 1,9,4,11,10,2,6,9,10,2,9,4,11,8,10,9,6,3,11,3,4,9,8,8,1,5,3, 5,11,3,6,4,9,11,0,5,4,4,7,1,9,9,10,3,6,2,1,3,0,7,0,2,3,8,0, 4,8,4,9,11 }; karate=fopen("karate.gml", "r"); igraph_read_graph_gml(&g, karate); fclose(karate); igraph_vector_init(&types, 0); igraph_degree(&g, &types, igraph_vss_all(), IGRAPH_ALL, /*loops=*/ 1); igraph_assortativity_nominal(&g, &types, &res, /*directed=*/ 0); printf("%.5f\n", res); igraph_destroy(&g); /*---------------------*/ neural=fopen("celegansneural.gml", "r"); igraph_read_graph_gml(&g, neural); fclose(neural); igraph_degree(&g, &types, igraph_vss_all(), IGRAPH_ALL, /*loops=*/ 1); igraph_assortativity_nominal(&g, &types, &res, /*directed=*/ 1); printf("%.5f\n", res); igraph_assortativity_nominal(&g, &types, &res, /*directed=*/ 0); printf("%.5f\n", res); igraph_destroy(&g); igraph_vector_destroy(&types); /*---------------------*/ karate=fopen("karate.gml", "r"); igraph_read_graph_gml(&g, karate); fclose(karate); igraph_vector_init(°ree, 0); igraph_degree(&g, °ree, igraph_vss_all(), IGRAPH_ALL, /*loops=*/ 1); igraph_vector_add_constant(°ree, -1); igraph_assortativity(&g, °ree, 0, &res, /*directed=*/ 0); printf("%.5f\n", res); igraph_destroy(&g); /*---------------------*/ neural=fopen("celegansneural.gml", "r"); igraph_read_graph_gml(&g, neural); fclose(neural); igraph_degree(&g, °ree, igraph_vss_all(), IGRAPH_ALL, /*loops=*/ 1); igraph_vector_add_constant(°ree, -1); igraph_assortativity(&g, °ree, 0, &res, /*directed=*/ 1); printf("%.5f\n", res); igraph_assortativity(&g, °ree, 0, &res, /*directed=*/ 0); printf("%.5f\n", res); igraph_vector_destroy(°ree); /*---------------------*/ igraph_vector_init(&indegree, 0); igraph_vector_init(&outdegree, 0); igraph_degree(&g, &indegree, igraph_vss_all(), IGRAPH_IN, /*loops=*/ 1); igraph_degree(&g, &outdegree, igraph_vss_all(), IGRAPH_OUT, /*loops=*/ 1); igraph_vector_add_constant(&indegree, -1); igraph_vector_add_constant(&outdegree, -1); igraph_assortativity(&g, &outdegree, &indegree, &res, /*directed=*/ 1); printf("%.5f\n", res); igraph_vector_destroy(&indegree); igraph_vector_destroy(&outdegree); /*---------------------*/ igraph_assortativity_degree(&g, &res, /*directed=*/ 1); printf("%.5f\n", res); igraph_destroy(&g); /*---------------------*/ karate=fopen("karate.gml", "r"); igraph_read_graph_gml(&g, karate); fclose(karate); igraph_assortativity_degree(&g, &res, /*directed=*/ 1); printf("%.5f\n", res); igraph_destroy(&g); /*---------------------*/ igraph_small(&g, sizeof(football_types)/sizeof(igraph_real_t), IGRAPH_UNDIRECTED, 0,1,2,3,0,4,4,5,3,5,2,6,6,7,7,8,8,9,0,9,4,9,5,10,10,11,5,11, 3,11,12,13,2,13,2,14,12,14,14,15,13,15,2,15,4,16,9,16,0,16, 16,17,12,17,12,18,18,19,17,20,20,21,8,21,7,21,9,22,7,22,21, 22,8,22,22,23,9,23,4,23,16,23,0,23,11,24,24,25,1,25,3,26,12, 26,14,26,26,27,17,27,1,27,17,27,4,28,11,28,24,28,19,29,29, 30,19,30,18,31,31,32,21,32,15,32,13,32,6,32,0,33,1,33,25,33, 19,33,31,34,26,34,12,34,18,34,34,35,0,35,29,35,19,35,30,35, 18,36,12,36,20,36,19,36,36,37,1,37,25,37,33,37,18,38,16,38, 28,38,26,38,14,38,12,38,38,39,6,39,32,39,13,39,15,39,7,40,3, 40,40,41,8,41,4,41,23,41,9,41,0,41,16,41,34,42,29,42,18,42, 26,42,42,43,36,43,26,43,31,43,38,43,12,43,14,43,19,44,35,44, 30,44,44,45,13,45,33,45,1,45,37,45,25,45,21,46,46,47,22,47, 6,47,15,47,2,47,39,47,32,47,44,48,48,49,32,49,46,49,30,50, 24,50,11,50,28,50,50,51,40,51,8,51,22,51,21,51,3,52,40,52,5, 52,52,53,25,53,48,53,49,53,46,53,39,54,31,54,38,54,14,54,34, 54,18,54,54,55,31,55,6,55,35,55,29,55,19,55,30,55,27,56,56, 57,1,57,42,57,44,57,48,57,3,58,6,58,17,58,36,58,36,59,58,59, 59,60,10,60,39,60,6,60,47,60,13,60,15,60,2,60,43,61,47,61, 54,61,18,61,26,61,31,61,34,61,61,62,20,62,45,62,17,62,27,62, 56,62,27,63,58,63,59,63,42,63,63,64,9,64,32,64,60,64,2,64,6, 64,47,64,13,64,0,65,27,65,17,65,63,65,56,65,20,65,65,66,59, 66,24,66,44,66,48,66,16,67,41,67,46,67,53,67,49,67,67,68,15, 68,50,68,21,68,51,68,7,68,22,68,8,68,4,69,24,69,28,69,50,69, 11,69,69,70,43,70,65,70,20,70,56,70,62,70,27,70,60,71,18,71, 14,71,34,71,54,71,38,71,61,71,31,71,71,72,2,72,10,72,3,72, 40,72,52,72,7,73,49,73,53,73,67,73,46,73,73,74,2,74,72,74,5, 74,10,74,52,74,3,74,40,74,20,75,66,75,48,75,57,75,44,75,75, 76,27,76,59,76,20,76,70,76,66,76,56,76,62,76,73,77,22,77,7, 77,51,77,21,77,8,77,77,78,23,78,50,78,28,78,22,78,8,78,68, 78,7,78,51,78,31,79,43,79,30,79,19,79,29,79,35,79,55,79,79, 80,37,80,29,80,16,81,5,81,40,81,10,81,72,81,3,81,81,82,74, 82,39,82,77,82,80,82,30,82,29,82,7,82,53,83,81,83,69,83,73, 83,46,83,67,83,49,83,83,84,24,84,49,84,52,84,3,84,74,84,10, 84,81,84,5,84,3,84,6,85,14,85,38,85,43,85,80,85,12,85,26,85, 31,85,44,86,53,86,75,86,57,86,48,86,80,86,66,86,86,87,17,87, 62,87,56,87,24,87,20,87,65,87,49,88,58,88,83,88,69,88,46,88, 53,88,73,88,67,88,88,89,1,89,37,89,25,89,33,89,55,89,45,89, 5,90,8,90,23,90,0,90,11,90,50,90,24,90,69,90,28,90,29,91,48, 91,66,91,69,91,44,91,86,91,57,91,80,91,91,92,35,92,15,92,86, 92,48,92,57,92,61,92,66,92,75,92,0,93,23,93,80,93,16,93,4, 93,82,93,91,93,41,93,9,93,34,94,19,94,55,94,79,94,80,94,29, 94,30,94,82,94,35,94,70,95,69,95,76,95,62,95,56,95,27,95,17, 95,87,95,37,95,48,96,17,96,76,96,27,96,56,96,65,96,20,96,87, 96,5,97,86,97,58,97,11,97,59,97,63,97,97,98,77,98,48,98,84, 98,40,98,10,98,5,98,52,98,81,98,89,99,34,99,14,99,85,99,54, 99,18,99,31,99,61,99,71,99,14,99,99,100,82,100,13,100,2,100, 15,100,32,100,64,100,47,100,39,100,6,100,51,101,30,101,94, 101,1,101,79,101,58,101,19,101,55,101,35,101,29,101,100,102, 74,102,52,102,98,102,72,102,40,102,10,102,3,102,102,103,33, 103,45,103,25,103,89,103,37,103,1,103,70,103,72,104,11,104, 0,104,93,104,67,104,41,104,16,104,87,104,23,104,4,104,9,104, 89,105,103,105,33,105,62,105,37,105,45,105,1,105,80,105,25, 105,25,106,56,106,92,106,2,106,13,106,32,106,60,106,6,106, 64,106,15,106,39,106,88,107,75,107,98,107,102,107,72,107,40, 107,81,107,5,107,10,107,84,107,4,108,9,108,7,108,51,108,77, 108,21,108,78,108,22,108,68,108,79,109,30,109,63,109,1,109, 33,109,103,109,105,109,45,109,25,109,89,109,37,109,67,110, 13,110,24,110,80,110,88,110,49,110,73,110,46,110,83,110,53, 110,23,111,64,111,46,111,78,111,8,111,21,111,51,111,7,111, 108,111,68,111,77,111,52,112,96,112,97,112,57,112,66,112,63, 112,44,112,92,112,75,112,91,112,28,113,20,113,95,113,59,113, 70,113,17,113,87,113,76,113,65,113,96,113,83,114,88,114,110, 114,53,114,49,114,73,114,46,114,67,114,58,114,15,114,104,114, -1); igraph_simplify(&g, /*multiple=*/ 1, /*loops=*/ 1, /*edge_comb=*/ 0); igraph_vector_view(&types, football_types, sizeof(football_types) / sizeof(igraph_real_t)); igraph_assortativity_nominal(&g, &types, &res, /*directed=*/ 0); printf("%.5f\n", res); igraph_destroy(&g); return 0; }
void test_weighted() { igraph_t g; igraph_vector_t edges, eb, weights; igraph_real_t weights_array[] = { 4, 1, 3, 2, 5, 8, 6, 7 }; igraph_real_t edges_array1[] = { 2, 3, 0, 1, 4, 7, 5, 6 }; igraph_real_t edges_array2[] = { 2, 3, 6, 5, 0, 1, 4, 7 }; igraph_real_t eb_array1_lo[] = { 4, 5, 3+1/3.0-EPS, 4, 2.5, 4, 1, 1 }; igraph_real_t eb_array1_hi[] = { 4, 5, 3+1/3.0+EPS, 4, 2.5, 4, 1, 1 }; igraph_real_t eb_array2_lo[] = { 4, 5, 3+1/3.0-EPS, 6, 1.5, 2, 1, 1 }; igraph_real_t eb_array2_hi[] = { 4, 5, 3+1/3.0+EPS, 6, 1.5, 2, 1, 1 }; igraph_vector_t edges_sol1, edges_sol2, eb_sol1_lo, eb_sol1_hi, eb_sol2_lo, eb_sol2_hi; igraph_vector_view(&edges_sol1, edges_array1, sizeof(edges_array1)/sizeof(double)); igraph_vector_view(&edges_sol2, edges_array2, sizeof(edges_array2)/sizeof(double)); igraph_vector_view(&eb_sol1_lo, eb_array1_lo, sizeof(eb_array1_lo)/sizeof(double)); igraph_vector_view(&eb_sol2_lo, eb_array2_lo, sizeof(eb_array2_lo)/sizeof(double)); igraph_vector_view(&eb_sol1_hi, eb_array1_hi, sizeof(eb_array1_hi)/sizeof(double)); igraph_vector_view(&eb_sol2_hi, eb_array2_hi, sizeof(eb_array2_hi)/sizeof(double)); /* Small graph as follows: A--B--C--A, A--D--E--A, B--D, C--E */ igraph_small(&g, 0, IGRAPH_UNDIRECTED, 0, 1, 0, 2, 0, 3, 0, 4, 1, 2, 1, 3, 2, 4, 3, 4, -1); igraph_vector_view(&weights, weights_array, igraph_ecount(&g)); igraph_vector_init(&edges, 0); igraph_vector_init(&eb, 0); igraph_community_edge_betweenness(&g, &edges, &eb, 0 /*merges */, 0 /*bridges */, /*modularity=*/ 0, /*membership=*/ 0, IGRAPH_UNDIRECTED, &weights); if (!igraph_vector_all_e(&edges_sol1, &edges) && !igraph_vector_all_e(&edges_sol2, &edges)) { printf("Error, edges vector was: \n"); igraph_vector_print(&edges); exit(2); } if (!igraph_vector_between(&eb, &eb_sol1_lo, &eb_sol1_hi) && !igraph_vector_between(&eb, &eb_sol2_lo, &eb_sol2_hi)) { printf("Error, eb vector was: \n"); igraph_vector_print(&eb); exit(2); } /* Try it once again without storage space for edges */ igraph_community_edge_betweenness(&g, 0, &eb, 0 /*merges */, 0 /*bridges */, /*modularity=*/ 0, /*membership=*/ 0, IGRAPH_UNDIRECTED, &weights); if (!igraph_vector_between(&eb, &eb_sol1_lo, &eb_sol1_hi) && !igraph_vector_between(&eb, &eb_sol2_lo, &eb_sol2_hi)) { printf("Error, eb vector was: \n"); igraph_vector_print(&eb); exit(2); } igraph_vector_destroy(&eb); igraph_vector_destroy(&edges); igraph_destroy(&g); }
int main() { igraph_t g; igraph_vector_t weights; igraph_real_t weights_data_0[] = { 0,2,1, 0,5,2, 1,1,0, 2,2,8, 1,1,3, 1,1,4, 2,1 }; igraph_real_t weights_data_1[] = { 6,7,8,-4,-2,-3,9,2,7 }; igraph_real_t weights_data_2[] = { 6,7,2,-4,-2,-3,9,2,7 }; igraph_matrix_t res; /* Graph with only positive weights */ igraph_small(&g, 10, IGRAPH_DIRECTED, 0,1, 0,2, 0,3, 1,2, 1,4, 1,5, 2,3, 2,6, 3,2, 3,6, 4,5, 4,7, 5,6, 5,8, 5,9, 7,5, 7,8, 8,9, 5,2, 2,1, -1); igraph_vector_view(&weights, weights_data_0, sizeof(weights_data_0)/sizeof(igraph_real_t)); igraph_matrix_init(&res, 0, 0); igraph_shortest_paths_bellman_ford(&g, &res, igraph_vss_all(), igraph_vss_all(), &weights, IGRAPH_OUT); print_matrix(&res); igraph_matrix_destroy(&res); igraph_destroy(&g); printf("\n"); /***************************************/ /* Graph with negative weights */ igraph_small(&g, 5, IGRAPH_DIRECTED, 0,1, 0,3, 1,3, 1,4, 2,1, 3,2, 3,4, 4,0, 4,2, -1); igraph_vector_view(&weights, weights_data_1, sizeof(weights_data_1)/sizeof(igraph_real_t)); igraph_matrix_init(&res, 0, 0); igraph_shortest_paths_bellman_ford(&g, &res, igraph_vss_all(), igraph_vss_all(), &weights, IGRAPH_OUT); print_matrix(&res); /***************************************/ /* Same graph with negative loop */ igraph_set_error_handler(igraph_error_handler_ignore); igraph_vector_view(&weights, weights_data_2, sizeof(weights_data_2)/sizeof(igraph_real_t)); if (igraph_shortest_paths_bellman_ford(&g, &res, igraph_vss_all(), igraph_vss_all(), &weights, IGRAPH_OUT) != IGRAPH_ENEGLOOP) return 1; igraph_matrix_destroy(&res); igraph_destroy(&g); if (!IGRAPH_FINALLY_STACK_EMPTY) return 1; return 0; }
QList<int> MWBM::run(QList<int> input_weights, int numberOfLeft, int numberOfRight, bool &isMatched) { igraph_t graph; igraph_vector_bool_t types; igraph_vector_long_t matching; igraph_vector_t weights; igraph_integer_t matching_size; igraph_real_t matching_weight; igraph_bool_t is_matching; igraph_vector_t v; int i; QList<int> out; igraph_real_t weight_array[input_weights.size()]; for(int j=0;j<input_weights.size();j++) { weight_array[j] = input_weights.at(j); }; QList<int> edges_list; for(int j=0;j<numberOfLeft;j++) { for(int k=numberOfLeft;k<numberOfRight+numberOfLeft;k++) { edges_list.append(j); edges_list.append(k); } } igraph_real_t edges[edges_list.size()]; for(int j=0;j<edges_list.size();j++) { edges[j] = edges_list.at(j); } igraph_vector_view(&v, edges, sizeof(edges)/sizeof(double)); igraph_create(&graph, &v, 0, IGRAPH_DIRECTED); igraph_vector_bool_init(&types, numberOfLeft+numberOfRight); for (i = 0; i < numberOfLeft+numberOfRight; i++) VECTOR(types)[i] = (i >= numberOfLeft); igraph_vector_long_init(&matching, 0); igraph_vector_init_copy(&weights, weight_array, sizeof(weight_array) / sizeof(weight_array[0])); igraph_maximum_bipartite_matching(&graph, &types, &matching_size, &matching_weight, &matching, &weights,DBL_EPSILON); igraph_is_maximal_matching(&graph, &types, &matching, &is_matching); if (!is_matching) { isMatched = false; } else { isMatched=true; } for(int j=0;j<numberOfLeft*2;j++) out.append(VECTOR(matching)[j]); igraph_vector_destroy(&weights); igraph_vector_long_destroy(&matching); igraph_vector_bool_destroy(&types); igraph_destroy(&graph); return out; }
int check_multi() { igraph_t g; igraph_vector_t vec; igraph_vector_t eids, eids2; int ret; long int i; igraph_real_t q1[] = { 0,1, 0,1 }; igraph_real_t q2[] = { 0,1, 0,1, 0,1 }; igraph_real_t q3[] = { 1,0, 3,4, 1,0, 0,1, 3,4, 0,1 }; igraph_vector_init(&eids, 0); /*********************************/ igraph_small(&g, /*n=*/ 10, /*directed=*/ 1, 0,1, 0,1, 1,0, 1,2, 3,4, 3,4, 3,4, 3,5, 3,7, 9,8, -1); igraph_vector_view(&vec, q1, sizeof(q1) / sizeof(igraph_real_t)); igraph_get_eids_multi(&g, &eids, &vec, 0, /*directed=*/ 1, /*error=*/ 1); igraph_vector_sort(&eids); print_vector(&eids, stdout); igraph_vector_view(&vec, q2, sizeof(q2) / sizeof(igraph_real_t)); igraph_get_eids_multi(&g, &eids, &vec, 0, /*directed=*/ 0, /*error=*/ 1); igraph_vector_sort(&eids); print_vector(&eids, stdout); igraph_vector_view(&vec, q2, sizeof(q2) / sizeof(igraph_real_t)); igraph_set_error_handler(igraph_error_handler_ignore); ret=igraph_get_eids_multi(&g, &eids, &vec, 0, /*directed=*/ 1, /*error=*/1); if (ret != IGRAPH_EINVAL) { return 1; } igraph_set_error_handler(igraph_error_handler_abort); igraph_destroy(&g); /*********************************/ /*********************************/ igraph_small(&g, /*n=*/10, /*directed=*/0, 0,1, 1,0, 0,1, 3,4, 3,4, 5,4, 9,8, -1); igraph_vector_view(&vec, q1, sizeof(q1) / sizeof(igraph_real_t)); igraph_get_eids_multi(&g, &eids, &vec, 0, /*directed=*/1, /*error=*/ 1); igraph_vector_sort(&eids); print_vector(&eids, stdout); igraph_vector_view(&vec, q3, sizeof(q3) / sizeof(igraph_real_t)); igraph_set_error_handler(igraph_error_handler_ignore); ret=igraph_get_eids_multi(&g, &eids, &vec, 0, /*directed=*/0, /*error=*/ 1); if (ret != IGRAPH_EINVAL) { return 2; } igraph_set_error_handler(igraph_error_handler_abort); igraph_destroy(&g); /*********************************/ igraph_vector_destroy(&eids); /*********************************/ /* Speed tests */ #define NODES 10000 igraph_barabasi_game(&g, /*n=*/ NODES, /*power=*/ 1.0, /*m=*/ 3, /*outseq=*/ 0, /*outpref=*/ 0, /*A=*/ 1, /*directed=*/ 1, IGRAPH_BARABASI_BAG, /*start_from=*/ 0); igraph_simplify(&g, /*multiple=*/ 1, /*loops=*/ 0, /*edge_comb=*/ 0); igraph_vector_init(&eids, NODES/2); igraph_random_sample(&eids, 0, igraph_ecount(&g)-1, NODES/2); igraph_vector_init(&vec, NODES); for (i=0; i<NODES/2; i++) { VECTOR(vec)[2*i] = IGRAPH_FROM(&g, VECTOR(eids)[i]); VECTOR(vec)[2*i+1] = IGRAPH_TO(&g, VECTOR(eids)[i]); } igraph_vector_init(&eids2, 0); igraph_get_eids_multi(&g, &eids2, &vec, 0, /*directed=*/ 1, /*error=*/ 1); if (!igraph_vector_all_e(&eids, &eids2)) { return 3; } /**/ for (i=0; i<NODES/2; i++) { VECTOR(vec)[2*i] = IGRAPH_TO(&g, VECTOR(eids)[i]); VECTOR(vec)[2*i+1] = IGRAPH_FROM(&g, VECTOR(eids)[i]); } igraph_get_eids_multi(&g, &eids2, &vec, 0, /*directed=*/ 0, /*error=*/ 1); if (!igraph_vector_all_e(&eids, &eids2)) { return 4; } igraph_vector_destroy(&eids); igraph_vector_destroy(&eids2); igraph_vector_destroy(&vec); igraph_destroy(&g); /*********************************/ return 0; }